
Computer Physics Lab 
www.labfiscomp.blog 

Celestial Mechanics 
on the personal computer 

Here you will find some examples which illustrate how simple and easy it is to 

explore problems in solar system dynamics using matlab. We shall study the 

classical problem of  Mercury’s perihelion anomalous precession, the motion of  the 

Moon and the stability of  the Lagrange point L4 in the Earth-Moon system taking 

into account perturbations. You may find in the package CM.tar all the matlab 
codes which have been developed along the years of  University teaching. The real fun 

however is to develop these codes by yourselves, it may turn out that they will be better 

than those present on the blog, in which case let us have them and they will be 

included in the package with due reference to the Authors.  

1. Mercury’s perihelion precession 
You find an authoritative account of  this problem, which is one of  the classic tests of  
General Relativity, on Weinberg’s book on Cosmology  and on C.M.Will’s book on 1

Experimental Gravitation . It suffices to recall here that the orbit of  Mercury is 2

affected by the attraction of  other planets in a way that makes its Kepler ellipse 
periodically  modify the direction of  its main axis by an angle which is measured in 
seconds of  arc per century - yes, it’s a delicate effect, but astronomers are well able 
to measure such tiny effects with their instruments. The numbers are the following,  
denoting the precession angle:  = 5600”.7 /century (which makes less than two 
degrees) the main effect however is given by the optical illusion due to the fact that we 
observe Mercury’s dynamics from an observatory (the Earth) whose rotation axis is 
subject itself  to a secular precession which accounts for the major effect - 5025”.6 - 
hence the real effect as seen by Andromeda (if  possible) would be  = 575”.  
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 S. Weinbberg, Gravitation and Cosmology, Wiley, 20151

 C.M. Will, Theory and Experiment in gravitational physics, rev.ed. Cambridge U.P. 19932
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This is the number which we can try to reconstruct on the computer by solving 
Newton’s equations for the main planets, provided we get all relevant orbital elements 
at a given epoch. So to do the calculation we need a computer running matlab (or 
your preferred language, python perhaps?), a list of  the main objects in the Solar 
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Planets and Pluto: Physical Characteristics

This table contains selected physical characteristics of the planets and Pluto.

Planet
Equatorial

Radius
Mean

Radius Mass
Bulk

Density
Sidereal

Rotation Period
Sidereal

Orbit Period V(1,0)
Geometric

Albedo
Equatorial

Gravity
Escape
Velocity

 (km) (km) (x 1024 kg) (g cm-3) (d) (y) (mag)  (m s-2) (km s-1)

Mercury
 

2439.7
±1.0

  [D] 2439.7
±1.0

  [D] 0.330104
±.000036

  [F] 5.427
±.007

  [*] 58.6462
 
  [D] 0.2408467

 
  [B] -0.60

±0.10
  [E] 0.106

 
  [B] 3.70

 
  [*] 4.25

 
  [*]

Venus
 

6051.8
±1.0

  [D] 6051.8
±1.0

  [D] 4.86732
±.00049

  [G] 5.243
±.003

  [*] -243.018
 
  [D] 0.61519726

 
  [B] -4.47

±0.07
  [E] 0.65

 
  [B] 8.87

 
  [*] 10.36

 
  [*]

Earth
 

6378.14
±.01

  [D] 6371.00
±.01

  [D] 5.97219
±.00060

  [H] 5.5134
±.0006

  [*] 0.99726968
 
  [B] 1.0000174

 
  [B] -3.86

 
  [B] 0.367

 
  [B] 9.80

 
  [*] 11.19

 
  [*]

Mars
 

3396.19
±.1

  [D] 3389.50
±.2

  [D] 0.641693
±.000064

  [I] 3.9340
±.0008

  [*] 1.02595676
 
  [D] 1.8808476

 
  [B] -1.52

 
  [B] 0.150

 
  [B] 3.71

 
  [*] 5.03

 
  [*]

Jupiter
 

71492
±4

  [D] 69911
±6

  [D] 1898.13
±.19

  [J] 1.3262
±.0004

  [*] 0.41354
 
  [D] 11.862615

 
  [B] -9.40

 
  [B] 0.52

 
  [B] 24.79

 
  [*] 60.20

 
  [*]

Saturn
 

60268
±4

  [D] 58232
±6

  [D] 568.319
±.057

  [K] 0.6871
±.0002

  [*] 0.44401
 
  [D] 29.447498

 
  [B] -8.88

 
  [B] 0.47

 
  [B] 10.44

 
  [*] 36.09

 
  [*]

Uranus
 

25559
±4

  [D] 25362
±7

  [D] 86.8103
±.0087

  [L] 1.270
±.001

  [*] -0.71833
 
  [D] 84.016846

 
  [B] -7.19

 
  [B] 0.51

 
  [B] 8.87

 
  [*] 21.38

 
  [*]

Neptune
 

24764
±15

  [D] 24622
±19

  [D] 102.410
±.010

  [M] 1.638
±.004

  [*] 0.67125
 
  [D] 164.79132

 
  [B] -6.87

 
  [B] 0.41

 
  [B] 11.15

 
  [*] 23.56

 
  [*]

Pluto
 

1151
±6

  [C] 1151
±6

  [C] .01309
±.00018

  [N] 2.05
±.04

  [*] -6.3872
 
  [D] 247.92065

 
  [B] -1.0

 
  [B] 0.3

 
  [B] 0.66

 
  [*] 1.23

 
  [*]
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system with their so-called orbital elements; this is provided e.g. by JPL lab (http://
ssd.jpl.nasa.gov).  

	 There are several options at our disposal: we can use a routine in matlab’s ODE 
suite and make all planets run their orbits under mutual Newton’s attraction in the 
field of  force of  the Sun, which is the main engine. This is rather straightforward and 
can be found in the routine mercury.m in the package CM.tar; the program  calls 
an auxiliary routine orbel.m to load orbital elements and then it invokes ode113 
as integration routine. The result is plotted in terms of  the direction of  Mercury’s 
main axis along one or more centuries, together with its linear fit which aims at 
averaging the oscillating terms which are rather ample. The program allows to isolate 
the contribution of  various planets, among these the more important effect is that of  
Venus, Earth and Jupiter. Running the program for a century takes up only a few 
seconds on a recent personal computer.  

	 Another set up is suggested in Chapter 9.5 of  Weinberg’s book and applies the 
idea of  studying the dynamics of  the Laplace—Runge—Lenz vector whose direction 
is instantly along the major axis of  the orbit. This vector  

 

represents an exact conserved quantity if  the only force acting on the planet is given 
by the Sun attraction. Here v is the planet’s velocity, x it’s position with respect to the 
center of  the Sun, G is Newton’s constant and M the Solar mass. The importance of  
A is given by the fact the it’s direction points to the perihelion and it length gives the 
eccentricity of  the orbit. In presence of  other forces beyond the attraction by the Sun 

A are acting on the planet then it is not constant any more and tracking its direction 
gives the precession of  the perihelion. The interesting thing is that A satisfies a first 
order differential equation which can be found in Weinberg’s book provided we 
know the position of  all relevant celestial objects. Here is the catch: if  we 
calculate the position of  the planets by solving the equations of  motion then the 
approach is not going to give us any gain. However we can imagine that a good 
approximation consists in putting all planets on their Kepler ellipses since their mutual 
interaction is not going to have a big impact on the motion of  Mercury. We try to do 
so and apply Weinberg’s equation  

 

where  represents all forces acting on Mercury except Solar Newtonian attraction. 	
 may contain also the contribution of  Solar oblateness o the attraction of  the asteroid 

A = v ∧ h − GM
x
r

d A
dt

= η ∧ h + v ∧ (x ∧ η)

η
η
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clouds. For simplicity the program ~/firstorder/lenz.m  only contains the 
attraction of  other planets.  

	 You can make experiments with mercury.m and/or lenz.m; results will 
vary from one experiment to the other, we must keep in mind that this number 575”/
century is not a constant of  Nature, on the opposite it depends on many accidental data, 
the initial positions of  the Planets along the orbit, the inclination of  the orbits with 
respect to the ecliptic, etc. One surprising aspect of  this historic experiment of  late 
XIX century is that it took many decades to collect data AND it took many decades to 
perform the Newton perturbation calculation without the aid of  a computer - what is 
now a matter of  few seconds took many years of  deeply intricate calculations based of  
Hamilton-Jacobi equation which allows to set up a perturbative calculation. The very 
complex results were recently found to contain some slight mistakes when the 
calculations were done again using a symbolic code on the computer, luckily enough 

those were not catastrophic mistakes! 
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Here are two experiments, T=500y, the first with mercury.m, full Newtonian 
dynamics, the second with lenz.m using Weinberg’s equation for A and  exploiting 
the known Kepler orbits given their realistic orbit elements.  

Results are indistinguishable within fluctuations of  initial conditions. This means 

that the perturbation of  Mercury’s perihelion does not depend on the detailed 

Newtonian dynamics, it can be estimated by using Kepler ellipses.  
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Of  course the interesting thing is the fact that computed and experimental value 

for the perihelion precession do not match! Experimental value is ~575” while the 

number laboriously derived by astronomers and reproduced on our computer today in 

a few seconds is ~532”. It seems a tiny discrepancy, but on the plots it is rather 

evident. A difference of  ~43” was difficult to justify.  This was the puzzle at the end of  

XIX century for Astronomers. Several hypotheses were formulated to account for the 

mismatch, including a bigger Solar oblateness, the existence of  a misteryous planet 

invisible from Earth… The state of  the Art was expressed in the final notes to his 

authoritative book  by the Astronomer F. R. Moulton (I quote) 3

“ At the present time Celestial Mechanics is entitled to be regarded as the most perfect science 
and one of  the most splendid achievements of  the human kind … the only unexplained irregularities 
(probably due to unknown forces) are a very few small ones in the motion of  the Moon and the motion 

of  the perihelion of  the orbit of  Mercury.” Dated 1914! The following year Albert Einstein 

published his new theory of  Gravitation in terms of  which the 43” anomaly took a 

precise analytic form  

	  

astonishingly enough, the theory did not need any new natural constants to 

account for the anomaly. 

2. Moon’s dynamics - the Saros cycle 
The dynamics of  the Moon can be studied in its simplest form by considering the 

three body motion of  Sun-Earth-Moon; this has been a problem central to Celestial 

Mechanics and its Astronomical implications were clear even before the advent of  

modern Science, i.e. Newtonian mechanics. The purely phenomenological study of  

the motion of  the Moon gave remarkably precise results already at the time of  

Babylonian astronomy . Thanks to their powerful arithmetic, Astronomers had a deep 4

control on the motion of  the Moon, and this meant the possibility of  foreseeing 

Δφ = 6π
G M

R c2 (1 − ε2)

 An Introduction to  Celestial Mechanics, The MacMillan Company, 1914, pag.430, Dover, 19703

 O. Neugebauer, “The Exact Sciences in Antiquity”, Dover, second ed., 1969.4
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eclipses. Observations were performed along many decades, passing the information 

from one generation to the following, and a marvellous result was the identification of  

a fundamental period in the motion of  the Moon which is called “the Saros cycle”: 

this cycle is 18 years, 11 days +1/3 long and could have not be identified without a 

patient data taking along at least a century. This is the fundamental cycle which 

characterises the periodic repetition in the sequence of  eclipses. Even Isaac Newton 

had a hard interaction with the problem of  Moon dynamics, since the three-body 

problem does not allow for easy analytical solutions not even approximate. Only at the 

end of  XIX century a full grown perturbative solution was formulated. A modern 

presentation can be found in Gutzwiller’s book .  5

Now in this blog we are going to show how the Moon’s dynamics can be easily 

studied by numerical analysis using modern ODE codes, such as they are 

implemented in matlab. Our setup of  the computer experiment has been described in 

a paper on Comp.Sci.Eng.  and will not be repeated here. The matlab codes are 6

included in the package: you may use newton3D.m to run Newton’s equations for 

the coupled three body system Sun-Earth-Moon; the routine ode113 appears to be the 

most efficient in terms of  speed and accuracy. When the run is completed along a time  

T sufficiently long (i.e. 100 years or more), Moon’s motion can be analysed in the 

frequency domain using the Fourier transform. The spectrum turns out to be highly 

complex, typical of  a multi-periodic phenomenon. As a convenient observable to be 

analysed it has been chosen the so called Laplace-Runge-Lenz vector (see Mercury’s 

perihelion), which would be just a conserved constant in the two-body problem  Earth-

Moon, but its behaviour is strongly modified by the Sun’s influence. As a result its 

spectrum shows clusters of  peaks around a frequency , other clusters around 

the frequency  and finally the interesting fact is to be found by blowing up the 

low frequency spectrum at the scale , i.e. approximately 20 times smaller: here 

we find very clean peaks at multiples of  the frequency .  By a linear fit we get 

the fundamental frequency .05545 nicely corresponds to the Saros cycle.  

month−1

year−1

saros−1

saros−1

 M. C. Gutzwiller, “Chaos in Classical and Quantum Mechanics”, Springer, N.Y.,1990.5

 E. Onofri, “Elementary Celestial Mechanics using matlab”, Computing in Science and Engineering, Nov.2001, 6

48. 

ELEMENTARY CELESTIAL MECHANICS 7



 

ELEMENTARY CELESTIAL MECHANICS 8

0 4 8 12 16 20
0

100

200

300

400

500

600
Linear fit of  low frequency spectrum

peak #

ch
an

ne
l

1=0.0554 yï1

(ex=0.0555 yï1)

Fourier channel
10-10

10-8

10-6

10-4

10-2

100

102

104
s
p
e
c
t
r
a
l
 
i
n
t
e
n
s
i
t
y

10002000300040005000600070008000900010000
Fourier channel

10-10

10-8

10-6

10-4

10-2

100

102

104

s
p
e
c
t
r
a
l
 
i
n
t
e
n
s
i
t
y

Year-1

110 221 332 443 554 665 776 887 998
Fourier channel

10-8

10-6

10-4

10-2

100

102

104

s
p
e
c
t
r
a
l
 
i
n
t
e
n
s
i
t
y

Saros-1



The main effort in writing the code to compute the Moon’s dynamics consists in     

1) identifying the more convenient coordinates (a simple minded approach risks to go 

into trouble because of  the different scale distance Sun-Earth w.r.t. distance Moon-

Earth. Hence a good choice has been presented in ref.[6]. 

2) Then one has to collect the relevant astronomical constants which can easily 

be found e.g. in the Particle Physics Data Group  web site pdg.lbl.gov.  

3. Moon’s dynamics - Lagrange points 
and their stability 

In the same paper on Comp.Sci.and Engin. a numerical experiment was described 
regarding the stability of  the motion of  so-called Lagrange point L4. Lagrange 
discovered an interesting special solution in the dynamics of  three gravitating bodies, 
in the special case that the third object is very light: an example is given by the Trojan 
asteroids who run on the same orbit of  Jupiter located with the Sun and Jupiter at  the 
vertices of  a regular triangle. We can imagine that there could be a practical interest in 
placing a satellite in such a position with respect to the Earth and the Moon - it could 
be used for instance for telecommunications. The question is: since the Sun exerts a 
strong attraction on all celestial objects such an orbit would be stable taking into 
account also the interaction with the Sun, hence forming a four-body system? With 
the same setup used to explore the motion of  the Moon, we can add the artificial 
satellite, study its orbit and verify its stability properties. The matlab code can be found 
in the folder Moon-L4. You can modify, in the simulation, the Solar mass hence 
checking that the code works fine giving a periodic orbit for zero Solar mass. But the 
Sun is there and its effect is going to disrupt the Lagrange L4 orbit very soon. In the 
folloing picture we see the satellite that after oscillating around L4 for almost a year, 
starts a series of  wild oscillations and after two years leaves the Moon-Earth system 
and goes to a Solar orbit at a distance of  ~300 MKm from earth. The matlab codes 
let you make experiments by varying various parameters, the eccentricity of  the orbits, 
the inclination of  Moon’s orbit on the ecliptic, the mass of  the Sun and the ratio of  
masses Earth/Moon.  You may also try to start the satellite not exactly at L4 but 
slightly off. At the end you will recognise that the main difficulty in keeping a stable 
orbit is the Sun’s attraction.  
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