
Teaching wave mechanics with 
Matlab  

To avoid any misunderstanding, let’s make it clear that  this is not 

a place where one can learn about professional software devoted to a 

numerical approach in atomic or molecular physics. For this aim you 

should look elsewhere for implementations of  quantum MonteCarlo, 

like Car-Parrinello. Here instead you will find ideas and techniques 

useful for teaching elementary wave mechanics to undergraduates. 

This doesn’t mean that our methods cannot lead to original research, 

they actually originated from research activity, specifically looking for 

the impact of  background geometry on quantum spectra , but they 1

are mostly useful for pedagogical applications. You’ll find here a basic 

technique, essentially Feynman Path integral, which allows to study 

the evolution of  wave packets according to Schroedinger’s equation, 

in any given energy potential and display the effect of  diffraction, 

interference, energy barrier penetration (tunnel effect). The 

calculation of  energy spectra for charged particles in external 

magnetic fields, the nice phenomenon of  Landau Levels and 

Quantum Hall Effect can be approached with our techniques.  

 C. Destri, P. Maraner, and E. Onofri, Nuovo Cimento A, 107, 237 (1994). 	 	 	 	1

P.Maraner, ,E.Onofri and G.P. Tecchiolli, Spectral methods in computational quantum mechanics, J.Comput.Appl.Math., 37, 
(1991) 209-219.  
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https://inspirehep.net/literature?q=a%20G.Tecchiolli.1


The basic idea, known as “splitting method”or  “Leapfrog algorithm”, 

goes back to Isaac Newton! His proof  of  the Law of  Areas, aka 

angular momentum conservation, introduces a trick: imagine that the 

planet evolves inertially for an infinitesimal time  as a free particle - 

hence no attraction from the Sun, hence for another interval  the 

position stays fixed but momentum gets an impulse , where 

F is directed towards the Sun according to His Law. If  the interval is 

small enough the result is equivalent to a correct solution of  the 

equation of  motion. See Newton’s Principia ! Now, the same idea can 2

be exported to quantum mechanics, This translates to the well known 

Trotter’s formula (originally invented by Sophus Lie in the context of  

continuous groups), namely the quantum evolution given by the 

unitary operator  can be approximated 

with arbitrary accuracy choosing an infinitesimal interval of  time t/n 

and computing . The 

advantage is twofold, with respect to other numerical recipes: each 

exponential can be computed exactly (i.e. to machine accuracy) and the 

result is by construction a unitary operator, hence there is no loss of  

probability along the way. Energy is conserved only approximately, 

namely n  , but this can be improved at the expense of  speed. 

The crucial ingredient which allows to compute very efficiently the 

first exponential  is represented by the fast Fourier 

transform. We go to Fourier space by Fourier, then the free evolution 

driven by  is simply a multiplication by a phase factor and the 

inverse Fourier  takes us back to position space, where the exponential  

Δt

Δt

Δp = FΔt

U(t) = exp{−it(p2 /2m + V(q))}

U(t) ≈ (exp{−it /n p2 /2m} exp{−it /n V(q)})n

𝒪(Δt /n)2

exp{−iΔtp2 /2m}

p2 /2m

 For instance on gallica.bnf.fr2

MATLAB WAVE MECHANICS 2



 is also a pure phase factor. The idea is due to M.D. 

Feit,  J.A.Fleck and A. Steiger .   3

On your personal computer the method can be implemented 

using Matlab to study quantum dynamics for scalar particles in one-

two and three dimensions. You will find Matlab codes in this 

repository for a suite of  problems, but the good idea is to grasp the 

essential idea and to try to build yourselves the program, why, you 

could do better than us!  

The technique can also be used to estimate the energy spectrum: 

if  you compute the time evolution  then the spectrum 

is encoded in the wave function. You can extract the spectrum by 

Fourier analysing the overlap  which is given by  

This was the proposal in the original reference (3). At present this 

is not the best choice, since we can compute the spectrum by other 

“sparse” methods much more efficient (Arnoldi method), as you may 

find elsewhere in this blog.  

exp{−i Δt V(q)}

ψ (t) = U(t) ψ (0)

⟨ψ (0) |ψ (t)⟩

 M.D. Feit, J.A. Fleck Jr and A. Steiger, J. Comput. Phys. 47 (1982) 412-433.3
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<latexit sha1_base64="x16uMdawMlX3r7kUNLmpz0Oen68="></latexit>



W e suggest to start with two examples - “doublewell.m” and 
“wms2.m”. The first program displays the evolution of  a quantum 
particle in a potential exhibiting two classical vacua, namely 

. Let the particle be located as a Gaussian 
packet around x=a at t=0; quantum evolution makes it evolve 
oscillating around x=a and we see its leaking to the left region 

around x = -a even if  its energy is less than  due to the tunnel 
effect. 	 This is a simplified model of  what really happens in the 
ammonia molecule  .  

Now let’s look at the code in detail. You may conveniently keep 

the code under your sight with an editor, here we give some essential 

comments. The function interface is very concise… 
function setup=doublewell(setup)

V(x) = V0 (x2 − a2)2

V0 a2

N H3
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The interaction with the user is through a setup file. If  you start 

from scratch this can be empty and a default will be provided; it is 

then saved with your choices in order to be able to restart with the 

same initial setup or a variation thereof. The setub file contains all 

physical parameters mass, momentum, width of  the wave packet,  and other 

“technical” parameters which define the computing environment box 

size, grid size, evolution time, etc..  Then come the definition of  the 

position grid (here 1-dimensional)  
 dx  = 2*L/N

  x   = -L*(1-1/N) : dx : L*(1-1/N); 

and the momentum space grid  
 k = fftshift(pi*(-N/2:(N/2-1))/L); 

Then we define the potential energy 
 V = V0 * (1-(x/omega).^2).^2;

The spitting algorithm requires the two phase factors 

 and , thus

  U = exp(-i*tau*V);  U2 = exp(-0.5i*tau*V);

  W = exp(-0.5i*k2/mass*tau);

 U2, a half  step evolution, is used to build a symmetric algorithm, 

as we can see in the full listing. The initial wave packet is built as a 

normalized Gaussian, centered around one minimum of  the potential 
 psi = exp(-(x-x0).^2/4/sigma+i*mom*x)/2*pi*sigma).^(1/4);

The evolution is given by a loop over the number of  time steps, 

each consisting of  the application of  the phase factors to the wave 

exp{−iΔt p2 /2m} exp{−i Δt V(q)}
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function alternatevily in position and in momentum space, just one 

line 
  psi = U.*ifft(fft(psi).*W);

but it may be clearer by unfolding it to  

  phi = fft(psi); % go to momentum space

phi = W.*phi;     % apply W=exp(-i dt p^2)

psi = ifft(phi);% back to position space

psi = U.*psi;   % apply U = exp(-i dt V(x)) 

In this loop we spend most of  the computing time. The rest of  the 

code is devoted to the graphical display of  the probability density 

. An option lets us to save the snapshots in order to 

produce a stand alone video clip.  Let’s skip the details.  

ρ(x, t) = |ψ (x, t) |2
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T he second example consists in the evolution of  a wave packet 
in two-dimensions and it can be used to display the 
phenomena of  diffraction and interference typical of  wave 

mechanics. In the multidimensional case we have to work a bit 
more in defining the position grid and momentum grid. This can 
be easily done using Matlab’s built-in routines meshgrid or ndgrid. 
The core of  the program is essentially identical, given we employ 
the two-dimensional version of  the fast Fourier tranform fft2 and 
ifft2. The display is organised to give both the probability density and 
the phase: this latter is rendered by a color code which is linked to the 
phase. In this way one can check the difference between phase velocity  
and group velocity! Here we have a plane wave packet scattering around 
a potential barrier and we can see the back scattered circular wave 
and the main packet continuing in the original direction.  

A video clip with about this problem can be found as “thebigone.mov” in 
the file depository.  
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Landau levels 

N ow we introduce another elementary application of  the splitting 
technique which has a distinguished character: Landau Levels on 

the computer. The subject has been for decades a topic in 
Mathematical Physics, since the 1930 paper by Landau, but in recent 
years it has been reconsidered or its phenomenological relevance . 4

The problem consists in computing the energy spectrum for a charged 
particle in two dimensions subject to a transverse uniform magnetic 
field. The problem allows for a complete analytic solution (Landau), 
but the availability of  a precise numerical computation make it 
possible to estimate the effect of  various perturbation, which is not 
always possible analytically. Our method consists in representing 
momenta using the trick to go in momentum space via fft, however 
this implies that we are working with periodic boundary conditions 
hence the particle lives on a torus. If  the size of  the torus is large 
enough this has little impact on the physics of  the problem, but the 
interesting features of  the problem manifest themselves in the opposite 
case, when we insist on having to do with a particle on a torus and a 
transversal magnetic field; since a strictly solenoidal field must have 
zero flux this means that we are actually studying a field generated by 
a suitable magnetic charge and this must be in accord with Dirac’s 
quantization condition - hence the flux is quantized. The energy levels 
turn out to have a degeneracy exactly given by the quantized flux! We 
can then experiment what happens in presence of  various 

 Int.J.Theoret.Phys. 40(2) 537, 2001; Int.J.ModernPhys.C, 2008. 4
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perturbations. Details can be found in the two references; see also Ref.
( ). Matlab code can be found in the blog repository under the name 5

LL2.m.  

                  An example of  Landau spectrum with monopole charge 8.  

 P.Maraner, G.P.Tecchiolli and E.O., Spectral methods in computational quantum mechanics, J. Comput. Appl. Math., 37 5

(1991).
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The previous plot shows that under a periodic perturbation the Landau levels 
are rather stable, which is important since in real materials impurities are 
always present. This appears to be hard to prove analytically.   
	 The essential features of  the program are the following:  
1. we do not use a discretisation to represent the momentum 

operators, rather we resort to the spectral representation based on 
the fast Fourier transform. 

2. we take into account that the wave function for a charged particle 
on a compact manifold (here the torus) subject to a transversal 
magnetic field is not just a periodic function on the torus, rather it 
is a section of  the line bundle built according to the rules of  
quantum gauge theories. This obliges us to introduce a correction 
with a phase factor before taking the Fourier transform. Details can 
be found in the first references.  

3. The spectrum is computed using the matlab routine eigs which 
implements the Krylov-Schur algorithm : it allows to define the 6

Hamiltonian operator through a subroutine instead of  giving 
explicitly its matrix representation. The accuracy of  the method is 
remarkable. See the following plot where the degeneracy of  the 
levels is reproduced to the required accuracy . 10−12

 Stewart, G.W. "A Krylov-Schur Algorithm for Large Eigenproblems." SIAM Journal of  Matrix Analysis and 6

Applications. Vol. 23, Issue 3, 2001, pp. 601–614.
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The relevant code, to be found in the archive, is called 
LandauMathieu.m.  
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Bosonic operators 

A good knowledge of  Dirac’s creation-annihilations operators 
is required to all students in elementary quantum mechanics. 
This requires some proficiency in algebraic manipulations for 
non-commuting operators. Typical academic exercises are the 
calculation of  perturbed energy level for a  Hamiltonian of  
the kind 

or multidimensional Hamiltonians like  
	  

Such problems can be solved rather easily using a symbolic 
language like Mathematica or form, here however we discuss 
how we can approach these problems via Matlab achieving 
high accuracy. The crucial elements in order to represent 
Bosonic operators in an efficient way are 1) sparse matrices, 2) 
Kronecker products. Sparse matrices allow for large matrix 
dimensions and the Kronecker product “kron” allows to build 
multidimensional bosonic operators starting from the one 
diimensional ones. The simple one-dimensional operators can 
be defined like this 
%----Creation/annihilation operators---- 

function [a,ad] = boson(B) 

D  = (0:B)’; % diagonal mat.elem. (column vector) 

a  = spdiags(sqrt(D), 1, B, B); % creation operator 

ad = a’; 

H = ℏω(a†
1 a1 + a†

2 a2) + λ (a†
1 a2 + a†

2 a1)
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H = ℏω a† a + λ(a + a†)4



The built-in matlab routine spdiags defines a sparse matrix 
built by specifying its diagonals, in this case the upper diagonal, at 
distance 1 from the main diagonal. The advantage of  using sparse 
matrices consists in saving the memory required, which grows 
linearly with the matrix dimension, and in speed of  the arithmetic 
routines. In the first example we may study the harmonic 
oscillator in two dimensions as implemented in the routine 
Boson2D.m; various choices of  the perturbation are listed in the 
code but can easily modified by yourself. Notice that when the 
perturbation is absent we can check the accuracy of  the algorithm 
since the spectrum is known exactly: a call 
E = Boson2D(‘1’,0,100,64); 
returns the known spectrum with a maximum error . 
The big difference here is that a full matrix describing the 2D 
bosonic operators would require  words in memory, here 
N=100, hence  words, whereas the correspondig sparse 
matrix occupies only  words, a mere 200kBy! The 
difference is obviously even more relevant for 3 or 4 
dimensions.  
	 For the 3D example  

 

the code gives the perturbed spectrum in a context of  
degenerate energy levels; here an exact calculation is possible 
and you may check the accuracy of  the matlab routines, 
which would be difficult to reach by other techniques.  
	 The code Boson1D.m and others present in the 
distribution can be modified to allow for multiple precision 
calculations, e.g. using Advanpix toolbox. Thus we can 

𝒪(10−14)

𝒪(N4)
108

104

H = ℏω (a†
1 a1 + a†

2 a2 + a†
3 a3) + λ(a†

1 a2 + a†
2 a3 + a†

3 a1)

MATLAB WAVE MECHANICS 13



appreciate the accuracy of  the Lanczos-Arnoldi methods. For 
instance the ground state of  the anharmonic oscillator which 
is known to have an asymptotic expansion with leading terms  

 

can be used to check the accuracy with excellent results, e.g 
 for . The usage of  multi-precision routines can 

be applied to higher dimensional codes Boson?D.m, and is left as 
an exercise.   
	  

E0 ∼
3
4

λ −
21
8

λ2 +
333
16

λ3 − 30885/128 λ4 + …

O(10−12) λ = 0.001
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	We suggest to start with two examples - “doublewell.m” and “wms2.m”. The first program displays the evolution of a quantum particle in a potential exhibiting two classical vacua, namely . Let the particle be located as a Gaussian packet around x=a at t=0; quantum evolution makes it evolve oscillating around x=a and we see its leaking to the left region around x = -a even if its energy is less than  due to the tunnel effect.  This is a simplified model of what really happens in the ammonia molecule  .
	The second example consists in the evolution of a wave packet in two-dimensions and it can be used to display the phenomena of diffraction and interference typical of wave mechanics. In the multidimensional case we have to work a bit more in defining the position grid and momentum grid. This can be easily done using Matlab’s built-in routines meshgrid or ndgrid. The core of the program is essentially identical, given we employ the two-dimensional version of the fast Fourier tranform fft2 and ifft2. The display is organised to give both the probability density and the phase: this latter is rendered by a color code which is linked to the phase. In this way one can check the difference between phase velocity  and group velocity! Here we have a plane wave packet scattering around a potential barrier and we can see the back scattered circular wave and the main packet continuing in the original direction.

