Dynamical Particle Mass Generation

R. Frezzotti & G.C. Rossi

Dipartimento di Fisica - Università di Roma *Tor Vergata*INFN - Sezione di Roma *Tor Vergata*

Cortona - May 29, 2012

Pino2012

Outline of the talk

- Prologue & Motivations
- Summary
- Mass Generation in LQCD
- The quark mass term in Ward-Takahashi Identities
 - Perturbation Theory
 - Beyond Perturbation Theory
- Outlook
- Conclusions

Prologue & Motivations

Prologue & Motivations

What if the Higgs is not found/confirmed?

Summary and ... Conclusions - 1

Voilà an unconventional scenario for mass generation

- Elementary fermion masses can be (are?) dynamically generated by the mechanism of spontaneous chiral breaking
- The latter is triggered by explicit renormalizable χ -breaking terms (like the Wilson term in Lattice QCD) living at the UV cut-off, Λ_{UV}
- The overall mass scale is provided by the RGI scale, Λ_T,
 of the strongest (vector gauge) interaction exhibiting S_χSB
- Actually visible features in Lattice QCD!

Summary and ... Conclusions - 2

Can we make use of this mechanism?

- Elementary fermion masses are "modulated" by powers of the coupling constants of the interactions they are subjected to
- A natural mass hierarchy emerges, as the stronger is the interaction a particle is subjected to, the larger is its mass
- To give the right mass to the "top quark" one must have $\Lambda_T\gg 300~MeV \to a$ new vector gauge interaction is required
- It remains to discuss/see how to incorporate weak interactions

Lattice QCD - 1

The Wilson LQCD action

$$\begin{split} S^L_{QCD} &= S^L_{YM} + S^L_F \\ S^L_F &= a^4 \sum_{x} \bar{\psi}(x) \Big[\frac{1}{2} \sum_{\mu} \gamma_{\mu} (\nabla^{\star}_{\mu} + \nabla_{\mu}) - \frac{a}{2} \sum_{\mu} \nabla^{\star}_{\mu} \nabla_{\mu} + m_0 \Big] \psi(x) \end{split}$$

• m_{cr} is the value of m_0 at which chiral symmetry is restored

$$m_{cr} = \frac{c_0}{a} + c_1 \Lambda_{QCD} + c_2 a \Lambda_{QCD}^2 + O(a^2)$$

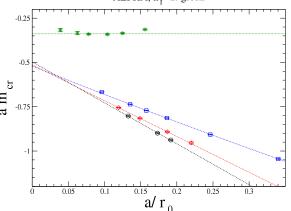
• From actual simulation data (see figure), one finds

$$-c_1\Lambda_{QCD}\sim 800~{
m MeV}$$

Lattice CD - 2

$$am_{cr} = c_0 + c_1 a \Lambda_{QCD} + c_2 (a \Lambda_{QCD})^2 + O(a^3), \qquad r_0^{-1} \sim \Lambda_{QCD}$$

XLF, $n_f = 0$: blue; ETMC, $n_f = 2$: red, ETMC, $n_f = 4$: black ALPHA, $n_f = 2$: green



Can one understand these features?

Chiral Ward-Takahashi Identites

Lattice Ward—Takahashi Identity

$$\nabla_{\mu}\langle A^f_{\mu}(x)\hat{Q}(0)\rangle^L = \langle \Delta^f\hat{Q}(0)\rangle\delta(x) + 2m_0\langle P^f(x)\hat{Q}(0)\rangle + \langle X^f(x)\hat{Q}(0)\rangle$$

Renormalized Ward—Takahashi Identity

$$\nabla_{\mu}\langle \hat{A}_{\mu}^{f}(x)\hat{Q}(0)\rangle^{L} = \langle \Delta^{f}\hat{Q}(0)\rangle\delta(x) + 2(m_{0} - \bar{M})\langle P^{f}(x)\hat{Q}(0)\rangle + \langle \bar{X}^{f}(x)\hat{Q}(0)\rangle$$

$$O(a)$$

- $\cdot \Delta^f \hat{Q} \qquad \qquad \rightarrow \quad \text{chiral variation of } \hat{Q}$
- $\cdot X^f = aO_5^f \longrightarrow \text{chiral variation of the Wilson term in } S_{QCD}^L$

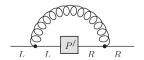
$$\cdot \hat{O}_5^f = \left[O_5^f + 2 \frac{\bar{M}}{a} P^f + \frac{Z_A - 1}{a} \nabla_{\mu} A_{\mu}^f \right] \rightarrow \text{mult. renorm.}$$

- $\cdot \bar{X}^f = a\hat{O}_5^f = O(a)$
- $\cdot \hat{A}^f_{\mu} = Z_A A^f_{\mu}$
- What's M expression?
- How do we choose m_0 ?

\overline{M} in Perturbation Theory - 1

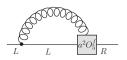
 $\frac{\bar{M}}{a}$ is the quadratically divergent O_5^f - P^f mixing coefficient

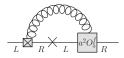
- \times = mass insertion, we set $m_0 = \epsilon_q$
- crossed box = Wilson vertex, aV_5 , from S_{QCD}^L
- L's are logarithmic terms

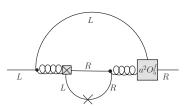


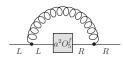
\overline{M} in Perturbation Theory - 2

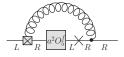
$$\begin{array}{l} \bullet \ \, \langle q_L(p) a^2 O_5^f(0) \bar{q}_R(p) \rangle \Big|_{1 \mathrm{PI}} = \gamma_5 \tau^f \Big\{ a^2 p^2 \Big[1 + \zeta_1 L_{\zeta_1} g_s^2 + \mathrm{O}(g_s^4) \Big] + \\ + \Big[\eta_1 g_s^2 + \eta_2 L_{\eta_2} g_s^4 + \mathrm{O}(g_s^6) \Big] + a \, \epsilon_q \Big[\xi_1 g_s^2 + \xi_2 L_{\xi_2} g_s^4 + \mathrm{O}(g_s^6) \Big] + \mathrm{O}(a^2) \Big\} \end{array}$$

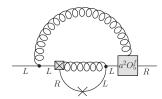












\overline{M} in Perturbation Theory - 3

We impose O_5^f multiplicative renormalizability

Setting

$$2a\bar{M} = [h_1g_s^2 + h_2g_s^4 + O(g_s^6)] + a\epsilon_q[d_1g_s^2 + d_2g_s^4 + O(g_s^6)]$$

and imposing

$$\lim_{a\to 0} \left\langle q_L(p) \left[O_5^f(0) + 2\frac{\bar{M}}{a} P^f(0) \right] \bar{q}_R(p) \right\rangle \Big|^L = \text{finite}$$

• one can fix the \overline{M} -coefficients h's and d's

$$\begin{array}{ll} h_1 + \eta_1 = 0 & d_1 + \xi_1 = 0 \\ h_2 + h_1 \delta_1 L_{\delta_1} + \eta_2 L_{\eta_2} = 0 & h_1 \rho_1 L_{\rho_1} + d_1 \delta_1 L_{\delta_1} + d_2 + \xi_2 L_{\xi_2} = 0 \end{array}$$

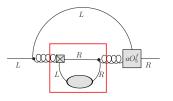
• getting (coefficients η 's, δ 's, ξ 's are supposedly known)

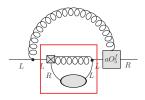
$$\begin{aligned} & 2a\bar{M} = \left[-\eta_1 g_s^2 + \left(-\eta_2 L_{\eta_2} + \eta_1 \delta_1 L_{\delta_1} \right) g_s^4 + \mathsf{O}(g_s^6) \right] + \\ & + a \epsilon_q \left[-\xi_1 g_s^2 + \left(-\xi_2 L_{\xi_2} + \eta_1 \rho_1 L_{\rho_1} + \xi_1 \delta_1 L_{\delta_1} \right) g_s^4 + \mathsf{O}(g_s^6) \right] + \mathsf{O}(a^2) \end{aligned}$$

Beyond Perturbation Theory

Here comes the crucial conjecture

- At $O(g_s^4)$ NP-soft contributions interfere with UV divergencies
 - effects coming from the dynamical breaking of χ -symmetry
 - triggered by the Wilson term in the UV regularized action
 - give in all $\langle q_L a O_5^f \bar{q}_R \rangle_{1PI} \rightarrow O(\frac{1}{a^2} a g_s^4 a \Lambda_{QCD}) = O(g_s^4 \Lambda_{QCD})$





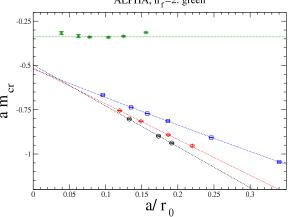
• One then gets (at $\epsilon_{\alpha} = 0$)

$$2a\bar{M} = [-\eta_1 g_s^2 + (-\eta_2 L_{\eta_2} + \eta_1 \delta_1 L_{\delta_1}) g_s^4 + O(g_s^6)] + + a \Lambda_{QCD} [-\xi_2^{NP} g_s^4 + O(g_s^6)] + O(a^2 \Lambda_{QCD}^2) \equiv \equiv c_0 + a c_1 \Lambda_{QCD} + O(a^2 \Lambda_{QCD}^2)$$

Recall

$$am_{cr} = c_0 + c_1 a \Lambda_{QCD} + c_2 (a \Lambda_{QCD})^2 + O(a^3), \qquad r_0^{-1} \sim \Lambda_{QCD}$$

XLF, $n_f = 0$: blue; ETMC, $n_f = 2$: red, ETMC, $n_f = 4$: black ALPHA, $n_f = 2$: green



Two possible m_0 choices

• The lattice choice \rightarrow for having an adjustable quark mass ϵ_q (the theory is renormalized in the broken phase)

$$\begin{split} m_0 &= \epsilon_{\boldsymbol{q}} + \bar{\boldsymbol{M}} = \epsilon_{\boldsymbol{q}} + \frac{c_0}{a} + c_1 \Lambda_{QCD} + \mathrm{O}(\boldsymbol{a}) \\ \nabla_{\mu} \langle \hat{A}^f_{\mu}(\boldsymbol{x}) \hat{Q}(0) \rangle^L &= \langle \Delta^f \hat{Q}(0) \rangle \delta(\boldsymbol{x}) + 2\epsilon_{\boldsymbol{q}} \langle P^f(\boldsymbol{x}) \hat{Q}(0) \rangle + \mathrm{O}(\boldsymbol{a}) \end{split}$$

- $\epsilon_q \neq 0 \rightarrow A$ theory of quarks with mass ϵ_q
- The minimal choice → for a UV-finite theory it's enough to take (the theory is renormalized in the unbroken phase)

$$m_0 = \epsilon_q + \frac{c_0}{a}$$

$$\nabla_{\mu} \langle \hat{A}^f_{\mu}(x) \hat{Q}(0) \rangle^L \!=\! \langle \Delta^f \hat{Q}(0) \rangle \delta(x) + 2(\epsilon_q \!-\! c_1 \! \wedge_{QCD}) \langle P^f(x) \hat{Q}(0) \rangle + \! O(a)$$

• $\epsilon_q = 0 \rightarrow A$ theory of quarks with mass $-c_1 \Lambda_{QCD} (c_1 < 0)$

A model with two coupled vector gauge interactions

- Assume an extra family of super-strongly interacting fermions, Q, exists that is also subjected to ordinary Yang-Mills interactions
- Arguments similar to the ones developed for pure QCD yield now the interesting result

$$m_q = O(\alpha_s^2) \Lambda_T$$

 $m_Q = O(\alpha_T^2) \Lambda_T$

- α_s is the strong coupling constant
- α_T is the super-strong coupling constant
- $\Lambda_T \gg \Lambda_{QCD}$ is the super-strong RGI scale
- A mass hierarchy has emerged!
- Reasonable top quark mass for $\Lambda_T \sim 1.5 \text{ TeV}$

Outlook

Question

Can we make use of the mechanism of dynamical mass generation when chiral gauge interactions of the weak type are introduced?

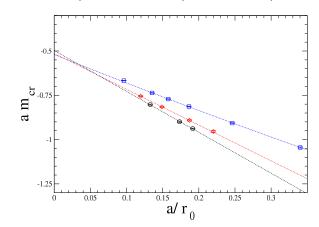
Answer

Yes, we think ... we can!

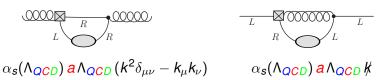
Conclusions

Happy Birthday, Pino!!

XLF, $n_f = 0$: blue; ETMC, $n_f = 2$: red, ETMC, $n_f = 4$: black



• The NP contribution to $\langle q_L a O_5^f \bar{q}_R \rangle_{1PI}$ comes from the subdiagram



L-R transition is modeled assuming the formula (Banks-Casher)

$$\frac{\frac{q}{\sqrt{\frac{q}{N_{QCD}}}} \rightarrow \frac{\pi \rho_{BC}(0)}{\Lambda_{QCD}^2} \frac{\theta(-q^2 + \Lambda_{QCD}^2)}{q^2 + \Lambda_{QCD}^2} \sim \Lambda_{QCD} \frac{\theta(-q^2 + \Lambda_{QCD}^2)}{q^2 + \Lambda_{QCD}^2}$$

- q_L interacting with the \bar{q} q pairs, filling the vacuum, becomes \bar{q}_R
- ullet for the process to occur another χ -flip is needed, provided by aV_5
- O(aΛ_{QCD}) terms "resurrected" by PT power divergences

- Constructing "chiral" gauge invariant Wilson-like terms requires introducing scalar fields
- It is like we're having a scalar field with a v.e.v. = $O(\Lambda_{UV})$
- After renormalizing the theory in the unbroken phase, masses are dynamically generated
 - → no "unnaturalness" problem
- In the broken phase (i.e. including dynamical chiral symmetry breaking effects) the effective LE theory ($E \ll \Lambda_T$) looks like the SM with two differences
 - particle masses $\propto \Lambda_T$ are generated
 - no Higgs, only non-linearly interacting Goldstones's
- Full quark and lepton hierarchy, as well as family and isospin splitting, from an appropriate set of Wilson-like terms of increasing dimensions
- Unification of EW and strong couplings at $\Lambda_{GUT} \sim 10^{17} \; \text{GeV}$

This model vs. Technicolor

- Elementary particle content is similar to Technicolor
- All fermion & weak boson masses are dynamically generated
- Wilson-like terms occur in the basic action, living at the UV-cutoff
 - invariant under a basic chiral invariance of the gauge type
 - induce $O(\Lambda_T)$ scale invariance breaking terms coming from $O(\Lambda_T/\Lambda_{UV})$ effects enhanced by $O(\Lambda_{UV}^{-1})$ divergences
- Wilson-like terms of larger and larger dimensions associated to lighter and lighter fermions (no FCNC problem)
- EW and strong coupling unification at $\Lambda_{GUT} \sim 10^{17} \; \text{GeV}$
- T-hadrons are expected with $M_T \propto \Lambda_T \sim$ a few TeV's
- In $W_L W_L \rightarrow W_L W_L$, T-mesons replace SM Higgs