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ABSTRACT

We review first the steps which lead to solutions of continuous integrable
models in two dimensions. Next we discuss in more detail solvable models of
statistical physics. The central role of the Yang Baxter equation is emphasized.
The connection to Braids and Knots and certain algebras is mentioned.

The continuum limit of lattice models may yield a conformal invariant field
theory. The Virasoro algebra is realized in a special manner. The central exten-
sion is related to the conformal anomaly. Unitary highest weight representations
restrict both the coefficient in front of the anomaly and the conformal weights.
The latter are directly related to the critical exponents. The operator product
expansion as well as the classification of field operators is mentioned finally.
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1 Introduction

Various subjects became more and more interrelated recently:

1.1 Continuous Integrable Models

More than 150 years ago J. Scott-Russell observed solitons interacting with each other.
1898 Korteweg and de Vries wrote down an equation for v(¢, z):

v = 6UV, — Vggy (1.1)

which was supposed to describe water waves in a channel. Fermi, Pasta and Ulam observed
already by numerical experiments that certain modes of a dynamical system may dominate.
But it was not before 1967 when Gardner, Green, Kruskal and Miura invented the inverse
scattering method to solve the KdV equation. Especially the soliton solutions were obtained
explicitly. Lax reformulated their scheme. Soon after these discoveries many hierarchies
were obtained. Among them there are the Nonlinear-Schrodinger equation, the Sine-Gordon
equation, the Toda lattices but more recently the Kadomtsev-Petviashvili type equations
in three dimensions were also shown to be integrable. Especially during these more recent
developments many more insights have been obtained. Special vertex operators “create”
solitons. The Bose-Fermi correspondence allows to identify orbits of infinite-dimensional
groups with nonlinear equations. An interesting connection to the Riemann-Hilbert problem
resulted.

1.2 “Solvable” Models of Statistical Physics

The subject started when Lenz asked his student Ising to study the thermodynamics of a
one-dimensional spin system. The teacher became disappointed since no nontrivial phase
transition was found. Heisenberg wrote down a more general quantum spin model with
Hamiltonian

N
H=-J) 7;dju, Ule@... gf_/ ®1l...®1, (1.2)
7=1 7-th place

which is supposed to describe ferromagnetism for J > 0. Physically J results from the
exchange integral, but even its sign is hard to evaluate. o®
only for spin up and down degrees of freedom the Ising model results. The great step
forward was done by Onsager who calculated the free energy of the two-dimensional Ising

are Pauli matrices. If we allow

model. If we allow for an anisotropic interaction in spin space of (1.2) we connect to vertex
models. A special case of the six-vertex model yields a two-dimensional description of ice.

The more general eight-vertex models were studied by Baxter and others. Among the
many other models we mention especially the Potts models, since the algebra obtained
from operators entering the transfer matrix, the Temperley-Lieb algebra, is related to the
Hecke algebra and finally to braids and knots.
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1.3 Yang-Baxter Relation

Already in 1938 Bethe found an efficient method to obtain eigenfunctions of (1.2). The
Bethe states are factorized in the same way as the S-matrices of certain two-dimensional
models. From a quantized form of the inverse scattering method an algebraic scheme results.
The algebras of operators entering this algebraic Bethe ansatz are closely connected to
quantum groups.

It was realized that a large number of integrable models are obtained from solving
consistency conditions, which are nowadays connected to the names of Yang and Baxter.
The commutativity of the transfer matrices to different spectral values yields immediately
an infinite number of conserved quantities and indicates the integrability of the model.

1.4 Braids and Knots

The algebraic steps by which we obtain the Yang-Baxter relations are closely connected
to the braiding relations. It is therefore not surprising that invariant knot polynomials
can be obtained from integrable lattice models. The constant entering the Temperley-Lieb
algebra is related to the Jones index. The partition function of the Potts models connects
to chromatic polynomials. The Beraha numbers play a special role. Jones polynomials can
be obtained as correlation functions within a topological field theory. Jones obtained the
special values for his index by studying embeddings of type II von Neumann algebras.
Realizations of such algebras are given by conformal field theory.

1.5 Conformal Field Theory d = 2

The construction of correlation functions in the continuum limit consists of tedious steps
and has been done explicitly only for the Ising model in two dimensions. Following standard
wisdom we should follow renormalization group trajectories while taking the limit where
the lattice constant goes to zero. The temperature should approach the critical one, and the
correlation length should diverge. If we obtain a conformal invariant field theory, then the
Fourier coefficients of the energy momentum tensor yield a representation of the Virasoro
algebra. More precisely, a ray representation is obtained due to the occurrence of a central
extension term. The coefficient in front of this conformal anomaly as well as the eigenvalue
of one of the generators determine properties of the representation. The latter is called a
conformal weight and enters the behaviour of correlation functions and determines critical
exponents. For unitary representations both constants are severely restricted. This allows to
classify possible two-dimensional conformal covariant models. Depending on the behaviour
under conformal transformations we introduce the notion of primary and secondary fields. A
further useful tool to study these models consists in using the operator product expansion.
Conformal blocks form a closed algebra. Correlation functions are obtained as solutions of
differential equations.
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2 Integrable Continuum Models — Inverse Scattering
Method — Solitons

2.1 A General Scheme for Solving (Linear) Problems

We are all familiar with integrable systems having a finite number of degrees of freedom.
Most books and courses in mechanics deal with such systems; e.g. the oscillator or the
Coulomb problem. In these examples we can find enough globally defined conserved quanti-
ties. More precisely consider a 2n-dimensional phase space with local coordinates (g;, p;) and
canonical two form w = 3, dg; Adp;. Poisson brackets are given by {f, ¢} = w(Xy, X,) where
X; denotes the vector field generated by f and the equations of motion read ¢ = {q, H},
p = {p, H}, with H being the Hamiltonian. A well-known theorem says:

Liouville-Arnold: If there exist n globally defined conserved quantities K in involution
{K;, K;} = 0, then there exists a transformation to new variables ¢;, I; (cyclic action-angle
variables) such that the new time evolution is given by ¢,(¢) = w;t + ¢;(0). I; are constants

and w =Y, dp; A dI;.
The scheme for solving the time evolution is therefore given by the diagram:
“direct’ ste
4:(0), pi(0) =" 0i(0), 1,(0)

7 l free time evolution
“inverse’ ste
gi(t), pi(?) ST (1), 1)

As a further example, where a similar scheme applies, we solve the linear diffusion
equation ®; = ®_,, with infinite number of degrees of freedom. From the dispersion law

w = —1k? we obtain the solution of the initial value problem through Fourier transformation
(F.T.):
(t,z) = / dke*d(t,2),  B(t,2) = e H(0, k). (2.1)
A rapid spreading of wave packets occurs. The scheme for solving looks similar as before
3(0,a) "TIEETT O $(0,k)
7 l free time evolution
o(t,z) ETIThImese g b

We note that there exists an infinite number of local constants of motion. First of all we
may integrate the equation of motion and realize that the spatial integral of ®(¢, z)

2

0 [> o0 0
= /_oo dod(t,z) = /_oo do5—®(t,a) = 0 (2.2)
is conserved. Moreover all the Fourier coeflicients of ®(t, z)

2 o . ~
e t/ 8% omise (4, 2) = (0, k) (2.3)

—o00 27

provide us with constants of motion.
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2.2 The Direct Step

The above mentioned scheme may be generalized to a large class of nonlinear evolution
equations. As an example we shall describe the solution of the KdV equation (1.1). As
for the direct step we consider the spectral problem for the one-dimensional Schrodinger

operator
2

d
(=72 T o(@)b(z) = By(z), (2.4)
for real potential v, such that (1 + z?)jv| € L*(R). We introduce Jost solutions f, f, with

spatial behaviour at infinity

lim f(k,z)e % =1, lim e*®fo(k,z) = 1. (2.5)

r—00 T——00

Since fi(—k, z) solves equ. (2.4) too, there exists a relation between these three functions

fa(k,z) = a(k)fi(—k,z) + b(k) f1(k, z). (2.6)

The physical solution 9(k, z) should describe scattering from one side and is connected to
Jost solutions by

¢(k7 :1:) = T(k)f2(k7 :IJ) = R(k)fl(k7 :I:) ‘|’ f1(_k; :IJ), (27)

where we introduced reflection and transmission coeflicients of the one-dimensional scat-
tering problem. We compare (2.6) to (2.7) and relate a = R/T and b = 1/T to R and
T.

From the Volterra integral equation obeyed by f; we deduce analyticity properties of
that function and the fact that | f1(k,z) —exp(ikz)| € L*((—o00,0), dk). A theorem, similar
to the Paley-Wiener one, due to Boas allows to deduce support properties of the Fourier
tranform in k. This yields a representation for f; of the type

filk,2) = e 4 [ dyK(a,y)e™. (2.8)

Note that K(z,y) is independent of the spectral parameter k.

2.3 The Inverse Step

The inverse problem for (2.4) consists in recovering the potential from scattering data. The
two-dimensional drum problem became famous: M. Kac asked the question as to whether
one can hear the shape of a drum. We consider the operator (—A)|, with Dirichlet boundary
conditions on ). Does the knowledge of all frequencies determine the shape? We may expand
the trace of the heat kernel operator

ﬂbo C0|Q| ClL

and observe that the area of the drum ||, the length of the boundary L and the number
of holes n are determined together with the frequencies. Since || < L?/4r is a standard

Tr exp(B8(—=A4)lq)
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isoperimetric inequality which becomes an equality iff the drum is a circle. We deduce
uniqueness of the inverse problem for the circular case. The general problem is very com-
plicated. A counterexample exists in 16 dimensions.

Coming back to the Schrodinger potential problem we first connect the kernel K(z,y)

to the potential. We apply the Schrodinger operator to fi — e*® and Fourier transform in
k: 5 -
(55 + 505+ H2DK(2,9) = —o(@)6(a ). (2.10)

Introduce light cone coordinates £ = y+z,n = y—z, integrate (2.10) from —e¢ to €, observe
that K(z,y) vanishes for z > y and deduce that

d
—ZEK(a:,az) = v(z). (2.11)

The connection of K(z,y) to the scattering data {R(k), &4, ¢;}, where €, denote the energy
eigenvalues and ¢; bound state wave function normalization constants, is more tricky. We
rewrite (2.7) so that all quantities have a Fourier transform

(T()=1)falk,2) = BB fy (b, ) — %)+ (fal =k, &) — ™) — (fa(k, 2) — =) + R()e™.
(2.12)
We obtain contributions to the F.T. of the l.h.s. from bound states

/°° D Plk) = 1) fy(k, 2) = Zc e~ £, (iky, ), (2.13)

—o00 27

where we used the proportionality of f; and f, at & = 2k,. If we define a kernel G through
the scattering data by

N
(z,y) Zcfe re(z+y) —I-/ Zk("':‘|'1"’)]'2(/c) (2.14)

the F.T. of (2.12) is rewritten and becomes the Gelfand-Levitan-Marchenko equation
K(@,y)+ Glo,y)+ [ d2K(2,2)G(z,y) =0, o<y (2.15)

We note the meaning of ¢;: If fi(2x4, 2) R e then c;® = [dzfi(irg, z).

2.4 Solutions of the GLM Equation for R = 0.

All one-dimensional totally reflectionless mirrors can be obtained from (2.15) easily. They
form all soliton solutions of the KdV equation. For R(k) = 0 (2.15) becomes a Fredholm
equation with a separable kernel. From the ansatz

K(z,y) = =Y cpe(e)e™™ = (1 + O(a) )by = e ¢y,
£
CiCmy

Cem(z) = PR exp(— (ke + km)T) (2.16)
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we obtain p p
_ 1% 4 @
K(z,z)= Tr(1+C) dmC - Indet(1 + C) (2.17)
and all reflectionless potentials are given by
&2
V(z) = —Zﬁlndet(l + C(z)). (2.18)
z

Among them are the standard examples —n(n + 1)/ cosh? z with n € N.

2.5 Solving the KAV Equation

The scheme mentioned in (2.1) applies also here: We take v(¢,z) as a potential in a
Schrodinger problem and transform to scattering data:

Schrédingerequ., “direct’ ste;
v(0,2) R EEEE {Ro(k), 4(0), (0}

7] l “free” time evolution
GLM equ., “inverse’’ ste
v(t,2) TR {Ry(k), eq(t), colt))

In order to “solve” the initial value problem, we have to determine the time volution of
the scattering data of the auxiliary problem assuming that v(¢, z) evolves according to the
KdV equation. As a first example we evaluate the change of ¢,:

Seo(t) = /_ " 422 (600, — Vaas) = 0. (2.19)

By partial integrations we obtain the invariance of the spectrum of the Schrodinger operator
under the KdV flow: g4(¢) = £4(0). This indicates the stability of solitons. In a similar way
we obtain the time evolution of the other data

Ri(k) = Ro(k)e™ ¥t Ty(k) = To(k),  ct) = cs(0)e* 2, (2.20)

where k7 = —&;. (2.20) can be more easily obtained from the Lax pair which is behind the
integrability. Note that we have found an infinite number of conserved quantities. Scattering
data are the analog of action-angle variables. Similarly to the drum problem we may expand

Tr exp(—BH) AR >, 871, (v)/B*?* and obtain a hierarchy of invariants.

2.6 Lax Pairs

We are familiar with invariant spectra if we think of unitary transformations of operators
in Hilbert space. Assume that there exists a pair (L, B) such that L = [B, L] is equivalent
to a nonlinear evolution equation. The pure point spectrum of L(¢)(t) = A(¢)p(t), with
L' = L, will then remain invariant. We differentiate, use the Heisenberg type equation and
obtain

(L =N — By) = M. (2.21)
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Take the scalar product of (2.21) with 1 and conclude that X = 0. As for the continuous
spectrum we assume that there exists a unitary operator U such that
ou
ot

BU, Bt = —B, L =B, 1. (2.22)

Differentiating L(¢) = U(¢)L(¢)U(¢) and doing simple algebra proves that L is time inde-
pendent and equals L(0). L(t) is therefore obtained from L(0) by a unitary transformation.

As a first example we evaluate the commutator between L = —% + v and B =
—488—; + 31)8—8‘7: + 3%1} and obtain the KdV equation. From the operator B we get the &3

dispersion law which determines the time evolution of Ry(k) and ¢,(¢).

This scheme works for hierarchies connected to the Toda lattice, the Sine-Gordon equa-
tion and the nonlinear Schrédinger equation

The appropriate Lax operator for (2.23) becomes a Dirac operator

1 d
vdn ¥
L= , Ly = )y, (2.24)
" 1d
1 dzx

where A denotes the spectral parameter. Jost solutions with asymptotic behaviour

eika: 0 eika: 0
F(k,z) == , G(k,z) *==° (2.25)

0 e—ik:z 0 e—ik:z

are connected through the transition matrix T'(})

FO,z) = TG, 2), T\ = ( @ O ) . (2.26)

2.7 Remarks

a) In the latter case a possible Poisson bracket is defined by

U, 97), 00,4} =i [ do (% ;;9 - ;[ %) | (2.27)
A direct caleulation of the Poisson brackets between ay and by, is tedious [1]:
{ar, 8.} = {an, 08} = {ba, B} = 0
1 1
fan b} = s pabe ol = 5 e (2.28)

{bx, 03} = 2711|ax28(X — u).
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3

3.1

This indicates that the new variables play almost the role of action-angle variables.
The calculation of (2.28) simplifies if we introduce the monodromy matrix M(z,y|))
as the solution of

O Mo y)) = b, WMz, 5])), Lo, 2) =i A 2.29
6:11 (:Il,y )_ (:IJ,) (:IJ,y )7 (:11, )_Z _¢* )\ ( )

with M(z,z|A) = 1. The calculation of the Poisson brackets of elements of £(z, )
with elements of A(y, ) is simple. They imply the relation

{M(z,y|A) § M(z,y|pu)} = [r(X — p), M(z,y[}) ® M(z,y|p)],

(2.30)

On the l.h.s. the bracket between elements of the tensor product is meant. Carefully
taking the limits which define T'(A) finally yields (2.28). (2.30) follows from the re-
lation which yields the Yang-Baxter algebra. r(A) solves the classical Yang-Baxter
relation (see next chapter).

More recently integrable models in 2 + 1-dimensions have been found (Kadomtsev-
Petviashvili hierarchies). For this generalization the Bose-Fermion correspondence
plays a crucial role. It helps to relate subspaces as well as operators of the fermionic
Fock space to subspaces and operators in the bosonic one.

If one studies the orbit of the vacuum vector under the group GL, on the fermionic
side it turns out that the appropriate subspaces on the bosonic side are characterized
by nonlinear integrable models. Solitons turn out to be created by a particular vertex
operator I'(u, v) depending on parameters u, v. The n-soliton solutions are built up
by applying the operator

(1 + a1l (ur,v1)). .. (1 4 anl(tn,vn)) (2.31)

to the vacuum.

Integrable Lattice Systems

Introduction

Many phase transitions occur in nature. The ferromagnetic one may serve as an example.

Fe, Co, Ni and certain alloys show a spontaneous magnetization M, below the Curie tem-
perature T,. Let M (T, h) be the magnetization as a function of temperature 7" and magnetic
field h. M (T) = limp~ o M (T, h). M, serves as an order parameter distinguishing between
a disordered phase for T' > T, and ordered phases for T' < T.. It vanishes for T' > T..

In statistical mechanics we may describe properties within the canonical ensemble. We
introduce a density matrix p(q,p) = e PH@P)/Z for inverse temperature 8 = 1/T and
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the partition function Z = Tr e PH = e7#F. F denotes the free energy of the system.

Expectation values of observables are defined by (A) = Tr Ap/Z. Differentiating Z with
respect to § yields (H) = U = F+ TS, S = —0F/0T and standard thermodynamic
relations result. Classically Tr means integration over phase space. Quantum mechanically
p becomes a positive trace class operator in Hilbert space.

The simplest model to describe ferromagnetism is the Ising model. Lenz asked his
student Ising in 1925 to study a system supposed to describe phase transitions. Start
from a hypercubical lattice and assign to each lattice point 7 a spin variable s; € {1, -1}
with possible values £1. The set {s;}Y, form a spin field configuration. A model is defined
through the definition of the energy of the configuration. The “exchange” interaction term

suggests to take
HN({SZ}) == _stisj - thi, (31)
(i5) i

where (i7) denotes nearest neighbours and A the magnetic field. The dipol-dipol interaction
would give a term of the form s;s; too, but it is much too weak. The partition function for
N spins is given by summing up Boltzmann factors over all configurations

_ . _ Fy 1 InZy Nooo
ZN — Z e IBHN({Sl}) — e ﬂFN) _ —— —_— f(ﬁ, h) (32)
{si} N pN

and the mean free energy f(8, h) is obtained in the thermodynamic limit. Phase transitions
show up through points of nonanalyticity of f.

As the simplest example we may solve the one-dimensional Ising model with the help
of the transfer matrix T'. We rewrite Zy as

ZN = Z T31,32 .. .Tstl, T = 1/v1/2I/V{/'1/27 V;isl _ 5515161131/2, Wsl.92 _ eJS]_Sg‘

81,08 N
(3.3)
If we denote the eigenvalues of T' by A;, A; > A,, we obtain
. F 1
f(ﬁ,h):I}EEOWN:—BlﬂAl (3.4)

that the largest eigenvalue of the transfer matrix determines the thermodynamic properties.
For d = 1 no nontrivial phase transition occurs (7, = 0). Even a simple energy-entropy
argument shows this. Configurations where all spins are aligned become unstable even for
very low temperature. Since the free energy F' = U —T'S should be minimal § F' = 6U —T6S
should be positive. But changing a part of the chain of N spins leads to §U independent of
N while 65 becomes proportional to In N. In higher dimensions we might switch inlands and
thus 6U depends on the length of the contour. Estimation of the probability of occurrence
of such Peierls contours allows to conclude that a nontrivial phase transition occurs for
d > 2. In case there is an internal symmetry (like in (1.2)), Bloch walls show up and the
phase transition occurs only in dimensions d > 3. If we allow the classical spins to vary
continuously on a circle we obtain the plane rotator for which vortices configurations occur.
We remark that properties of these systems are determined by the occurrence of topological
configurations like kinks, solitons, vortices (monopoles and instantons).

Polyacetylen is an example of a system for which solitons occur. It forms long (CH),-
chains whose trans-form is stable. Denote by u,, deviations of the n-th (CH) molecule from
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its equilibrium position. Besides lattice vibrations there is hopping of electrons along the
chain. A simple Yukawa type interaction yields the Su-Schrieffer-Heeger Hamiltonian

N 2 N

w
Hy =Y (chiren + chenin)(t 4+ alunts — un)) + 03 D (tng1 —un)?. (3.5)

n=1 n=1

If one takes u, = (—)"u with constant u and evaluates the fermionic ground state energy
E%(u) one obtains a double well potential indicating a phase transition and spontaneous
symmetry breaking. This Peierls instability leads to a gap and soliton sectors occur. Kink
solutions interpolate between the degenerate minima of E%(u). Charged solitons may be
responsible for the enhancement in conductivity under doping.

3.2 Ising and Potts Models

For the one-dimensional Ising model we introduced matrices V = €**° describing the inter-
action at a point and W = e’ + ole™/ describing the interaction between points. For d = 2
and a M x N lattice we write

ZuN = Z exp[% Z SmnSmmnt1 T % Z SmmnSmiln] = Z VS{& Wsls; ngsg .
{sm,n} mn mn S!.,81...5m
(3.6)
where S, = {Sm;, .- -Smpy}. V is again dlagonal why W is not. They can be represented
by the N oN matrlces O'J —1R®...007®1...® 1 where ¢’ is put to the n-th factor.
This yields

= exp|— Zanan_l_l W= H(eK"/2 + e K/251, (3.7)

Diagonalization of T' = VY/2WV1/2 is possible, but cumbersome. We may add a constant
term to each s; - s; term of (3.6) and use the identity (1 + s;5;)/2 = &,,,; to rewrite

Zu,n = const. Z exp| K, Z bs;a; + Khn Z bs;s) (3.8)
{si} (ihj)y <i7j>h

where (4, 7)** means nearest neighbour pairs in the horizontal and vertical direction. If we
allow s; € {1,...,Q} to take values one up to @ we obtain the Potts models; @ = 2 gives
Ising. V and W may be expressed in terms of @ x @ matrices (E;;)ag = 6a:6g; which fulfill
the algebra E;;Exy = 6,k L. We define matrices e; acting in ®§-v:_01 C? with1 << 2N -1
[2] 1/2 Q

€2J = Q 1®®Ek:1 g’j.k/ ®Ekk®1

7-th place
_ -1/2 Q (3.9)
€2J_1 — Q ]_ ® .« o ® Ek,l:l EE!/ ®1 ceey
7-th place
and obtain Nt N
V=T +éey), W=T]Q7*(&1+ey.1) (3.10)
7=1 7=1

with &, , = Q~/2(eKrv — 1), as a simple calculation shows.
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The matrices e; fulfill the Temperley-Lieb algebra
e? =4/Qe¢j, e;e; = eje; for |t — j| > 2, €:€;4116; = €, (3.11)

and the partition function is completely determined by these algebraic relations. We shall
come back to (3.11) later on.

3.3 Vertex Model

There exists a class of “ice”-like models. Ice forms a lattice of H,O molecules. A simplified
d = 2 model is obtained by placing O-atoms at the lattice points and H-atoms in between.
Assume two possible positions for the H-atoms and indicate them by an arrow:

or . Surround each O-atom by exactly two H-atoms. This allows six possible vertices
to which we assign weights w; = exp(—pf¢;):

Wi =wy=a ws =wy=0b Wy =wg =C

We assumed a symmetry under reflections and obtained three independent constants. The
partition function is given by Z = Y cons. [Inm wj(n, m).

The model becomes critical for |a® + b* — ¢?| < 2|ab|. Correlation functions decay then
algebraically. If we add the vertices

and

we obtain the eight-vertex model.

For the 6-vertex model we define the matrix

B

Lal aIZ = =
:51 :52 al az

b

(3.11)

O O O R
O 06 o O
O o 0 O
Q O O O

acting in h ® C?%, where the auxiliary space h = C? too. The monodromy matrix describes
‘ B ‘ B
My =

:LN...L15<21 g) (3.12)

Q1 | Oy .ovvn ol

2

and acts in A ® (Cz)N. Finally the transfer matrix is defined by trp, My = Tnx and Z =
Tr TH.

As a suitable parametrization we choose a = psin(y — A), b = psin A, ¢ = psin+y, put
p =1 and denote A as the spectral parameter.
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3.4 Connection to Quantum Spin Models

Proposition: We introduce the Hamiltonian of the X X Z model

1 N
Hxxz = 5 Z(O’;O’;_I_l + sz-ajz-_l_l + A(O’?O’?_I_l + 1)) (3.13)
7=1
and claim that
) d )
Hxxz = siny—v InTn(A) with A = — cos . (3.14)

A=0

Proof: Note that L,(0) = sin~yFPy,, where Py, denotes the permutation operator between
vector space h and the n-th C2. siny Ty (0) = trp,Poy .. . Poy = t1p Py Pas. .. Py_1 yPro =
U, where U denotes the shift operator. Let (8L,/0))|,_y = Lon. We calculate the logarith-
mic derivative of the transfer matrix at A = 0 and obtain

‘ d N _ N _
sin ’Ya In T()\) == U_l Z tI'h(P()l ce . PO,TL—].LOTLPO,TL-l—]. PN P()N) == Z Pn—l,nLn—l,n =
n=1

—cosy 010 0

N
0 01 0
_; 5 oo : (3.15)
0 0/0 —cosvy/_ .

The indices indicate the vector space in which the matrices act.

Remark: L, corresponds to a Lax operator; let L, ¢, = ¢,,1. There exists an operator
M, with giSn = M, ¢, such that the integrability condition between the two equations
Zn = M, 1L, — L, M, is equivalent to the equation of motion for spins chn =i[Hxxz,0n)
in the X XZ model.

3.5 Integrability of the Lattice Model

We take ~ fixed and consider L,()) as a function of A. We take the tensor product of two
subsidiary spaces and consider L,()\)® L,(x) acting in A® h® (C? )N. It is remarkable that
there exists an operator R € End(h ® h) such that the Yang-Baxter relation [2]

R(X = 1)La(N) ® L) = Ln() ® La( MR\ = ) (3.16)

holds. A possible solution for the quantum R matrix is given by R(A) = PL()) where P
denotes again the permutation operator. If we put indices one and two for the first two
vector spaces h and index three for remaining space we may rewrite (3.16) as

R12()\ - M)P13R13()\)P23R23(M) = P13R13(M)P23R23()\)R12()\ - ,U)

or

Roys(X — p)Ri2(A) Ras(p) = Ruz(p)Rea(A)Biz(A — p). (3.17)
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There are various other formulations. The S-matrix factorization conditions are identical
to (3.17). The quantum space need not be identical to the subsidiary space. (3.16) may
hold nevertheless.

Since L, matrices to different indices commute it follows from (3.16) that
R(X — p)M(X) ® M(p) = M(s) @ MOA)R(A — ) (3.18)
and by taking the trace in C* we conclude that
[T(X), T()] = 0. (3.19)

We have therefore obtained an infinite number of conserved quantities, one signal of inte-
grability. From the Yang-Baxter relation (3.18) we deduce “commutation” relations among
the elements A, B, C, D of the monodromy matrix. They are used for the algebraic Bethe
ansatz.

(3.17) can be considered as a sufficient condition such that associativity of the tensor
product holds. We consider operators L', L? and L3 acting in hQ hQ@ A ® (Cz)N. We
transform from L'L?L3 to L2L'L® with the help of Ri,, apply next Ry3 and finally R,
again. We obtain L*L?L'. The same result can be obtained by first transforming with Ras,
then using R;, and finally R,3; again. Consistency is obtained from (3.17).

3.6 Bethe States

Bethe obtained already in 1931 exact eigenstates for the one-dimensional Heisenberg chain
(1.2) assuming periodic boundary conditions. The principal idea is simple. We start from a
reference vector, e.g. |2) = | T ... 1) where all spins are up. The total spin S = YN G./2
is obviously conserved. |(2) is a first eigenstate of H. A new one can be obtained by taking
superpositions of the form SN  e*no~|Q) = |k). These eigenstates form spin waves (or
magnons) to wave vectors k and are quasiparticle excitations. We next may try to flip two
spins. Since (o}, )2 = 0 two magnons repel each other. This leads to a phase shift Oy, and
an interaction between spin waves. The Bethe ansatz

k1 ko) = D dninion on,|Q) (3.20)

ni <nz

PR = exp[§®k1k2] expli(kin + kana)] + eXP[—§®k1,kz] expli(kan + kina)]

leads to an eigenstate of H iff O, solves

C) k k
2 cot —2F2 = cot == — cot —2. (3.21)
2 2 2
Note that the effective repulsion is built in since exp(:O@g) = —1 and ’l,b,’if,nZ =0. For M

interacting magnons the ansatz

ki, k) = ) I g [0) (3.22)

ni<ny <..<nps
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1/)3 = Z exp[iza:k,,ana + % Z ®k7rak7rﬁ]

Perm« a<f

leads to eigensolutions iff © and k solve the Bethe equations

k, k
2c0t% :cot——cot—ﬂ

2 2

and
Nk, + Z®kakﬁ =27y, Ao =0,...,N—1. (3.23)
B#a

Lieb and Liniger solved the one-dimensional Bose gas using the Bethe ansatz. Let
1(z) denote a Bose field with [¢(z),%!(y)] = &(z — y). The Hamiltonian operator
H = f(f’ dz(ip, + Mptptie)) leads on the N-particle sector to the many body interac-

tion
N 2
C—§:£27+2A§:5@%—35D¢N=:E¢N. (3.24)

j=19%; i<j

There exist again Bethe states of the form

N .
Yy = Z exp[iz ki + %ZkaiijL T1 < Ty < ...y, (3.25)
Perm = 7=1 1<g
. k; —k; +1)
O, ]==_ """
exp[iOpx, ] A —Y

where periodic boundary conditions require that

N kg — k;
kL =271, — 2 Z arctan(——2

). (3.26)

=1

In the thermodynamic limit L — oo, N — oo, with p = N/L fixed, one introduces a
distribution function for the roots of equ. (3.26). This leads to an integral equation.

3.7 Algebraic Bethe Ansatz

The Yang-Baxter relations allow to establish an algebraic procedure such that the Bethe
states are built up. Among the 16 relations which determine the algebra of operators A,
B, C, D we quote

Ca(u=), ,  de=N)
S oy R A i R
(3.27)
_ a(A—p) (A —p)
DrBa = 0= PP sy

We intend to solve the family of eigenvalue problems T(A)y = (Ax + Dy )y = Ev,
since the free energy is determined by the largest eigenvalue. We observe that the reference
vector |Q)y = ®§-V:1 | T); acts like a “pseudo” vacuum since

_{aal Daeal Dn
L = (-2l e ), (3.9
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Ay =aY |,  DAQ)y =6 [Q)w, Ci|Q2)n = 0.

|Q)w is eigenvector of T'()) to eigenvalue af + bY. We may try to take By as a creation
operator of quasiparticles. If we consider only the first terms in equs. (3.27) the state
Yy = By, ... Bay|Q)w would be an eigenstate of T'()) to eigenvalue

a(di =) vy a(d— )

o ge, = o )

i=1

But this holds true if we require vanishing of all other terms obtained from the last terms
of (3.27). These Bethe equations become

a0\ _ P ale = 2,00 = A)
(Wz)) b= Ag)a(d; — A’ (3.29)

if ¢(A)b(—=A) = —c(—A)b(}), as it is true in most examples. For the 6-vertex model (3.29)
goes into

: in A N Nosin(A; — A —7v) &
PN = <7 i ) S § e A I D  PECCHED) 3.30
sin(y — A¢) jl;ll sin(A; — Ae +7) jl;_éll (3.30)
or identically
N
Np, + ZQS()\J - )‘l) =271y, I, eZ (331)
I#L

an equation similar to (3.26). We note that b(A, — A) vanishes at A = A, but the transfer
matrix should be regular. Vanishing of the residuum at these poles explains (3.29) too.

3.8 Knots, Links and Braids

A knot is a closed line embedded into R?® without crossings. A link is a set of knoted knots.
A complete classification of links is complicated. In order to define braids we choose n
points in R? and consider mappings 7; from [0,1] — R? x [0,1] C R3, 4 = 1,...,n with
the properties that 43(¢) > 0 for ¢ € [0, 1], vi(¢) # v;(s) for 2 # 7 and all s,t € [0,1] and
7:(0) = z;, Yi(1) = Zx()- We identify all mappings with the mentioned properties which can
be obtained by continuous deformations. The resulting object forms a braid of n strings

€ B,.

Algebraically B, consists of words generated from {e, b;,b;'|i = 1,...,n}. b; exchanges
the 4-th and the (z + 1)-st string, so that one lies above the other. ;' puts them in the
opposite way. There are three types of Reidemeister moves: e = b;b; ' = b;'b;, bb; = b;b;
for |2 — 7| > 2 and b;b,,1b; = b;11b;b;,11. The last one is the essential braiding relation. It is
obviously related to the algebraic procedure which led to the Yang-Baxter relations [3].

If we identify upper and lower endings of a braid we obtain a link. Many braids lead to
the same link.
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Markov Theorem: Braids which corresponds to the same link can be obtained from
each other by successive applications of Markov moves of type I and II. If A, B € By:
L(AB) = L(BA) and if A € B, b, € B,,1: L(Ab,) = L(A) = L(Ab.Y), L(-) denotes an

invariant function on links. The Burau representation of B, is given by n X n matrices

1

1—t ¢
1 0

1

whose (7, 7) element is 1 — ¢. If we require that the eigenvalues of b, are —1 and ¢t € C, we
restrict the algebra by imposing the condition (g;+1)(g; —t) = 0. Together with g,9; = g,4:,
| — 7] > 2 and ¢;¢:119: = 9i+19:9:11 the Hecke algebra is defined.

If we transform to e; putting g; = (1 + ¢)e; — 1, we obtain
(1 + t)2€i€i+1€i - tei = (1 + t)2€i+1€i€i+1 - tei_|_1.
If we put both sides to zero the Temperley-Lieb algebra results.

We note finally that we may obtain link-invariants from solutions of the Yang-Baxter
equation.

4 Conformal Field Theory

4.1 Introduction

Through the behaviour near the critical point we define critical exponents: M, ~ |r|?,
7 =T — T, specific heat cp ~ |7|™® and susceptibility x7 ~ 777. The two point function
of the Ising model decays away from T, like an exponential (Ornstein-Zernike behaviour)

|—a

expl— £
[(sis5) = (i) (83) s o0 = ‘T2 T#T. (4.1)
while at T = T, we obtain a second order phase transition and the correlation length
diverges (long range order): £(T') ~ |7|7¥, in addition
const

(4.2)

|<3isj>c||1j—j|—>oo = m

Renormalization group ideas have been used to get reliable answers for nontrivial exponents.
Mean field methods underestimate fluctuations and o =0, 8 =1/2, v = 1/2, = 0 result.
For the two-dimensional Ising model we get « =0, 8=1/8,v=T7/4, v=1,n=1/4 [4].
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Already in ’65 Widom suggested a scaling behaviour close to the critical point for the
free energy Af(7,h) ~ f(A°7,A%h). a and b determine all critical exponents. Block spin
methods led to a justification of this ansatz, which we illustrate in one dimension. We may
integrate out each second spin and observe that

h - h
Zexp[J(slsg—1)—|—§(31—|—232—|—33)—|—J(3233—1)—|—c] = exp[J(slsg—1)—|—§(31—|—33)—|—E]. (4.3)

The unique fix point of the mapping (J,h,c) — (J,h,c) determines the critical point
p=e’=e’=pa=0 h=h=0. The low around this point e/ = i ~ v/2u, h ~ 2h
determines the behaviour of thermodynamic functions In Ay ~ p?/1 + h2/u? which agrees

with the renormalization group behaviour f(u, k) ~ p?f(1, h/u?).

In the continuum limit (a — 0) the transfer matrix determines the Hamiltonian H
oh o—27
Tz(e_zj s )21—|—h03—|—,u201:1—|—a7'( (4.4)

where H = Ao + o', p? = a, h = Ap?. We note that the limit a — 0 is connected
to the limit T — T.. Keeping £(a) - a = const requires that £é(a = 0) = co. According to
renormalization group ideas we have to follow renormalization group trajectories for a — 0.
This has been achieved explicitly only for the d = 2 Ising model. A massless Majorana field
theory is obtained in the limit. This model is not only scale invariant but invariant under the
conformal group. 7 becomes determined by the anomalous scale dimension of a field s(z).
A fruitful hypothesis for d = 2 turns out to be the assumption that the continuum model
is conformal covariant. A classification of possible critical exponents results. Operators fall
into representations of the Virasoro algebra.

4.2 Conformal Invariance

We start with R? and metric g = g,,dz* ® dz¥, g, = M, p + ¢ = d and signature (p, q).
A mapping from R? U {oo} to R% U {co} such that g,, — f(z)g,. is called a conformal
transformation.

Examples of conformal transformations are translations z* — z* + a*, a* € R? and
pseudorotations z* — A¥z”, A € O(p,q). In both cases f = 1. In addition dilatations
z* — dz#, A € RT lead to f(z) = A72. Finally there are special conformal transformations

2
m refl. xt transl. xt —I' b” refl. z™u ‘|‘ b”:IJ

= b ¢ R? 4.
22 (@+0?  (1+2(ba)+ ba?) € (4:5)

which yield f(z) = (1 + 2(bz) + b*z?)?. The (d + 1)(d + 2)/2 generators of these trans-
formations form the Lie-algebra of so(p + 1,9 + 1). These are the only transformations
which can be globally defined on R? U {oo}. Calculation of the Jacobi determinant yields
|0z'/0z| = (1 + 2(bz) + bzazz)_d for the special conformal translations. For N points
we obtain (N — 3) invariant quantities which are the anharmonic quotients, for example

|fE1 — 1113”1132 — fE4|/|fE1 — 1112||1E3 — fE4|.
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The hypothesis of covariance under global conformal transformations asserts that there
exists quasiprimary fields {A,;} which transform under conformal transformations z — '

as
Ag/d

01 ). (4.6)

|2
Oz

All other fields are linear combinations of quisiprimary fields A, and their derivations. Cor-
relation functions transform covariantly, the vacuum is invariant. A, is called the anomalous
dimension. Correlation functions are therefore restricted. For example, two- and three-point
functions are given by

Ay(z)

c .
<A1($1)A2($2)> = ﬁ’ T1y = |21 — T2, c1z2 = 0 if Ay # Ay,
12
c
(Av(21)A2(22)A8(23)) = 5y Ayt R B ATTAY B (4.7)
L12 La3 L12

The four-point function depends on the anharmonic quotient.

4.3 Local Conformal Transformations d = 2

As we know from hydordynamics there exist conformal transformations in R? for which
certain singularities occur. Requiring that g, — h(z,y)g, implies that the mapping
(z,y) — (2',y") fulfills the Cauchy-Riemann differential equations. In terms of z = z + 1y,
Z =z —1iy, 2 = f(z) and 2’ = f(Z) have to be analytic resp. antianalytic: 8;2' = 0,
0,z = 0. This group becomes infinite-dimensional. We remark that (z, zZ) may be consid-
ered as a point in C2.

It is an easy exercise that the mapping z — 2z’ is globally defined iff f(z) = (az +
b)/(cz + d). No essential singularities or branch point singularities may occur. ad — bc has
to be non-zero and is put to one. 6 real parameters occur. These transformations can be
mapped by a homomorphism to s£(2, C). The composition (fo f)(z) corresponds to matrix
multiplication. The six parameters correspond to translations:

z—>z—|—b<—><é i), be C,
to dilatations 7
z—>)\2H< 0)\ 1/(\)/}>, A e RT,
to rotations | )2 .
z— ez o ( 0 -t/ ) ) feR,

and to special conformal transformations

z—>z/(cz—|—1)<—><i (1)>, ceC.

The infinitesimal transformations z — 2’ = z — £,2™"! can be represented on functions

by F(z) — F(2') = F(z) — £,2""' F'(2). The algebra of the generators £, = —z""9,
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becomes the Virasoro algebra [4n, m] = (n — M )lnim. This is the algebra of the diffeomor-

phism group of S* too. £, = —z""'9; fulfills an isomorphic algebra. Everything becomes
doubled.

The subalgebra {£_1, £y, 41} forms an s{(2, C) and generates global conformal transfor-
mations. Assume that |h, k) is an eigenvector of £, and £, to eigenvalues h and k. h, h are
called conformal weights. Since (45 — Eo) generates rotations |h — k| may be called spin.
Since £y + £, generates dilatations A + h becomes the anomalous dimension.

4.4 Three Implications

Energy-Momentum Tensor: We start from the action functional S = [d%zL(¢,d¢)
and vary ¢ by 8¢ = e*0,4. s is changed by §S = [d?z8"e*T,,, where T, denotes the

oy

energy-momentum tensor T}, = —g,, L + 0*¢$(0L/00,¢). In two dimensions the traceless

H -—-P
()
Since according to Noether it is conserved 0#T,, = 0, we obtain (G + 0,)(H + P) =0
and (0p — 0;)(H — P) = 0. In terms of T = %(H F P) weget 0,7 =0T, =0 where

01 denote derivatives with respect to light cone coordinates. In the Euclidean formulation
t = —ur, zy =2 =2 — 7 etc. and the two components of the energy-momentum tensor

(Tyy —1T4,)/2 = T(2), (Th1 +1T1,)/2 = T(Z) depend only on z resp. z.

and symmetric tensor 7' becomes

Ward Identity: The hypothesis that correlation functions transform covariantly under
global conformal transformations é,(;)($1(21, 21) . . . ¢n (2w, Zn)) = 0 yields

Ek 6zk<¢1 .. ¢N> =0
Yrlhe + 260, )(d1...dn) =0 (4.8)

Yk(2zkhy + 270, )(¢1 ... dw) =0
where ¢; = ¢;(z;,2;). From conservation of the energy momentum tensor we deduce that

0

92 —(T3j(2z0)¢1 ... ¢n) =0 if z; £2;,1=0,...,N. (4.9)

The next question concerns the behaviour of correlation functions under local transforma-
tions. The Ward identity asserts that the change is determined by T;; generating (4.8):

6oty F / Pxdie () (Tis(2) F(A)) (4.10)

where F(A) denotes a product of operators Ay(z, z;). We have to be careful since such
correlation functions are singular at coinciding points. Doing a partial integration modifies

(4.10) to

=3, dbies(=)(Tis()F(4)) - [ daz,()0(Tii(2)F(4). (4.11)
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Here C, denotes a circle surrounding the singular point. Next we introduce 7'(z) and
T(z) and obtain the final form of the Ward identity

S FA) =3 f e A)+Y b st TR, (412)

Schwinger Term: We may ask the question how T'(z) transforms under local conformal
transformations z — 2z’ = z + £(z). Classically we would expect that

T(z)d22 - T'(z)d22 = T(z')d22 =~ (T(z)+¢(= )C;—T + 23—5T)d22 + 0(52).

Quantum mechanically, due to normal ordering, an additional c-number term shows up:
T(2)d2* — T'(2)dz* = T(2')dz"? + é{z', z}d2°. (4.13)

The c-number term is called a cocycle. It is restricted due to the Jacobi identity. Requiring
that it should be a “local” expression determines its form to be the Schwarz derivative

except for a constant c:
Wy 3 W2

{w7z} =

Infinitesimally {2/, 2} = €"(2) which vanishes for £(2) = —£g — €12 — €52%. The transforma-
tion law finally becomes

T(z) = T(2)+e(2)T'(2)+2'(2)T(2) +

(4.14)

w, 2 w?

e"(2). (4.15)

4.5 The Virasoro Algebra

Through the expansion T(z) = 3% L, /2" we may introduce operators L, and sim-
ilarly T(Zz) yields operators L,. We put T instead of F(A) in equ. (4.12) and use the
transformation law (4.15). This yields the celebrated Virasoro algebra with central exten-
sion term

[hJM:@—mMMm+§%WMM—D. (4.16)

The Schwinger term vanishes for the sL(2,C) algebra spanned by {L_y, Lo, L1 }. Global

transformations remain unbroken.

In order to proceed we have to quote a suitable conjugation. z = 0 and z = oo correspond
tot = —oo and ¢ = oo within the in-out formalism (radial quantization). Motivated by
reflection positivity we require that

_ 11,1 1
A(Z,Z)+ == A(;,;)ﬁﬁ (417)
This conjugation yields for T'(z) that L_,, = L} . We note that a nonvanishing value for ¢
is very essential. If we require for the vacuum state that L_;|0) = Lo|0) = L;]|0) = 0 and
T(z) is regular so that L,,|0) = 0 for m > —1, we obtain in addition that (0|L,, = 0 for

m < 1. Calculation of the correlation

c/2
0|T(2)T 0) = ———
(01T (21)T (22)0) (21 — 23)°

(4.18)

shows the relevance of ¢ # 0.
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Example: The scaling limit of the d = 2 Ising model gives a Majorana field with £ =
1¥1,0;¢ and equations of motion 03¢, = 0, 0,1, = 0. The conformal weights of ¥ = ¢, are
(1/2,0) and T(z) = 3i%0,%;. The mode expansion

. akl0) =0 & >0
P(z) = arz k= % > bgz 7Y, (4.19)

keZ q=k—1/2 al]0)=0 k<0

with b; = b_, fixes a representation of the Virasoro algebra and yields after explicit calcu-
lations ¢ = 1/2.

It is remarkable that the Virasoro algebra admits unitary highest weight representations.
All of them are classified. Let Ly be diagonalized Lo|h) = h|h). The representation will be
characterized by (c, h). We require not only that L;|h) = 0 but also Ly|h) = 0 and therefore
L;|h) =0 for all 7 > 0.

A Verma modul is built up from the representation space which is spanned by

L g, ...L_g |hY=|ki...kn,h)forl <k <k <...<k, Wenote that

L0|k1 e kn; h) - L_le0|k2, . ) —|— k1|k1 . ) — (Z kz —|— h)|k1 .. 'krn h) (4:20)

=1

This suggests to introduce the level of a vector v(| )) = Y7 ; k;. All terms of (4.16) leave
the level invariant. Let P(N) be the number of basis vectors to level N. P(N) equals
the number of possible partitions of the integer N into positive integers. The generating

function is given by
oo 1 oo
11 T oF = > MP(M). (4.21)
N=1 M=0
We quote the first few examples: N = 0, |h); N =1, L_4|h); N =2, L_yL_1|h), L_5|h);
N = 37 L—lL—lL—1|h>7 L—lL—2|h>7 L—3|h>

In order to define the notion of unitarity we need a scalar product:
(h|Ly,, ... Ly L g, ... L4, |h)

becomes zero for vectors with different levels. The representation becomes unitary iff all
matrices M, formed from scalar products on level v (with P?(v) elements) are positive. The
representations need not be irreducible. We calculate, for example, ||L_41]A)||> = 2k > 0
and ||L_,|h)||*> = 2nh + Sn(n® — 1) > 0 from which we conclude that A > 0 and ¢ > 0.
Next we calculate

(R|L1LyL_yL_y|h) (h|LoL_ L_y|h) th(2h +1)  6h
M, = = (4.22)
(R|LiLiL_slh)  (h|LaL_sh) 6h  4h+ S

and obtain det M, = 32(h — hy1(¢))(h — h12(c))(h — hai(c)). The zeros of det M, are given
by hy; = 0 and

%4d:5—ci¢%;@@5—@‘
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If det M, < 0 both eigenvalues cannot be positive. Next one studies h,4(c) as a function
of ¢: For ¢ < 1 there exist two curves ending at ¢ = 1 and h = 1/4. A part of the strip
0 <c<1andh >0 isexcluded. For 1 < ¢ < 25 both zeros turn out to be complex. For
¢ > 25 hyy and hy; are negative. One even is able to calculate

det My(c,h) = an H (h — hp,q(c))P(N_pq) (4.23)

?,9>1,pg<N

which are called Kac determinants. At each level parts of the above mentioned strip is
excluded. Finally in the strip only certain points remain. A long argumentation reveals the

Theorem: There exist unitary heighest weight representations of the Virasoro algebra iff
eitherc>1,h>0o0r c€ {cm}, cm =1 —6/(m(m +1)), m=3,4,... and

(m+1)p—mq)® -1
dm(m + 1)

by q(m) = withl <g<p<m-—1. (4.24)
As an example we quote the Ising case: ¢ = 1/2 is obtained for m = 3. Three unitary
representations to h = 0,1/16 and 1/2 are allowed. (¢, h) = (1/2,0) corresponds to T'(z);
(1/2,1/16) to s(z,z) and (1/2,1/2) to the Majorana field ¢(z). Note that

_ C12
|21 _ 22|h1+h2 |§1 _ 22|h1+h2

(4.25)

(s(21, 21)8(22, 22))

and since by = hy = hy = hy = 1/16 we obtain (!) the n-exponent to be n = 1/4.

4.6 Correlation Functions

We defined quasiprimary field operators by demanding the transformation law
A(z,2) = | (2)PIF ()P A(f (), (2)) (4.26)

or infinitesimally

6. A(2) = €0, A + he' A.

We note that the transformation law of the energy momentum tensor is different
&T:a@T+2€T+§€%@ (4.27)

since the c-number term is added.

Following BPZ [6] we call ¢ a primary operator if
8cp = €00 + hye'd (4.28)

for global and local conformal transformations. Otherwise the operator is called a secondary
one. Note that primary implies quasiprimary. A secondary operator transforms as

N dk
6A(z) =Y B (2)e(z),  BT'=0.4, B =h4 (4.29)
k=0
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Since the conformal weight of B*'is h— k41, k=0,..., N and hy_; has to be positive,
hr_1 > N and the sum in (4.29) has to be a finite one.

Given a primary field operator ¢, there exists a family of secondary quasiprimary oper-
ators with conformal weights (h + 4, h+3), 4,5 € N. They form a family [¢]. The operator
algebra is built up as A = @, [¢.]. [#] gives a representation of the Virasoro algebra. A
can be studied with the help of the operator product expansion. As an example we note
the expansion

T(¢)¢(2) = D (¢ —2)*2¢7*(2), (4.30)
where ¢~* has conformal weight (h + k). It follows that

& T

L yp=¢% with L_4(2)= ZWiW

and more generally elements of the family [¢] are given by
PlFro _kN)(z) =L 4, (2)...L gy (2)d(2), ky > ... >k > 1. (4.31)
With the help of a primary operator we can obtain the heighest weight vector

[H) = ¢(0)[0),  $FrEI(0)]0) = Ly, ... Loy ). (4.32)

Due to the proposed transformation laws correlation functions are severely restricted.
Let ¢; = ¢;(z;) be primary fields. The correlation function (T(2)¢; . . . ¢n) can be expressed
in terms of (¢ ...¢n): From (4.28) we get for £,(2) = —e2""', n € Z

nb = ~260n$ = (Lo, 8] = 70,0 4 h(n +1)2"4, (4.33)
and calculate
3 25 0(m)) = o 0ad(m) ~ (e = L), (430)
We therefore deduce that
(T(2)¢1...¢n) = ﬁ;ﬁuj ($1...¢n). (4.35)

For the special values of (c,7) (equ. 4.24) we obtain differential equations for correlation
functions. As an example we treat m = 3 for which three unitary representations exist. It
follows that the determinants det My vanish for all N > 2. This means that there exists
a vector which is orthogonal to all vectors on this level and which has norm zero (the
representation is reducible). Take for example level two. There exists a vector |x) such that

L.|x) = 0 for all n > 0. |x) = (L_a + aL?,)|h). Require that L;|x) = La|x) = 0 gives

two conditions and a = —3/2(2h + 1) and h =[5 —c* \/(1 —¢)(25 — ¢)]/16 which are the
values we obtained before. It follows that (x|x) = 0 with

3L_1L_4

|X> = (L—z - m” ) (4-36)
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It is implied that within the family [¢5] there exists an operator x(z) with x(0)|0) = |x).
x(z) is called the null field and the family is called to be degenerate. It follows that the
correlation functions of primary fields are given by solving differential equations. Start from

3L_1L_4

<0|¢1 S ¢N(L—2 - m

)éhr|0) = 0, (4.37)

and commute L_g to the left and use finally (0|L_j = 0. The differential equation

3
(DY, - mDZ_V12)<O|¢1 .- ¢n¢n(0)[0) =0 (4.38)
with
N
DYy =3 (=210, — (1 - k)hiz ")
=1
follows.
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