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CROSSING PATHS WITH PINO



1987 - Coherent States



1987 - Coherent States



Personal archeology: the way we worked ...



1997 - Power Corrections



1990 - The Cusp as a Coupling



The Punchline



The Punchline

The Cusp

The Coupling



  Wilson lines meeting at a cusp develop new UV divergences 
     depending on the cusp angle

  The divergences are controlled by a new anomalous dimension

  For light-like lines the cusp develops  a collinear pole

The Cusp Anomalous Dimension

Wilson lines meeting at a cusp
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  The cusp anomalous dimension γK (αs) plays an increasingly fundamental role in massless 
     gauge theories

• It gives the soft limit of DGLAP splitting functions to all orders
• It governs soft-gluon resummation for massless QCD cross sections
• It controls soft singularities in planar massless gauge theory amplitudes
• It is exactly known, from weak to strong coupling, in N=4 Super Yang-Mills theory
• It is conjectured to control all soft singularities, including non-planar correlations, through 

        the dipole formula.
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SOFT-COLLINEAR FACTORIZATION



Soft-collinear factorization

Leading integration regions in loop momentum space 
for Sudakov factorization 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Power-counting arguments show that soft 
     gluons decouple from the hard subgraph.

  Ward identities decouple soft gluons from jets 
     and restrict color transfer to the hard part.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.

  The matrix ΓS  correlates color exchange with 
     kinematic dependence.



Soft-collinear factorization: pictorial

A pictorial representation of soft-collinear factorization for fixed-angle scattering amplitudes



We introduced factorization vectors                           to define the jets,
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The precise functional form of this graphical factorization is 
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where  Φn  is the Wilson line operator along the direction nμ ,

The vectors nμ :   Ensure gauge invariance of the jets.
  Separate collinear gluons from wide-angle soft ones.
  Replace other hard partons with a collinear-safe absorber.



  The anomalous dimension                       for the evolution of       is finite.

  The matrix       must depend on rescaling invariant variables

Soft anomalous dimensions
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The soft function  S  obeys a matrix RG evolution equation

•  ΓS is singular due to overlapping UV and collinear poles.

In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,  one finds

Double poles cancel in the reduced soft function

S

�S(⇥ij ,�s) S



THE DIPOLE FORMULA
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 All soft and collinear singularities can be collected in a multiplicative operator Z

 Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ inherits the dipole structure from the soft matrix. It reads

Note that all singularities are generated by integration over the scale of the coupling.

The Dipole Formula
For massless partons, the soft anomalous dimension matrix obeys a set of exact equations 
that correlate color exchange with kinematics. 

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It gives an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 
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  All known results for IR divergences of massless gauge theory amplitudes are recovered.

  The absence of multiparton correlations implies remarkable diagrammatic cancellations.

•  First observed at two loops by  Aybat, Dixon and Sterman (2006).
 

  The color matrix structure is fixed at one loop: path-ordering is not needed.

  All divergences are determined by a handful of anomalous dimensions.

  The cusp anomalous dimension plays a very special role: a universal IR coupling.

•  All correlations between color and kinematics are governed by the cusp.

  A simple generalization of the planar solution: sum over all dipoles, not just 
     color-adjacent ones

  Massive partons spoil the simplicity: non-vanishing tripole correlations already 
     at two loops (Neubert et  al., Sterman et al. 2010).

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.

•  Quadrupole correlations may enter starting at three loops: they must be tightly 
             constrained functions of conformal cross ratios of parton momenta.

•  The cusp anomalous dimension may violate Casimir scaling beyond three loops.

Features of the dipole formula



 Introducing `Mandelstam’ color operators, and using color and momentum conservation

   it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit

•  The operator Z1 is s-independent and proportional to the unit matrix in color space.

•  Color dependence and s dependence are collected in the factor

        where the coupling dependence is (once again!) completely determined by the cusp 
        anomalous dimension and by the β function, through the function (Korchemsky 94-96)

 The simple structure of the high-energy operator governs Reggeization and its breaking.

The dipole formula at high energy
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  The LL Regge trajectory is universal and obeys Casimir scaling.
  Scattering of arbitrary color representations can be analyzed

     Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

 

     LL Reggeization of the 3 and 15 t-channel exchanges follows.

 At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and 
   the dipole operator becomes diagonal in a t-channel basis.

 
 If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,

    then the hard function is an eigenstate of the color operator Tt2

 Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

Reggeization of leading logarithms
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Scattering for generic color exchange



 The high-energy infrared operator can be systematically expanded beyond LL, using the 
    Baker-Campbell-Hausdorff formula.  At NLL one finds a series of commutators

 The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

 At NNLL Reggeization generically breaks down also for the real part of the amplitude.

• At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

• At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

 NOTE  ● In the planar limit (NC ➝∞) all commutators vanish and Reggeization holds 
                   also beyond NLL (as perhaps expected from string theory).
                ● Possible quadrupole corrections to the dipole formula cannot come to the rescue.    
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BEYOND DIPOLES



The dipole formula is a solution to an exact inhomogeneous equation for Γ.  It may be 
corrected by adding a solution to the corresponding homogeneous equation.

  The function Δ can only depend on conformal invariant cross ratio of parton momenta.

  The function Δ must correlate at least four partons: it an arise starting at three loops.

  The function Δ is tightly constrained:

• It must vanish in all non-trivial collinear limits.

• Its degree of transcendentality is bounded from above
         (and must be τ = 5 at three loops).

• It must be a Bose symmetric gluon correlator.

• It must not generate super-leading Regge logarithms.

  No examples satisfying all constraints are known.

  Work is in progress to compute Δ directly, both via amplitudes 
     and Wilson lines: a non-trivial, four-point, three-loop non-planar
     calculation. Symbol technology may help. A three-loop diagram for Δ

Conformal cross-ratios
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The dipole formula was derived assuming that the cusp anomalous dimension in a given color 
representation satisfies (quadratic) Casimir scaling

  Casimir scaling holds to three loops but can be violated 
     starting at four loops, when quartic Casimirs can appear

  An indirect argument (Becher, Neubert 2009) shows that
     quartic Casimirs at four loops would be inconsistent with 
     factorization and collinear constraints

  Strong coupling results in planar N=4 Super Yang-Mills theory
     (Armoni, Maldacena 2006-2007) suggest that Casimir scaling 
     should not hold to all orders

  The cusp anomalous dimension is known exactly in the 
     planar limit of N=4 SYM: not enough to disentangle C4.

  A direct calculation is just outside feasibility with current
    technology

Casimir Conspiracies

A possible contribution 
involving quartic Casimirs
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Summary

  Pino is an extremely hard act to follow ...

  We are trying anyway!

  Progress: a definitive solution of the problem of infrared divergences of (massless) gauge 
     theory amplitudes may be at hand.

✓  We are probing the all-order structure of the nonabelian exponent.

  A simple dipole formula may encode all infrared singularites for any massless gauge 
     theory,  a natural generalization of the planar limit. 

  The study of possible corrections to the dipole formula is under way.

  The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
     at least for divergent contributions to the amplitude.

  Regge factorization generically breaks down at NNLL, with computable corrections which
     may be related to Regge cuts in the angular momentum plane.
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  The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
     at least for divergent contributions to the amplitude.

  Regge factorization generically breaks down at NNLL, with computable corrections which
     may be related to Regge cuts in the angular momentum plane.

  QCD is a theory of great beauty,  and it’s a privilege to study it. 
     Thank you Pino for teaching us a lot about it!



Tanti Auguri Pino!


