#### Pino and Power Corrections: from LEP to LHC

#### Gavin Salam

#### CERN, Princeton University & LPTHE/CNRS (Paris)

#### Pino 2012

A special meeting in honour of Giuseppe Marchesini, on the occasion of his 70th birthday.

Palazzone della Scuola Normale Superiore di Pisa, Cortona, Italy, 29 May 2012

# Yuri told you briefly about the "Wise Dispersive Method" (WDM): trying to quantify non-perturbative effects in QCD, using IR properties of perturbation theory.

This talk: some of the research done when I was postdoc with Pino from 1996–1999, to figure out if the idea worked.

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure *shape* of events. Most famous example is Thrust:





There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Gavin Salam (CERN/Princeton/CNRS)

Pino and Power Corrections

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure *shape* of events. Most famous example is Thrust:





There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Gavin Salam (CERN/Princeton/CNRS)

Pino and Power Corrections

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure *shape* of events. Most famous example is Thrust:





There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Gavin Salam (CERN/Princeton/CNRS)

Pino and Power Corrections

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure *shape* of events. Most famous example is Thrust:



There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Gavin Salam (CERN/Princeton/CNRS)

Pino and Power Corrections

3 / 15

## Clear need for contributions beyond perturbation theory



 $\frac{\text{Schematic picture:}}{\langle 1 - T \rangle} \simeq \\ \underbrace{A\alpha_{s}}_{LO} + \underbrace{B\alpha_{s}^{2}}_{NLO} + c_{T} \frac{\alpha_{0}}{Q} \\ \text{several papers, notably} \\ \text{Dokshitzer, Marchesini} \\ \& \text{Webber '95} \end{cases}$ 

- \(\alpha\_0\) is non-perturbative but should be universal
- c<sub>T</sub> can be predicted through a calculation using a single massive-gluon emission

You could legitimately ask the question:

Given the complexity of real hadronic events, could dominant non-perturbative physics truly be determined from just a single-gluon calculation? You could legitimately ask the question:

Given the complexity of real hadronic events, could dominant non-perturbative physics truly be determined from just a single-gluon calculation?



The data clearly say something is wrong with this assumption initially, most clearly pointed out by the JADE collaboration

## A first key result with Pino (+ Yuri & A. Lucenti)

Idea of "wise dispersive method": probe non-perturbative effects by integrating over virtuality of an infrared gluon.

But such a "massive" gluon will necessarily decay to two gluons or  $q\bar{q}$  that go in different directions.

issue raised: Nason & Seymour '95

So: explicitly include the calculation of that splitting. A very simple result: for thrust, non-perturbative correction simply gets rescaled by a numerical "Milan" factor

 $\mathcal{M}\simeq 1.49$ 

Matrix elements from Berends and Giele '88 + Dokshitzer, Marchesini & Oriani '92  $\mathcal{M}$  first calculated for thrust: Dokshitzer, Lucenti, Marchesini & GPS '97  $n_f$  piece for  $\sigma_L$ : Beneke, Braun & Magnea '97 calculation fixed: Dasgupta, Magnea & Smye '99

### 2nd key observation with Pino et al.

There are two classes of event shape

1) those that are a **linear** combination of contributions from individual emissions  $i = 1 \dots n$ 



2) those that are **non-linear**, e.g.  $B_W$ ,  $B_T$ ,  $\rho_h$ 

for the latter, the non-perturbative correction cannot possibly be deduced just from a one-gluon calculation (2-gluon  $\mathcal{M}$  diverges)

### 2nd key observation with Pino et al.

There are two classes of event shape

1) those that are a **linear** combination of contributions from individual emissions  $i = 1 \dots n$ 



2) those that are **non-linear**, e.g.  $B_W$ ,  $B_T$ ,  $\rho_h$ 



for the latter, the non-perturbative correction cannot possibly be deduced just from a one-gluon calculation (2-gluon  $\mathcal{M}$  diverges)

## 3rd key observation with Pino et al

In the presence of **perturbative emissions** with  $p_t \gg \Lambda_{QCD}$ , then all the non-linear event shapes turn out to have an "emergent" linearity for **non-perturbative emissions** at scales  $\sim \Lambda_{QCD}$ 



non-perturbative (NP) effects can still be deduced from the effect of a single non-perturbative gluon, but its impact must be determined by averaging over perturbative configurations

$$\langle \mathsf{NP} \rangle \simeq \int [d\Phi_{pert.}] |M^2(pert.)| \times \mathsf{NP}(pert.)$$

first such observation, for  $\rho_h$ : Akhoury & Zakharov '95 universality of "Milan" factor in  $e^+e^-$ : Dokshitzer, Marchesini, Lucenti & GPS '98 PT and NP effects together in jet broadenings: Dokshitzer, Marchesini & GPS '98 universality of "Milan" factor in DIS: Dasgupta & Webber '98 moderate  $\Lambda/p_t$  effects: Korchemsky & Tafat '00



Original results for fits of  $\alpha_s$ and the non-perturbative parameter  $\alpha_s$ .

ncluding all the "DLMS" improvements Pino et al '97-98

Taking care not just of gluon masses, but also hadron masses GPS & Wicke '0:



Original results for fits of  $\alpha_s$ and the non-perturbative parameter  $\alpha_s$ .

Including all the "DLMS" improvements Pino et al '97-98

Taking care not just of gluon masses, but also hadron masses GPS & Wicke '0





### A rich field: many investigations in $e^+e^-$ and DIS



# And today?

Some people had objected that combing NLO + 1/Q was inconsistent, because NNLO might easily account for all the discrepancy between NLO and data.

In the past few years, thanks to epic calculations, NNLO has become available.

Gehrmann-De Ridder, Gehrmann Glover & Heinrich '07 Weinzierl '09

A fit with NNLO shows clear need still for 1/Q component.

Gehrmann, Jacquier & Luisoni '09



## Non-perturbative effects in hadron-collider jets?

Could have been deduced from old work

Korchemsky & Sterman '95 also Seymour '97

#### <u>Main result</u>

$$\langle p_{t,jet} - p_{t,parton-shower} 
angle \simeq -rac{0.4 \text{ GeV}}{R} imes \left\{ egin{array}{cc} C_F & quarks \ C_A & gluons \end{array} 
ight.$$

cf. Dasgupta, Magnea & GPS '07

coefficient including  $\mathcal{M}=1.49$  holds for anti- $k_t$ 

see Dasgupta & Delenda '09 for  $k_t$  alg. — only calculated example of  $\mathcal{M} 
eq 1.49$ 

# Underlying Event (UE)

"Naive" prediction (UE  $\simeq$  colour dipole between *pp*):  $\Delta p_t \simeq 0.4 \text{ GeV} \times \frac{R^2}{2} \times \begin{cases} C_F & q\bar{q} \text{ dipole} \\ C_A & \text{gluon dipole} \end{cases}$ 

Monte Carlo tunes tell you: 
$$\Delta p_t \sim \mathbf{5} - \mathbf{10} \; \mathbf{GeV} imes rac{R^2}{2}$$

This big coefficient motivated special effort to understand interplay between jet algorithm and UE: "jet areas" How does coefficient depend on algorithm? How does it depend on jet  $p_t$ ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08 jet areas now used daily by the LHC experiments

# Underlying Event (UE)

"Naive" prediction (UE  $\simeq$  colour dipole between *pp*):  $\Delta p_t \simeq 0.4 \text{ GeV} \times \frac{R^2}{2} \times \begin{cases} C_F & q\bar{q} \text{ dipole} \\ C_A & \text{gluon dipole} \end{cases}$ 

Monte Carlo tunes tell you:  

$$\Delta p_t \sim \mathbf{5} - \mathbf{10} \; \mathbf{GeV} imes rac{R^2}{2}$$

This big coefficient motivated special effort to understand interplay between jet algorithm and UE: "jet areas" How does coefficient depend on algorithm? How does it depend on jet  $p_t$ ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08 jet areas now used daily by the LHC experiments

## 1/Q corrections for hadron-collider jets v. data



# Closing remarks

This is just one of several fun physics topics that were pushed forwards in the late '90s with Pino in Milan. small x, resummations were others

 $\begin{array}{l} \mbox{Pino wrote} \sim 15 \mbox{ articles with the students} \\ \mbox{ and postdocs then} \\ \mbox{(including Banfi, Dasgupta, GPS, Smye,} \\ \mbox{ Zanderighi)} \end{array}$ 

Many of the collaborations that formed between them then have continued to this day, easily having produced another  $\sim 15$  articles.



# Closing remarks

This is just one of several fun physics topics that were pushed forwards in the late '90s with Pino in Milan. small x, resummations were others

 $\begin{array}{l} \mbox{Pino wrote} \sim 15 \mbox{ articles with the students} \\ \mbox{ and postdocs then} \\ \mbox{(including Banfi, Dasgupta, GPS, Smye,} \\ \mbox{ Zanderighi)} \end{array}$ 

Many of the collaborations that formed between them then have continued to this day, easily having produced another  $\sim 15$  articles.



# THANK YOU PINO!