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1 Introduction

The aim of this course is to provide an introduction to the basic features and methods of
effective field theories, working out, as an example, the case of electroweak interactions.

The use of effective lagrangians dates back to the early 60’s with the introduction of the
non-linear o-model [1] as an effective model for low energy strong interactions, explicitly
exhibiting chiral symmetry breakdown. The theoretical basis of chiral lagrangians was
later formulated by Weinberg [2] in an attempt to characterize the most general S-matrix
elements compatible with chiral symmetry and the general requirements of analyticity,
unitarity and cluster decomposition property.

Chiral lagrangians are essentially tailored to describe the phenomenon of spontaneous
symmetry breaking, which plays a major role in both strong and electroweak interactions.
They can be regarded as the low energy limit of an underlying fundamental theory. In the
case of strong interactions such a regime is difficult to discuss in the framework of QCD
since the knowledge of the non-perturbative dynamical effects is required. Therefore, it is
not surprising that in the context of strong interactions the chiral lagrangian approach has
found its greatest development [3, 4, 5].

More recently, effective field theories have received attention in the analysis of radiative
corrections for electroweak theories [6, 7, 8, 9, 10]. Indeed, in the standard model of
electroweak interactions, low energy effective lagrangians naturally occur when some of the
particles of the theory become very heavy. Much interest has been devoted to the possibility
of an heavy Higgs [11, 12, 13|, which is central in the discussion of the electroweak symmetry
breaking itself [14].

Interesting problems, related to the non-applicability of the decoupling theorem [15],
are also raised by the possibility of heavy fermions [16, 17, 18, 19]. In particular, the case of
an heavy top quark calls for the use of the whole apparatus of non-linear realizations, the
usual linear realization of the electroweak symmetry being destroyed from the beginning
[18]. By removing heavy fermions from the low energy spectrum, one has also to take care
of possible anomalies in the gauge currents [20]. These anomalies are consistently avoided
thanks to the presence of a Wess-Zumino term [21] in the effective action and to the very
specific interplay of the latter with the non-linear realization of the symmetry.

Another fruitful application is that when the fundamental theory one is dealing with is
not known, or not precisely defined (actually, this was the case with the non-linear o-model).
If the possible symmetries are known, then chiral lagrangians may be naturally introduced.
This happens, for instance, with technicolor theories [22], where a considerable amount of
information can be extracted from the analysis of the corresponding low energy models
[23, 6, 7]. Chiral lagrangians are characterized by an infinite tower of non-renormalizable
operators, actually all the operators which are consistent with the assumed symmetries.
To make practical use of such an infinite expansion one has to be able to select the most
relevant terms. In some cases, when the full underlying theory is given, the size of the
possible terms can be computed, at least in principle, by matching the predictions of the
fundamental field theory and those of the effective one, at some reference scale [24]. This
procedure, however, may not be always viable. In this case, some insight about the relevance
of the various terms can be obtained by a judicious use of dimensional analysis [25].
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An interesting development of the effective lagrangian approach was offered by the
study of the hidden gauge symmetries [26] possessed by chiral models. Applications of
these symmetries have been made in low energy strong interactions, to describe the lowest
spin 1 states [27], and in the study of the so-called strong electroweak sector, to analyze
the effects of possible vector resonances [28]. The strongly interacting symmetry breaking
sector has been extensively studied by means of chiral lagrangian techniques [29].

Effective field theories can also be introduced to perform a model independent analysis of
SU(2), @ U(1)y supersymmetric gauge theories [30]. Finally, the case of N=1 supergravity
[31] shows a certain analogy with the examples quoted above, if interpreted as an effective
low energy theory derived by integrating out the massive modes of superstring theories [32].

The lectures are organized as follows. Section 2 contains a review of the non-linear
realizations of a Lie group. The formalism is then applied to the case of weak interactions,
whose lowest order lagrangian is derived in section 3. Section 4 presents a simplified
discussion of the electroweak radiative corrections, focussing on the LEP I physics. In
section 5, the effective electroweak lagrangian is extended to account for quantum effects
from heavy particles, and the physical content of the theory is detailed in section 6. Finally
section 7 provides an example of matching between low energy and high energy physics,
leading to a specification of the parameters in the effective lagrangian.
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2 Non-Linear Realizations

This section contains a short review of the non-linear realizations of a Lie group G [33].
We consider a real analytic manifold M, together with a Lie Group G ! of transformations
acting on M:

T — gT z€e€M, geG (2.1)

We assume that there is a special point of M called origin, described by the null vector 0
and invariant under the action of a continuous subgroup H of G:

=0  heH (2.2)

The physical situation one has in mind is that of a manifold of scalar fields with the
origin describing the vacuum configuration. The group G is the (global or local) invariance
group of the theory and the subgroup H is the invariance group of the vacuum. In other
words, one is dealing with the spontaneous breaking of G into H.

Our purpose is to characterize all possible non-linear realizations of the group G on
the manifold M, that is to classify all possible theories corresponding to that pattern of
symmetry breaking.

Preliminary to the analysis of this problem is a general result of quantum field the-
ory establishing the independence of the physical content of a theory from the choice of
interpolating fields [34]. In the framework of a lagrangian formulation of the theory, the
theorem can be rephrased in the following form [35].

e Theorem: If a theory is defined by the lagrangian density:

L= L(¢,0.9) (2:3)

depending on a set of scalar fields ¢, and if the following local transformation of fields is
performed:

¢=F(¢) , (2.4)

then the transformed lagrangian density:

L(¢',0u¢") = LIF(¢), 0uF(4)) (2.5)

defines in general a new theory. Nevertheless, provided the transformation (2.4) has a
Jacobian determinant equal to one at the origin, the S-matrix elements of the two theories
are the same.

From now on, we will refer to such transformations as allowed ones. The above theorem
also holds order by order in perturbation theory.

Another useful result is that the more general non-linear realization of the group G can
be regarded as linear, once specialized to the subgroup H of G.

lcompact, connected and semisimple
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e Theorem: If H is the subgroup of G leaving the origin invariant, then it is always
possible to choose coordinates on M so that:

hy = D(h)y Vhe H (2.6)
where D(h) is a linear representation of H.

We sketch below the proof of this theorem. By expanding the element Az in powers of
z around the origin one has:

hz = D(h)z + O(z?) (2.7)

In eq. (2.7), O(z?) denotes terms which are at least quadratic in z. The constant term is
absent, due to the fact that H leaves the origin invariant. We consider an invariant measure
dh on the group H, normalized so that:

/Hdhzl , (2.8)

and we define the following coordinates on M:
y = / dhD~(h)hz
H
= z-+ O(azz) (2.9)

Acting with an element hg of H on the point y, one obtains:

hoy = /H dhD~(h)hhoz
- /Hd(hho)D‘l(hhohgl)(hho)m
— D(hoy (2.10)
Notice that the transformation given in eq. (2.9) is an allowed one.

We now give an example of a non-linear realization of G becoming linear when it is
restricted to the subgroup H. As we shall see, this example plays a central role in our
discussion and the non-linear realization dealt with is said to be in the standard form. To
start with, one introduces a complete set of generators of G, (V;, 4,), orthonormal with
respect to the inner Cartan product and such that the V'’s are generators of the subgroup
H. Each element gy of G admits the unique decomposition:

go = e£AuV (2.11)

where (A = §A; and vV = v, V. For every element g € GG, one has:

egA = engeugV 2.12
g

with
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The idea is to use £, the parameters related to the generators A, as a subset of coordinates
of M, with a transformation law under G defined by eq. (2.13). To complete the set of
coordinates, one introduces a vector i carrying a linear representation of H:

- DRy  heH (2.14)

It is not difficult to show that the transformations

{ (¢ — ¢9(¢)

b — D(eug(g)v)@b (2.15)

provide a non-linear realization of the group G, the so-called standard one. By restricting
the transformations to H, one has:

het A = pefAn 14 (2.16)

from which one deduces:

{egA — hegAh_1 (2.17)

v —  D(hp
Therefore, the transformations of H on the standard coordinates are linearly realized.
The main result, not proved here, is contained in the following statement.

e Theorem: any non-linear realization of G can be put into the standard form by an
allowed coordinate transformation.

This theorem solves the problem of characterizing all possible non-linear realization of
G on M. Its physical content is that, in discussing a theory describing the spontaneous
breaking of the Lie group G into a subgroup H, it is not restrictive to choose a set of fields
transforming according to the standard form given in eq. (2.15).

e Example: we choose G = SU(2); ® SU(2)g and H its diagonal subgroup, SU(2).,r.
The generators of G, L; and R; (1 = 1,2, 3), satisfy the following algebra:

[L,L', LJ] = ieijkLk
[Ri; Rj] = iﬁiijk
[Li,R;] = O (2.18)

As a realization of this algebra, one can take the following 4 x 4 matrices:

Tt 0 0 0
Li=| 72 R, = 7 (2.19)
0 0 0 3

where 7 are the Pauli matrices. The generators (V, A) are given by:

Vi = Li+R;
A; = L, R (2.20)
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and satisfy the algebra:
Vi, Vil = ieinli
Vi Aj] = 16,4k
[Ai, Aj] = ieieVe (2.21)
To every generator A; we associate a coordinate ¢;, with the transformation law given by:
EA _ paAapV A
&’ Agu’V (2.22)

ge’

On the other hand, the group G possesses an automorphism g — R(g), such that:

Vi — V
A, — —A4 (2.23)
and we can write: ) sa A g
R(g)e_Z€A _ AV (2.24)

By combining egs. (2.22) and (2.24), one finally obtains:
eZing _ gezzfAR(g_l) (2.25)

or, more explicitly:

21EA _ 1aA 1BV 2:6A —1BV jiaA (2.26)

From the last equality we can immediately see that, by specifying the transformations to
the subgroup H, that is by putting the parameters « to zero, one has linear transformations
for the coordinates £.

At this point we have to face the problem of constructing an invariant formalism out
of the building block defined in eq. (2.15), the set of standard coordinates and their trans-
formation properties. After promoting the coordinates on the manifold M to scalar fields
depending on the space-time points, we realize that, even in the case of global symmetry,
the transformation laws given in eq. (2.15) are local, because of the explicit dependence on
the fields ¢’s. In order to work with objects depending on the derivatives of ¢ and 1, with
simple transformation properties under the group G, one can define appropriate covariant
derivatives [33], dealing directly with the non-linearly transforming fields ¢ and ¢. How-
ever, there is another possibility consisting in building functions of the fields (¢, ) which
transform linearly under the group G. By combining such functions with the usual rules
of representation theory, it is then straightforward to define invariant lagrangians. We will
now show how to implement such a procedure.

Consider a linear representation D(g) of G containing in its decomposition the repre-

sentation D(h) (see egs. (2.14) and (2.15)). We define:

& = D(efA)y . (2.27)
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The combination ® given above transforms linearly under GG, according to the representa-

tion D(g):

® =D

)
9)® (2.28)

e Example: we take G = SU(2);, ® SU(2)g and H = SU(2)p1r. Let o be an SU(2)pr-
singlet, embedded into an SU(2);, ® SU(2)r bidoublet:

¢=<gg> . (2.29)

The action of the representation D(g) on a bidoublet € is defined as follows:

Q" = D(g)

J
©
N | Sy

(2.30)

= €

where X and p are the parameters of the SU(2), ® SU(2)g transformations. It is easy to
verify that v is a singlet under the subgroup SU(2)L+r, characterized by A = . According
to eq. (2.27), we now define:

2 = Dy
L7 L7
3 a( @ 0) 15'5
= e e
0 o
= g T (2.31)

By construction, the function & = ®(¢, o) transforms as the bidoublet © of eq. (2.30).
Explicitly we have:

o = o (2.32)

—
. P,

7?‘
AN —20 « —
625 "Te P 2 (2.33)

N | Sy

1y BN A
ST
To take into account the dimension of the fields ¢, one usually performs the following

rescaling:

&
& 7 (2.34)

where f is a constant with the dimension of a mass. A lagrangian invariant under global
transformations of SU(2)r ® SU(2)r is:
2
L = Ztr(auUTa”U)

1
= 0L+ . (2.35)
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where: .

&7

FRI

U=e [ (2.36)

This is the lagrangian of the well-known non-linear o-model [1]. The global invariance under
SU(2), ® SU(2)g is spontaneously broken down to SU(2)r,r. The fields ¢;, associated to
the broken generators A;, are the Goldstone bosons. The dots in eq. (2.35) denote higher
order terms in the Goldstone fields.

o Exercise: verify that the transformation law for U (see eq.(2.33)), agrees with the
transformation law for ¢ given in eq. (2.26).

e Exercise: build the gauged non-linear o-model by gauging the entire group G =
SU(2)L ® SU(2)g. By going to the unitary gauge, discuss the physical degrees of free-
dom and their mass spectrum.
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3 Electroweak Interactions: the Lowest Order

In this section we review the construction of the standard model of electroweak interactions
and of some of its variants, by explicitly applying the formalism developed in the previous
lecture. These models are characterized by an invariance under the gauge group G =
SU(2)L ® U(1)y, spontaneously broken down to the local subgroup H = U(l)em. The
generators T* (2 = 1,2,3) and Y of SU(2); ® U(1)y satisfy the following algebra:

[Ti,Tj] = ieijka
[T,Y] = 0
[Y,Y] = 0 (3.1)

The generators of the subgroup U(1).,, and of the coset SU(2), @ U(1)y /U(1)em are given
by 2:
Xem = (T3 +Y)— U(l)em
Yyt = T — SUL @ Uy /U1 em (3.2)

We begin by introducing the would-be Goldstone bosons and the Higgs field. We consider a
singlet o under U(1)e,,, embedded into a doublet representation D, of hypercharge Y = 1/2:

e=(2) 33)

The action of the representation D(g) on a doublet x is defined below:

X = D(9)x
LT 1
Q- — Qay—
= e 2e 2y (3.4)

In the equation above, ¢; and ay are the local parameters of the SU(2); and U(l)y
gauge transformations, respectively. It is immediate to verify that ¢ is a singlet under the
unbroken group U(1)em. Following the prescription given in eq. (2.27), we define:

ml

2 = D )y

(3.5)

By construction ¢ transforms as a doublet with hypercharge ¥ = 1/2. We prefer to work
with a linear multiplet written in a matrix form and, to this purpose, we introduce the new

doublet:
® = 7’9

(3.6)

2different choices for the generators of the coset are also possible
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The doublet ® has hypercharge Y = —1/2. We define the 2 x 2 matrix M:

M = (<i><1>)
- T
7/ [pp—
= 0'65 2 (3.7)
The matrix M transforms as follows:
M' =g, Mg, (3.8)
where:
LT
Za-_
g = e 2 (3.9)
.78
10y —
g = e 2 (3.10)
Explicitly, one has:
o = o (3.11)
- T - T
i i€
e 2 = gre Zg;f2 (3.12)

The Higgs field, o, is invariant under the whole gauge group SU(2),QU(1)y. The would-be
Goldstone bosons transform non-linearly under SU(2),®U(1)y. However, the combination:
£ 7

FAI
U=e¢e v (3.13)
transforms linearly as specified in eq. (3.12). In the previous equality we have rescaled the
fields ¢, introducing the constant v. Let us forget for a while the Higgs field o and proceed
to define the lagrangian for the bosonic fields. The covariant derivative for the combination

U is defined as follows: ) )

D,U=08,U—-gW,U+4¢'UB, (3.14)

where g and ¢’ are the gauge coupling constants for SU(2); and U(1)y; Wu: B” are the
gauge fields, written as matrices:

Wu = ZWM’?
- 1
B, = ZB,J?' (3.15)

The corresponding field strengths are given by:
W = 0.W, — 8,W, — g[W,, W]
Buu = auéu - auBu (316)

Their transformation laws are the following:

- 1
W,IL = gLWug;r:_EgLaugz

s 1
B = BM—?gRa”g}% (3.17)
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and
W;’w = gLWuug;rj,
B, = Bu (3.18)
The lagrangian for the bosonic fields is given by:
1 . . . . 2
Ln = Str(Wu W™ + B, B*) + %tr(D”UTD”U) (3.19)

From the last term in the previous equation, by going to the unitary gauge U = 1, we can
read the mass term for the gauge vector bosons. One introduces the combinations:

(W, ¥ W)

Wy =
* V2
Z, = cost W:’ —sinf B,
A, = sinf W:’ + cosfd B, (3.20)
where the angle 6 is defined by:
!
tanf = 2 (3.21)

g

The mass spectrum in the gauge vector boson sector is given in table I.

(mass)?
L
W:I:
) 24 )
5 | v +9")
4
A 0

Table I: electroweak gauge vector boson masses.

Now we consider the lagrangian £, for the fermionic fields, whose quantum numbers
are listed in table II.

Y su@y| v |
qr, = ( "c’l’i ) 2 1/6 1/6
i O | I PR
jL E :Oi g 2 1/2 1/2
R er 1 -1 ~1/2

Table II: fermions and their electroweak quantum numbers.
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The kinetic terms for the fermionic fields and their minimal coupling to the gauge vector
bosons are given by:
Ly = 197" Dyugr +1qry"Dugr +
+ ’il_L’y”D”lL + ’il_R’y”D”lR (322)

Indices in the generation space are understood here. The covariant derivatives acting on

the left and right-handed fermions ¥, g, (¢ = q,!) are defined below:

D, = (8. — gW, —g'BPywyr, (3.23)
Dypr = (8, —¢'BP)g (3.24)

The combinations E&L’R) are given by:

A 1

B = (B — L)B, (3.25)
- 1
B = Z(f" +(B - L))B, (3.26)

As a function of the mass eigenstates for the gauge vector bosons (eq. (3.20)), the
lagrangian given in eq. (3.22) contains the following interaction terms:
— T WHItt L W) - eA,Jr, — 2 5 2uT5" (3.27)

2 cos

where

JE = N gyt (3.28)

v
Jem” = ZQfm,lZ’y”,l)b (329)
v
Tt = (JE —sin? 6% ) (3.30)
3
- T
Jart = ZQ/JL’Y”?#JL (3.31)
"

As usual, one has 7% = (71 £172)/2, Qem = T* +Y and e = gsin 4.

The mass terms for quarks and leptons are introduced by means of gauge invariant
Yukawa interaction terms, Ly. We have:

LY == chUmqu + ZLUmllR + h.c. (332)

Ly is invariant under SU(2)r ® U(1)y provided the mass matrices m, and m; are linear
combinations of 1 and 73, in the corresponding two-dimensional flavour space. This means
that one has independent mass matrices for each separate charge u,d, e.

By ignoring the Higgs degree of freedom, the total lagrangian is given by:

L=Lg+Ly+ Ly (3.33)
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This model can be easily extended to account for the presence of the Higgs particle, here
identified with a real scalar field o, invariant under the whole gauge group SU(2), @ U(1)y
(see eq. (3.11)). One has simply to add to the lagrangian £, additional terms of the form:

1
L, = 58”0(9”0 - V(o) +

2 2 ,,2
9\ v tpm (E) v t Do
+ [a (v) —ir(DU D) + 5 (2) Zr(DUTD U)+...]
g o\ -

Since o is a singlet under the entire gauge group, other interactions could be easily added to
the lagrangian £,, which contains just few possible terms. Notice that a, b, ... are arbitrary
real parameters, and M,; are matrices, linear combinations of 1 and 73, not necessarily
equal to the matrices m,;. V(o) denotes here the scalar potential for the Higgs field.

The usual standard model of the electroweak interactions is a specialization of the

lagrangian £ + L, to the following choice of a, b, M,, M; and V:

a = 2
b = 1
M, = m,
Ml = my
m2
V(o + v)z) = 8—‘;((0 + v)2 — v2)2 (3.35)
v

With the above choice, we can easily rewrite the lagrangian £ + £, in the form:

1 A a A s 1
Loy = Etr(WWWWJrBWBW)JrZtr(DuMTD“M)—V(tr(MTM)/z)Jr

+ Lyt qLM%qR + ZLM%ZR + h.c. (3.36)
where: .
&7
M=0U=ce v (3.37)

Finally, to obtain the lagrangian for the standard model in a more familiar form, we can
perform the following field redefinition:

M:x/§<:§i @f;) (3.38)

Taking into account the vacuum expectation value v of the field o in eq. (3.37), we realize
that this field transformation is an allowed one and the S-matrix elements of the theory

( :si ) (3.39)

remain unchanged. We recognize in

the usual doublet of scalar fields.
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Up to now, Higgs particles have not been detected, and on the standard Higgs mass,
the LEP collaborations have put a lower bound of 60 GeV [36]. From this point of view,
there is no reason to prefer, as an effective model for low-energy electroweak interactions,
one particular model among £, £ + L, * , Ls3r. However, an important property is en-
joyed only by Lgpr: the renormalizability. With the increasing accumulation of precision
tests of the electroweak theory, the compelling need to take into account quantum ef-
fects in comparing predictions and measurements makes mandatory the use of a consistent
framework for the evaluation of the radiative corrections, that is a renormalizable theory.
Nevertheless, as shown in the following sections, there is an interesting use one can make
of non-renormalizable, effective lagrangians, in connection with the existence of something
beyond the standard model.

We conclude this section with a remark. The lagrangian £+ £, is not the most general
lagrangian invariant under SU(2); ® U(1l)y, containing up to two derivatives. By taking
advantage of the formalism of non-linear realizations, one could introduce interactions
between fermions and gauge bosons which explicitly violate the minimal form given in eq.
(3.22) [37]. As an example, we consider a left-handed quark by, of electric charge —1/3,
embedded in a SU(2); doublet with hypercharge Y = 1/6:

(i) (3.40)

The corresponding linear multiplet, defined according the eq. (2.27), is given by:

W:U(i) (3.41)

It is then immediate to verify that the interaction term
tr(T?’UTD”U)b_L'y”bL (3.42)

is gauge invariant and provides a modification of the tree-level standard model Zbb coupling.
Non-minimal terms of this kind arise for instance in the low energy limit of the standard
model for a large top mass [17].

3Bounds on the matrices M,; in £, come from data on flavour changing processes
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4 Precision Measurements and Electroweak Radia-
tive corrections

At the moment there is a quite astonishing agreement between the predictions of the
standard model and the whole set of data from precision measurements. The LEP data
have certainly played a major role in testing with great accuracy the standard model theory.
The agreement has been pushed to the level of checking the radiative corrections, namely
the predictions of the model including the most relevant quantum effects.

Associated to the problem of computing the radiative corrections, there is an obstacle
given by the presence of infinities in the intermediate steps of the computation. Such infini-
ties are dealt with by a renormalization procedure. In practice, starting from a lagrangian
L(g) depending on a set of coupling constants g, one introduces a regulator A to give a
mathematical meaning to the expressions obtained. The physical amplitudes computed in
the regulated theory L(g, A), diverge in the limit of infinite A. Order by order in pertur-
bation theory, a suitable set of counterterms Y, 6g;C; is added to the original lagrangian
L(g,A), so that each amplitude is finite, at that given order. The ambiguities related
to the introduction of divergent counterterms are removed by the requirement of specific
renormalization conditions, defining the renormalized parameters of the theory.

The basic property of renormalizable theories is that the counterterms can be absorbed
by redefining the parameters of the original theory:

g—>gozg—|—5g (4.1)

In this way, at all orders in perturbation theory, the predictions of the theory depend on a
given number of parameters, which can be determined by a finite number of independent
measurements. In theories characterized by global or local symmetries, a great simplifica-
tion of the renormalization procedure is obtained by adopting a regularization preserving
the symmetries. However, there are cases in which classical symmetries are violated at the
quantum level [20].

In the following, we will assume that we have computed, for a particular model, some
radiative corrections and we will discuss how the physical quantities are affected by them.
To simplify the analysis, we will make the following hypotheses [38, 6, 7, 39, 40]:

(1) The radiative effects are related to a mass scale M much greater than the electroweak
scale M.

(ii) The radiative effects are dominated by the gauge bosons self-energy corrections, at
least for a suitable set of measurable quantities *.

These assumptions are both violated in the standard model [41]. However, they can
be fulfilled in some of its extensions, at least for that part of quantum effects having a
non-standard origin. Later on we will provide some examples.

We will denote by —<I1;’(p) the set of self-energy corrections for the gauge boson fields,
evaluated at some loop order °. The indices %, j can take the values 0 (for the field B) and
1,2,3 (for the fields W*), or, alternatively, the values v, Z, W. One has:

— I (p) = —i [IL(p%)g™ + (p*p" terms)| (4.2)

*In the following we will be mostly concerned with the LEP I physics.
SWe are following here the presentation given in ref. [39]
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The terms proportional to p*p” have no practical effect for the LEP I physics, and they
will be disregarded from now on. The scalar function II;;(p?) can be expanded around the
point p? = 0:

IL;(p*) = Ay + p*Fyj + ... (4.3)
According to our assumption (i), this expansion, meaningful for p? <« M2, will contain real
i5> Fij, etc. Moreover, since II,;(p?) has dimension two in units of mass, it will

be reasonable to neglect the dots in eq. (4.3), representing terms suppressed by positive
powers of (p*/M?).

coefficients A

As a consequence of the exact electromagnetism gauge invariance, we have A, = A,z =
0 ®. Then we are left with the six independent coeflicients Azz, Aww, Fyy, Fyz, Fzz,
Fyw. The measurable quantities will depend on these six parameters. However, three
combinations of them are related to very special observables, which, in the electroweak
theory, play the role of fundamental constants. These are given by the electromagnetic fine
structure constant ¢, the Fermi constant Gp and the mass of the Z gauge vector boson
Mgz. It is immediate to verify that the shifts in the fundamental constants, due to the

quantum corrections induced by the gauge vector boson self-energies, are given by:

ba
- _F 4.4
5 vy (4.4)
6Gr Aww
_ 4.
Gr M (45)
SM3 Azz
7 ‘(w””) (46)

For future reference, we also give the shift for the W vector boson mass:

5MI%V o AWW
Mg\ My

+ FWW> (4.7)

e Exercise: derive egs. (4.4-4.7).

We conclude that, in our approximation, the parameters counting independent measur-
able effects, induced at the quantum level by the underlying theory, are three combinations
among the six coefficients Azz, Aww, Fyy, Fyz, Fzz, Fww.

To identify these combinations, we will now compute the radiative corrections for the
three following observables: the ratio of the gauge boson masses My /M7, the forward-
backward asymmetry A% in ete™ — putpu~ at the Z peak and the partial width of the Z
into charged leptons, T;.

My

. —

Mz
We trade My /Mz for the observable Ary defined as follows:

MW 2 1 1 ,u2
S - 4.8

6More precisely, the fermionic contribution to A,z vanishes, and the bosonic one is zero in the unitary
gauge.
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where:

2 _ WQ(M%)

= 15 77) _ (38.454 GeV)?
7 TR ( eV)

The definition given in eqs. (4.8-4.9) is suggested by the lowest order relation:

(mW)2 1 N 1 pd
mgz/) 2 4 mZ

with:
2 T
Ho = \/ﬁG%
and
ba
= 1 —
a ao(l + > )
oG
Gr = GS(1+ 21
Gr
YE:
Aﬁ&z = ”ﬁzz“—+'ﬁzgzg)
W,z
By combining egs. (4.8-4.14), one obtains:
My \? 2 in® @ M 6 oG
(_W) _ (m_W) LA e’ L2
My my cos 20 Mz a Gr
On the other hand, one has:
(MW)2 B (mW)2 " §MZ  §M2
Mz)  \mg M2, M2

By comparing eqs. (4.15) and (4.16) and by using eqs. (4.4-4.7), one finds:

A’r‘W _ _COSze (AZZ _ Aww>
sin®§ \ M2 M3,
N cos 20 (Fww — Fa) +
sin’ @ 33
ZC?SHFso
sin 8
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(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

e Afp
Also in this case we proceed through a series of definitions inspired to the lowest order
relations: \
gvga
Aol = 33 =3 222,
9v + 94

1 A
gy = —§—|—2sin20

9AZ§

(4.19)

(4.20)



The chiral approach to the electroweak interactions 61

sin? § = (1 + Ak) sin%d (4.21)
Y 1 1 p?
SlIl2 0 = 5 — Z — @
= 0.23145 (for Mz =91.175 GeV) (4.22)

With these definitions, the knowledge of A%y is equivalent to that of the parameter Ak,
given in eq. (4.21). To determine the latter, we focus on the neutral current scattering
process ete” — pTu~, with electrons and muons in the right-handed polarization state.
The lowest order amplitude to this process is derived by the interaction lagrangian (see

egs. (3.27-3.31)):

sin? 8,
_ g Yo p
(eoA” go cos 00 Z” Jem (4:23)
and is proportional to:
2 -2 2
les sin® 6 1
— - 4.24
z[pﬁ( Wit (pz_mzz)] (2.2
The self-energy corrections induce the terms:
F
- 2'62% -
p
i sin® 0, 1 Azz +p*Fzz n
P cos? b (7 —m3) (77— m})
20 F
+ 2i(eqge) 0 17 (4.25)

cos 8y (p? — m%)

The first term of eq. (4.24) combines with the first term in eq. (4.25), giving a shift of
the constant «, as given by eq. (4.4). The sum of the remaining terms, up to higher order
corrections, 1s given by:

2
96 . 24 \2 cos ¢ 1
1 — Fzz)(—sin*6 142—F 7| ————— 4.26
cos? 00( 22)( 0) ( sin 6 7Z> (p?2 — M%) (4.26)
The factor (1 — Fzz) in the previous expression represents a universal correction for the
neutral current. (It is the analogue of the factor (1 — F.,,) for the electromagnetic current.)
To see this, one can consider the scattering process vev. — v,v,, whose amplitude is
proportional to:
9 1
1—Fzz)——5<
cos? 00( 2 (p? — M2)

In conclusion, the self-energy corrections can be accounted for by an effective neutral current

(4.27)

lagrangian given by:

0
01— Fzz [J;L — sin? 6, (1 TR 0sz> J:m] Z, (4.28)

cos b, sin

A

From this lagrangian, one can read the effective Weinberg angle sin®§:

sin

. 6
sin? 4 = (1 + %sz> sin? 6, (4.29)
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On the other hand, from the definition of sin? g given in eq. (4.21), one has:

cos® 8 <5a 0GFr 5M%>>

cos20 \ o Gr B M2

sin® 0 = sin? 0, (1 + (4.30)

By comparing eqs. (4.29) and (4.30) and by making use of egs. (4.4-4.7), one finds:

Ak — COS2 0 AZZ _ AWW
cos26 \ M2 M3,
1 cosé
cos20 sin "~ °>° (4.31)
[ ] ]-_‘l
We define I'; as follows:
GrM:

Ty = —2—2(1+ Ap) (g5 + 93) (4.32)

67/2

To compute the parameter Ap, one can refer to the effective neutral current lagrangian of
eq. (4.28). This contains the overall factor:

P 1 —Fyy (4.33)

cos B,

We relate this factor to the physical constants Gg and Mz. One has:

2 §Gp  SM2
1260 M2 =90 (1 F z 4.34
V2 F c05200< + Gr + M2 ( )

From the previous equation, and from eqgs. (4.4-4.7), one obtains:

2
90 2 Azz  Aww
1—Fzz)=4V2GrM; |1 — 4.
os? 00( ZZ) \/_GF 7z ( + (M% MI%V )) ( 35)
Therefore, the parameter Ap is given by:
A A
Np="22 W (4.36)

Mz My

By looking at the expressions we have obtained for the quantities Ary, Ak and Ap, we
recognize that they depend on the following three combinations of self-energy corrections:

AZZ _ AWW

€1 =

M; My
€2 = Fww — Fa3
0
€3 = cos F30 (4:37)

sin 8
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We summarize this dependence below:

cos? 4 cos 26
Arw = - sin? 6 “ sin? 6 €+ 26
cos? 4 1
Ak = —
cos 26 et cos 26 “
Ap = ¢ (4.38)

From the experimental values My /M; = 0.8807 4 0.0031, A%p = 0.0174 4 0.0030 and
I} = 83.52+0.33 MeV, one finds [42]:

e = (0.154+0.41)-1072
e = (—0.7140.83)-107°
ez = (—0.0240.56) 1077 (4.39)

As expected, the physical quantities depend on the three fundamental constants of the
electroweak theory and on three additional parameters carrying, in our approximation, all
the information concerning the quantum corrections 7. In the next section we will relate
these parameters to those which characterize the effective lagrangian of the electroweak
interactions up to O(p*).

"To remove the assumptions (i) and (ii) made above, one may consider the egs. (4.38) as definitions
of the parameters €’s, taking advantage of the fact that the three observables involved are experimentally
clean. This is the point of view advocated by the authors of ref. [40]. Then the relation between the €’s
and the radiative corrections will depend on the particular model examined.
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5 Electroweak Interactions: Higher Orders

In section 3, we have shown how to build an effective lagrangian for the electroweak inter-
actions. The underlying fundamental theory might considerably differ from what presently
assumed. In particular, particles much heavier than those characterizing the known low-
energy spectrum might exist. In this case, none of the low-energy models described in
section 3 will be able to reproduce the predictions of the theory. As we have seen in the
previous section, in general, new heavy particles will affect the physical observables through
their contribution to radiative corrections. The low-energy models, as specified in section
3, cannot account for these corrections and appropriate extensions of them are required.

At the same time, there is an independent motivation to enlarge the low energy models
introduced up to now. In fact, the lagrangian £ of eq. (3.33) is naturally organized in
a derivative expansion, whose lowest order term is precisely given by eq. (3.33). At the
next order, gauge invariant structures with up to four derivatives must be included in the
effective lagrangian, and so on. As a first step, we will introduce these additional terms.
To this purpose we introduce the combinations:

T = U3UT
vV, = (DU)U (5.1)

They transform under SU(2);, ® U(1)y as follows:

T = g.Tg}
V' = g V,q 5.2
M gL ngL ()

The covariant derivative acting on V), is given by:
DuV, = 8,V — g[Wy, Vi (5.3)
A frequently occurring identity is:
DV — DoV, = —gW + ¢UBLU" + [V, Vi (5.4)

The algebraically independent SU(2)r, ® U(1)y and CP invariants, functions of the gauge
vector bosons and the Goldstone fields, containing up to four derivatives are listed below

12, 13]:

L

Lo = tr(TV,,)]?

!
L, = z'%B,wtr(TWW)

!
L, = i%BWtr(T[V”, V)

Ly = gtr(W,[V* V"))
Ly = [tr(V.V)P?
Ly = (Vv
Le = tr(V,V )tr(TV*)r(TV?)
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L, = tr(V,VH)[tr(TV"))?

q° .
Lg = Z[tr(TWw)]2

Lo = %tr(TWW)tr(T[V”,V”])

Lo = [r(TV)ir(TV,))?

£11 == tT((D”V”)z)

Ly = tr(TD,DV")tr(TV*)

1

L3 = §[tT(TDuVL)]2

Lig = ige™tr(W,,V,)ir(TV,) (5.5)
Before analyzing the physical meaning of the invariants £; (z = 0,...14), we will discuss
the arbitrariness in the choice of a particular base of invariants. The above base can be

modified either by adding total derivatives to the various terms, or by making use of the
classical equations of motion [43, 3, 44].

To illustrate this last point, we consider an effective lagrangian L.;¢, depending on a
single scalar field ¢ and its derivatives, of the following form:

L‘eff = »Ccl + X:CVCZ (56)
1 m?
La = 50up0% — —-¢" = V(p) (5.7)

We assume that the coefficients ¢; are of order £. What we have in mind is that the part
Y, ¢ L;, together with the O(/) corrections from L, correctly reproduce the results of the
underlying fundamental theory, at one-loop level.

Suppose that the term £, 7 being one particular among the z indices, has the form:
L;=(0"+m*)e-F(p) (5.8)

where F(p) is at least quadratic in ¢ and/or its derivatives. We perform the following local
transformation on the field ¢:

5 = ¢;F (i) (5.9)

Notice that this is an allowed transformation, so that the S-matrix elements do not change.
One obtains:

85, — / dz 559;, 5o

)
- / d l(a2 +m?)p + ‘;—m ciF(p)
[ dacyt; - [ dmcj%mw (5.10)

On the other hand:

5 (/ dmzi:ciﬁi> = O(K) (5.11)
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In conclusion the transformed lagrangian is given by:

Y F(e)+ O(4) (5.12)

Lip=La+) il — CjE

i#g

The net effect of the transformation given in eq. (5.9) is identical to that obtained by using
the classical equations of motion. Up to higher order corrections, L.y and Lg;; will give
rise to the same on-shell amplitudes 8. In the following we will make use of this freedom in
order to isolate the physically independent effects related to the invariant structures listed

in eq. (5.5).

Coming back to the lagrangian £ of eq. (3.33), the equations of motion for the gauge
fields are given by:

2

0B, + ig’%tr(TVL) —g'JB =0 (5.13)
2
DHW,, — g%Vu - %JVW =0 (5.14)

where:

B __ B-L 3R
Ju - Ji(i )+Ju

— L) *+(B-1L)

= ZiL’Y”(BT%: + ZQ/;R’Y”T 5 YR (5.15)
P P

J;YV = %:(QZL’Y”%GQAL) T (5.16)

e Exercise: derive egs. (5.13-5.16).
Since 0,,0,B* = 0 and DM'DVW‘“’ =0, from egs. (5.13-5.14), one obtains:

O,tr(TVY) = —iéa"Jf (5.17)
v

2 A
DYV, = iv—zD”JfV (5.18)

Both right-hand sides of egs. (5.17) and (5.18) are classically given by expressions of
the kind:

> T () (5.19)

¥

Therefore, as long as one considers light fermions, m,, < v, they are practically negligible
and they will be discarded from now on.

8The result generalizes to higher orders [43]. If the effective theory contains terms up to the order
O(}{n), and if the kinetic operator (82 + m?) has already been eliminated from all the terms of order
O(}{m) (m < n), then the use of the classical equation of motion gives rise to an equivalent effective
action.
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e Exercise: by using the equations of motion for the gauge fields W and B, given in egs.
(5.13-5.18), show that:

L1 = (5.20

Ly = (5.21
”

L3 = —gIB,WBW + L+ Lg— Lo+ Ls — Lo+ Ly (5.22)

As a consequence of the relations (5.20-5.22), one has the equivalence among the effective

lagrangians:
14

Eeff = AC—I-ZGWCZ (523)
2=0
and 9y
Lp =LY 6L (5.24)
2=0
with:
a; = ay+ags
ay = a4—aq3
as = as+ a3
g = ag— 013
ar = ar+ a3
ag = ag+ a3
a;; = 0
a2 = 0

For the coeflicients not listed above one has a; = a; and the lagrangian L differs from £ by
a wave function renormalization for the vector boson B.
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6 Physical Meaning of L ¢/

We are now ready to discuss the meaning of the base {£;} given in eq (5.5). The physical
content of the base is more transparent in the unitary gauge, U = 1, where all the invariants
L; collapse into polynomials of the gauge fields. All the invariants contain at most quartic
terms in the gauge fields, but they can be grouped appropriately, depending on their
expansion which can start from two, three or four gauge vector bosons. The structures
containing bilinear terms in the gauge fields are just six:

aoly = —%aovz(gWS’ —9¢'B.)* + ...

aly = %algg'B,w(a”W?’" — W + .

agls = —iasgz((?”W?’l, -0, W3, + ...
ainlnn = _%all[g2(auwl“)2 + g2 (0, W) + (Bu(gW?" — g'B))*] + ...
a12L1; = —a130,0,(gW* — ¢'B*) - (gW? — ¢'B*) + ...
a3z = —%amaﬂ(gwﬁ —g'B,) - 0*(gW3 — ¢'B") + ...

(6.1)

The dots stand for trilinear and quadrilinear terms in the gauge vector bosons. They are
there, together with the terms containing the would-be Goldstone bosons to ensure the
gauge invariance of each structure. It is straightforward to compute the contributions of
the above terms to the various two-point functions. We obtain:

—iIl, = —ia119°pups
. i
—I = —§aovzgzgw
—i(as + a13)9° (p° G — Pupy)

—’i(all — 2010 + a13)gzpupu
)

—I) = §aov299'g,w

+i(a1 + @13)99 (P° 9 — PupL)
+i(a; — 2aq15 + a13)gg'p“pl,

, 7
_zﬂz?, = —§a0v2g'2g,w

—ia139"(p* Gy — PupL)

—1(a1; — 2a12 + a13)glzpupu (6.2)

One may be surprised by the fact that, apparently, beyond the lowest order represented by
the lagrangian £, the gauge-invariant independent terms affecting the two-point functions
of the theory are six and not three as expected on the basis of our discussion about the
radiative corrections. Notice that, as already observed, the present discussion is also based
on an expansion in powers of momenta where we are keeping exactly the same order as in
eq. (4.3). The apparent paradox is solved by recalling that, with the use of the equations
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of motion, £11, L£15 and Ly3 can be eliminated by suitably redefining the parameters of the
effective lagrangian, that is by using the effective theory L[, defined in eqs. (5.24-5.25).
If we insist in using the complete base, with non-vanishing a;;, a1, and a,3, things will
arrange in such a way that the physical quantities will depend only on three combinations
among the six parameters ag, a1, as, @11, @12 and ay3. This is already evident from egs.
(6.2): the parameters a;; and a5 always multiply the harmless terms proportional to p,p,
and the parameter a;3 can be absorbed in a redefinition of a and M.

e Exercise: compute the contribution of L.;f = £ + E}io a;L; to the parameters €;, €,

and €3. One finds:

€1 = 2&0
€2 = —92(% + a13)
€3 — _g2(a1 —|— a13) (63)

The above relations show that the coeflicients ag, (as + a13) and (a; + ay3) are di-
rectly related to the observables discussed in section 4, and are therefore appropriate in
parametrizing precision measurements performed at LEP 1.

The other terms of the base £; (: = 0,14) can be discussed along similar lines. The
invariants whose expansion starts with three gauge fields are L,, L3, Lg and Lq4. Again,
the use of the equations of motion can help in analyzing the physical effects. It turns out

that [10]:

Ly, = ig'sztr(TV”) + (redefinitions of 6§71, ao, a1)
L3 = igztr(jzvV”) + (redefinitions of §v?,87,,a,) (6.4)

The parameters §Z,, §Z, and §v? correspond to wave function renormalizations for the
fields B,, W, and ¢, respectively. The equations (6.4) bring in new invariant structures,
not considered up to now, containing fermionic vertices. In this new base one would
have universal corrections to the fermionic vertices, leading however to the same physical
predictions obtained in the framework of the original, purely bosonic base.

The parameters a,, a3, ag and a;4 might be useful in discussing the LEP II physics.
Indeed, one can parametrize the most general couplings of two charged vector bosons with
a neutral vector boson according to the effective lagrangian [45]:

LWWN

= g V(WL WHENY — W, WY NY) + iky W, W, N
GwwnN

A
+iM—I§VWT,\”W”l,N”A + gt e e (WH,.0,W, — 8,W!W,)N,  (6.5)
Here N, stands for the photon A or the Z field, W, is the W~ field, W, = 0, W, — 0, W,
and similarly for N,,. The four terms in the previous equation are the most general C'P
invariant terms one can build out of vector fields with vanishing divergence. The first three
couplings are separately invariant under P and C transformations, whereas the last one
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violates both P and C. Additional terms can be added if C P violation is allowed [45]. The

conventional choice for the overall normalization constants gwwy (N =7, Z) is:

gww~y = —E€
gwwz = —gcosb (6-6)

The first term in eq. (6.5) has the form of a minimal coupling of the charged W current
to the photon or the Z field. The parameters g and gZ represent the electromagnetic and
?Z” charges of the W, in units of gww, and gwwz, respectively. The coeflicients ky and
Ay are related to the "magnetic” moments of the W, an anomalous "magnetic” moment

occurring if ky # 1 or Ay # 0.

A direct access to the above parameters will be provided by W pair production in ete”
collisions at the future LEP II facility. The differential angular distribution of the produced
W’s turns out to be particularly sensitive to the chosen set of C'P conserving couplings

[45].

By identifying the trilinear gauge boson interaction terms in the effective lagrangian

Less,eq. (5.23), we can readily express the coefficients of Lyywy in terms of the parameters

a;. One obtains ° :

gi—1 =20
2
Z _ g
-1 = T cos26 ™
ky—1 = g*(ay —az—ag) — & + €3
2
kz —1 = g [cos® §(—as — ag) — sin® @ ay] — €; — tan® 0 €
cos? 4
Ay = 0
Az = 0
g5 = 0
Z g9’
I = " cos? 0a14 (6.7)

The relation g = 1 expresses the exact conservation of the electromagnetic charge. The
coefficients Ay are vanishing since L.;f contains terms up to the fourth order in momenta
or gauge fields.

The parameters a,, a3 and ag or any set of independent combinations, together with the
coeflicient a4, appear to play in LEP II physics the same role covered by the €’s parameters
in LEP I measurements. Notice that invariance under isospin would require ag = a4 = 0.

It may be observed that the present bounds on the €’s parameters, summarized in eq.
(4.39), translate into a bound of few percents on ao, (ag+ a13) and (a; + a;3). On the other
hand, it seems reasonable to assume that, in any sensible theory, the parameters a; are all
of the same order of magnitude. It would be a rather surprising result to find that, for
instance, ay and as are larger than ag, (as + a13) and (a; + a13) by a factor 10 or more.
On this basis, one would expect that the deviations listed in eq. (6.7) might be at most
of order 1072-107?, and thus probably too small to be appreciated at LEP II [10]. Indeed,

®We do not include the effects of the gauge bosons wave function renormalization.
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if we were to use "naive dimensional analysis” [25] to estimate the size of the effects at
LEP II, by assuming a range of validity for L.s; extending up to energies close to 47mv, we
would guess for the dimensionless coefficients a; values of order one in units of (1/167%),
even smaller than those indicated by the LEP I data.

It is maybe useful to recall that this kind of considerations requires that the scale of new
physics is considerably higher than 2My and, in any event, it is certainly not a substitute
for the experimental tests [46].

Finally, L4, L5, L6, L7 and Lo contain only quadrilinear terms in the gauge boson
fields. We could think to fix them, at least in principle, by means of scattering experiments
among gauge vector bosons, to occur at the future LHC/SSC facilities [47]. Notice that all
the invariants but L4 are invariant under parity.
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7 The Matching Conditions

The effective lagrangian L.s¢ defined in the previous section is able to reproduce the quan-
tum effects originating from the heavy sector of an underlying fundamental theory of the
electroweak interactions. Such a piece of information is contained in the coefficients a; of
the invariants £;. In particular, ag, a1, as, a11, @12 and a;3 are related, as we have seen,
to the self-energy corrections. Corrections to the three and four point functions may be
discussed as well.

Before concluding these lectures, we will show, in an example, how to deduce, in practice,
the coefficients a; from the knowledge of the fundamental theory. This is done by means of
the so called matching procedure [24]. It consists in equating amplitudes evaluated in the
fundamental theory and in the effective one. At the end, the parameters of the effective
theory will be run from the scale where the matching has taken place, down to the energy
where one will use the effective lagrangian.

As a simple example, we consider a fundamental theory consisting just of the standard
model with a fourth generation of light leptons (M; < Mz) and heavy quarks (M > Mz).
We denote by M the common mass of the quarks. We will restrict the discussion to the
two point functions in the gauge boson sector evaluated at one-loop order, the extension
to the other Green functions being straightforward °.

The matching condition is given by:

ey, + Uy, =7, + a7, (7.1)

Here the left-hand side refers to the fundamental theory and the right-hand side refers
to the effective one. Ilg is the contribution of the counterterms of the fundamental theory,
derived from:

1 y 1 i e
—1(1 +6Z,)B,,, B* — 1(1 + 6Z,)Wi, W +
1 1
—|—§(v2 + 8P (W W + W2W2H) + g(v2 + 6v*)(gW. — ¢'B,)’ (7.2)

I, is the loop contribution from the heavy quark doublet. II, is the contribution from
the invariants £;, already evaluated in eq. (6.2). Finally, IIs is the contribution from
possible finite counterterms in the effective theory, of exactly the same form as those given
in eq. (7.2), with renormalization constants 521, 522, év?. Such terms may be present for
a particular choice of renormalization conditions. Two comments are in order.

We have not included the loop contributions from the light sector. These are exactly
the same for the fundamental and the effective theories, and can be simply dropped out
from both sides of eq. (7.1). Actually, this is the reason why at low energy we can define an
effective lagrangian. The amplitude computed in the fundamental theory in the large mass
limit and the amplitude evaluated with the lagrangian obtained by simply suppressing the
heavy fields, have equal absorptive parts in the various channels. Their difference is an

10The effective theory will also contain a Wess-Zumino term [21] whose gauge variation cancels the
anomaly produced by the light leptons [16].
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analytic function, which, for momenta much lower than the scale M, can be approximated
with a polynomial.

In principle, in a generic renormalization scheme, additional finite counterterms have
to be added to the loop contribution from the fundamental theory, to properly ensure
the validity of the Ward identities. If the regularization procedure does not respect the
gauge symmetry, the Ward identities will be apparently broken by a loop computation and
they will have to be repaired by properly adding finite terms. In the following, we will
use dimensional regularization with {v,,7s} = 0 in all dimensions, which automatically
accounts for the non-anomalous Ward identities and which, in the example given, can be
safely applied.

The contributions from the counterterms of eq. (7.2) are given by:

. . . Gv? .
—illey, = —illeg = —illely, = i==9"gu — 8%2(0" g — Pupy)
. bv?
_ZHC?L?/ = _Znglguu
. .5’02 2 .
—Zchg = ZTgI Gu — Z5Z1(nguu - pupu)

(7.3)
Those from the counterterms of the effective theory are immediately derived from the above
equations. Finally, the one-loop contribution from the heavy quark doublet is given by:

. . . —1 M?
_ZHLL}/ = —’I/HLii = —’LHL:;?I = ]_6792{3]\42 (A —|— l’n?> guu

M2\ 1
+ [— (A + lnﬁ) - 51 (P’ — Pupy)
1

P} (14)

—1

M2

1672

1
+§(p29uv — PuPy)

1

+§pupu} (7.5)

. —1 M?
_ZHLz?, _ 1679/2{3M2 (A—klnF)gW

11 M2\ 1
+ [—3 (A + lnﬁ) - —] (P° 9w — Pupy)

2
1
—mue ) (7.6)
where
A = L—I— In4
N 4 —d Vg T mET
vg o~ 0.577 (7.7)
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and p denotes the scale parameter of dimensional regularization. The expressions given
above have been obtained in the limit p? < M?, neglecting positive powers of p? /M?. We
are now ready to solve the matching conditions. From eq. (7.1), by using eqs. (7.3-7.6)
and (6.2), one obtains:

1 M?
2 "2 2
5’0 —5’0 = ]_67r212M <A+ZTLF>
. e M2 1
62 =80 = 1o (“”7*5)
2 2
s g% [11 M2\ 1
and
ag = 0
ron = 55 (o)
R T R N
ag+az = 0
)
T Ter2 \ 2
a13 = 2&12 (79)

As expected, these relations are already sufficient to determine the contribution of the
heavy quark doublet to the parameters €’s. One finds [48]:

561 =0
562 =0
g2
= 1
563 —|—327r2 (7 0)

Notice that, since the parameters ¢ and €, are associated to isospin breaking effects (see
eqs. (4.37)), they receive a vanishing contribution from a degenerate quark doublet.

e Exercise: compute the contribution to the €’s parameters from a degenerate doublet of
heavy leptons. Do the overall contribution to €3 due to a whole fourth generation of heavy
degenerate fermions vanish?

The case analyzed above provides an example of non-decoupling. If decoupling applies,
the effects of a large mass limit are just the appearance of higher dimensional operators,
with coefficients suppressed by inverse powers of the large mass, and a renormalization of
the parameters [15]. In this case the physics associated with the heavy scale decouples
from the low energy theory. Instead, the effects described in egs. (7.9)-(7.10) are neither
suppressed nor absorbable in a redefinition of the fundamental constants. The point is that,
in order to have decoupling, one is not allowed to let a dimensionless coupling grow with
the heavy mass. On the other hand, this is just our case, since, in order to preserve the
gauge invariance, the large mass limit for the quark doublet has been implicitly achieved
by increasing the corresponding Yukawa coupling. !

By imposing the matching conditions on a sufficient number of gauge bosons Green
functions, one can determine the whole set of parameters a; (¢ = 0,...14) and we have
collected the results in table III.

11The effective lagrangian we have dealt with so far has been constructed by applying the formalism of
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LARGE m,[13] | LARGE my = my = M[16] | LARGE m; > m[18]
L = In(m./p) L = In(m:/p)
3 . 3mt2
_ 242 2 M
” 4? 01 "
-y _ A
R 2 Ty
2| Tt ) T3l
i i 2
s 12 2 B
I - L -2
Qq —I_? —I_éll + 263
I _- a2
as -|-12 P + %%
42
Qg 0 0 + %§
I — 22
ar 0 0 —|— 274
asg 0 0 —|—L - %
-2
Qg 0 0 —|— 124
aio 0 0 —
0 1 1
a1y 9 9
1
Q12 0 0 _§
Q13 0 0 _%
Q14 0 0 _|_g

Table III: a; coefficients - in units of (1/167?) - for three particular limits
of the SM. The scale p is some intermediate scale between the low external
momenta and the large mass.

As a last step, to fully define the low energy effective lagrangian, one has to specify
the renormalization group equations (RGE) according to which the various parameters run

non-linear realizations sketched in section 2. According to a widely accepted point of view, going beyond the
SM, one should use non-linear realizations whenever the decoupling theorem does not apply, the opposite
case requiring the use of linear realizations. Although this choice may be in practice convenient, it is
not so compelling. In fact, the use of non-linear realizations is requested when the degrees of freedom
of the low energy effective theory cannot be assembled into linear multiplets of the symmetry group G.
When this happens the low energy theory is non-renormalizable, which is indeed the case if the decoupling
theorem does not apply. On the other hand, when the light degrees of freedom can be arranged into linear
multiplets of G, which may happen whether or not the decoupling theorem applies, one can choose to work
with linear realizations or non-linear ones, the two being related by an allowed field transformation. For
instance, the case of a vector-like doublet of heavy quarks can still be discussed in the framework of the
effective lagrangian of eq. (5.6). In this case, the effects of the doublet decouple and the coefficients a; will
contain inverse power of the heavy scale [49].
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from energy scales close to M down to lower energies. By working in the effective theory
and by choosing vanishing renormalization constants 521, 6%, and 592, one can readily
conclude that no contribution from the heavy quark doublet survives in the RGE’s, at one-
loop order. The one-loop RGE’s are then determined by the contribution of the light sector.
We find instructive to recover this conclusion by working at the level of the fundamental
theory, focusing just on the possible contribution from the heavy particles. As an example,
we will compute such a contribution for the g gauge coupling constant, for the previously
analyzed case of a new doublet of heavy quarks. As far as the fermionic contribution is
concerned, the relation between the unrenormalized coupling go and the renormalized one

Go=pr (\/gZ—) (7.11)

where Z, = 1+ 675 and, since we are interested in the running of g due to the heavy quark
doublet, 7, is the renormalization constant given in eq. (7.8). Actually, eq. (7.8) gives
the combination §Z, — 6§25 and, to proceed, we have to specify the finite counterterm 5Z2,
that is the renormalization scheme we are going to adopt. For instance, in the MS scheme,
we would choose §Z, in such a way to obtain §Z, = (g?/167m2)A, a mass independent
renormalization constant. Here we prefer to make the unusual but simpler choice 65, = 0,

g 1s given by:

to obtain:

1672

To compute the contribution of the heavy quark doublet to the 8 function of g, we act on

both sides of eq. (7.11) with pud/dy. We find:

5 () el ) )i o

By explicitly evaluating the right-hand side of the previous equation and by taking the

2 M2 1
8§72, = 2 <A+ln—+ 2) (7.12)
w?

limit d — 4, we obtain:

d
Blg) = o

~ 12;]‘14 (udd ) +0(g%) (7.14)

Eq. (7.14) shows that the usual contribution from the quark doublet, g3/1672, drops from
the final result, which is of higher order in g. More precisely, this cancellation is due

. 0 . . .
to the term proportional to ,ua— ( J ) in eq. (7.13). Usually, in a mass independent
w

V2,
renormalization scheme, this term and the last one of eq. (7.13), are absent. On the other
hand, the renormalization scheme chosen here is particularly suitable to discuss the effect
of the heavy doublet, since in this case the effect simply disappears (at the order g*), as

expected.

Indeed, nothing prevents the use of a mass independent scheme. For instance, in the
MS scheme one has §Z, = (g?/16m%)A and we would have obtain:

3

Blg) = 1g7r2 , (7.15)
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the usual result for a quark doublet. However, for the matching conditions to hold, this
would have required the presence of the finite counterterm:

2 2
A g M 1
82y = — In— + - 7.16

2 1672 (n 12 + 2) ( )

In turn, this finite counterterm could have been absorbed in the effective coupling:

2 2
. g M 1

As one may easily verify, g* runs according to the 8 function defined in eq. (7.14), not

containing any g term.

Other cases can be studied along similar lines. The invariant structures £; also occur
in the low energy effective lagrangian derived from the standard electroweak theory in the
limit of an heavy Higgs [12, 13] and in the limit of an heavy top quark [18] and we have listed
the corresponding results in table III. In principle, any extension of the standard model,
characterized by heavy particles, will leave its peculiar mark at low energies through a
specific contribution to the parameters a;.
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