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Our starting point: The Fermi theory:
L = 5" (1 — arys)neva (1 —s)ve

—ﬁVwa(l — V5) W€Ya (1 — 75) Ve,

G, ~1.16639x107° GeV ™%, Gs~G,; a~1.23940.09.

Non unitary, non renormalizable.

BUT: gives us the structure of the currents involved:

1

Ju = 765’%(1 — Ys5)e.

We want to to rewrite J, in the form of a Noether current:



Define

1 Ve Ver,
L = 5(1 —75) = )
e €r,
Then
J, =Ly, "L,
with ) )
1 0 1
T = 2 (1 +im) = :
2 0 0
J;[ = Z”yMT_L

J{ = LyP*[r",77]L = Ly,73L

will also be present. No other current must be introduced,
since [r3, 7] = 277,

The currents correspond to an SU(2) symmetry.



Gauge theory based on SU(2): introduce vector fields via

covariant derivative:

where

Ti
2

for left-handed fields, and T; = 0 for right-handed ones (no
R field in the Fermi Lagrangian).

T, =

We end up with

L =4iLDL + iv.pDv.p + iegDeg
which contains the usual kinetic term

L£F = LOL + iv. pOv. p + iegder
plus interaction terms

LY=Ll +L,



where
LV = gW{TW%L + gWQMZWM%L

- T3 g _ _
LV = gWSH’L’yMEL — §W3” (VerYuVer, — ELYu€L) -

In terms of fields and currents with definite electric charge

quantum numbers,

W _ 9 Tt + 4 9 Tk -
L, —\/ﬁL’YT LW, +\/§L’y7' LW,

where we have defined
1
+ 1 1172
W, _\@(HMZFZ”M>

The neutral current J¥ = Ly*73L cannot be identified
with the electromagnetic current

4

The gauge vector boson WZ' cannot be interpreted as the
photon.



Extend the gauge group to include the EM current:
SU((2)—SU((2) @ U(1).

NB: U(1) # U(1)gas!

b = exp ig'a” | 4

Y
D' = O —igW}'T; — iy = B

Only LY is modified:

o= 4

9 sz (feL%VeL — EL'Y,ueL)

/
_|_%BM Y(L> (ﬁeL’YMVeL + EL7u6L>

+Y (VeR)VerVuVer + Y(GR)éR%GR]



Assign the quantum numbers Y so that the EM
interaction term appear in the lagrangian. To do this, first
rotate W3 and B:

A¥ = B cosby + Wi sin Oy
ZM = —B"sin Oy, + W§ cos Oy,.

Then identify one of the two (e.g. A,) with the photon
field. You find

gsinfy, = e

g cosBy = e,
where e is the positron charge, and
Y(L)=-1, Y(ver)=0, Y(er) = -2

In general
Y =2(Q —T3).

No coupling for right-handed neutrinos



Form a column vector ¥ with all the fermionic fields (left
and right-handed components counted separately).Then

LY = e [Ty, QUA" + Ty, Q,97"],

e the positron charge, () the diagonal matrix of
electromagnetic charges,

1

cos By, sin O,

Qz = (Tg—Qsinzﬁw).

The extension to include more lepton doublets is

straightforward.



Including hadrons

Start from the hadronic current of 3 and strange particle

decays:

a

1 1
Jy = cos 9@7“’5(1 — 75)d + sin 90ﬂ7“§(1 — 5)s,

where 6. is the Cabibbo angle (6. ~ 13°). The obvious
way is the

WRONG WAY:
Define
ur,
1
Q:§(1—75) d | = | dg
] S i ] ST, i
with
0 cosf,. sinfd,
TT=10 0 0
0 0 0 |
so that

Jy = QYT Q.



Then, the current corresponding with

1 0 0 |

Ts=[TT,T7]=1] 0 —cos? 6, —cos B, sin 6,
| 0 —cosf.sinb,. —sin? 4, ]
contains - such as

, with couplings of the same order of flavor
conserving ones. They are instead strongly suppressed: you
don’t observe e.g.

K% —nVetTe™
at the expected rate. Which is then the

CORRECT WAY

to proceed? Introduce a fourth quark ¢ (for charm) with
charge 2/3; assume m. > m,, mg and assume

1 1
Jy o= cos90ﬂ7“§(1—75)d—|—sin96ﬂ7“§(1—75)3

1 1
— sin 9657“5(1 — v5)d + cos 9657“5(1 — v5)s.



Now

_UL_
CL
Q:
dr,
_SL —
and ) )
0 0 cosf, sinf,
0 0 —sinf,. cosf,
Tt =
0 0 0 0
0 0 0 0

No flavour-changing neutral current is now present. In
fact,

1 0 O 0
0 1 0 0
[T+7T_] —
0O 0 —1 0
] 0O 0 O —1 ]

This is the Glashow-Iliopoulos-Maiani (GIM) mechanism of
FCNC suppression.



H N N
The current J;_, is usually written as

_ uy, CL
W (T + = = +
Jhaq = @rdp)yHr , + (€Lsp )M , ;
dr, SL
where
d’ dr, cosf,. sinf,
L=V . V=
s’ ST, —sinf,. cosf,

The pairs (u,d), (c,s) are called quark families. The
structure outlined above can be extended to n quark
families; then, V' becomes an n X n unitary matrix. (more
on this when we'll discuss CP violation).



The charged-current interaction term is now given by

EZV \FZ LfvTLf—I—QWTJFQf}WJF—I—hc

where

VeL Vup,

Lf — , ,
€L Hr

Q ur, Cr,

f— 9 ’ ’
dr, ST
X * ¥

To conclude, the pure Yang-Mills term:

1 | y
Ly = _ZB’”WBW — ZWZ’WWZ.“ :
where
= o BY — 0¥ B*

WH = oW, — 8’/WZ~M + geijij’?LW,;/.



Masses

The W boson must be very heavy (with respect to light
fermions). Consider the amplitude for 3 decay:

%57“(1 — ¥5)deyu(1 = ys)ve.

In the standard model the same process is induced by the
exchange of a W boson:

(iﬂL’YMdL) ! ( J eLy VeL) 7

V2 > —m2 \v2 "

To match the Fermi amplitude in the ¢g—0 limit, it must
be

6 (5 )
V2 oo\2v2) mi
Recalling that g = ¢/ sin 0,

my > 37.3 GeV.

However, gauge boson mass terms are not gauge-invariant.



Inserting a mass term for the W boson by hand leads to a
non-renormalizable theory:

1 1
L= ("4 = 0" AM)(DuA, — B, A,) + SmAAPA,,

Work out the propagator A*” for A* in momentum space:

? k* kY
AR = —gh .
k2—ma( e )

AP has not the correct behaviour for large values of the

momentum k: for k—oo A ~ K rather than vanishing as
k=2, thus violating power-counting and making the theory
unrenormalizable.

We need something else.



We consider scalar electrodynamics:

L = _iFW/FMV + (DM¢)TDM¢ o V(Qb),

where D* = O* + 1eA*, and
V(g)=m*[¢ [P +A]¢|*.
We look for constant field configurations that minimize the
energy of the system.
m? > 0: minimum for ¢ = 0.

m? < 0: the potential has an infinite number of
degenerate minima:
2
m 1
¢ [P= =T = 0

2A 2
connected by gauge transformations.
When the system chooses one of the minimum
configurations, spontaneous breaking of the gauge
symmetry takes place.

Not really a symmetry breaking: the Lagrangian is still
gauge invariant, currents are still conserved.



Shift ¢ to one of the degenerate minima:

1 .
¢(z) = 7 v+ H(z) +iG(z)]

One of the two fields H and G could in principle be
removed from the lagrangian by an appropriate gauge
transformation. For example, one could eliminate G by
choosing a gauge transformation that brings ¢ to be real.
For the moment, we keep both H and G in the lagrangian;
we will come back to this point later.

1
) = (m?v 4+ A\ H + §(m2 + 3 ) H?
A
4

~
©-

+=(m? + X\?)G? + WwH(H?* + G?) + Z(H? + G?)*.

DO | —

\v? = —m? — terms proportional to H and G? vanish.
The coefficient of the H? term is now (—2m?)/2, and has
therefore the correct sign to be interpreted as a mass term
(remember that m? is negative).



Covariant derivative term:
1 1
(D*¢)' D, = 5O HOH + 50"GO,G

1
+§e2(H2 +G? +20H)A* A,

+eA, (HO"G — GO"H)
+evA*0, G
1,

—|—§e va”AM.

A,, has acquired a mass m4 = ev
Gauge-fixing:
1

Lop = 26 (0" A, — bEG)?,

¢ arbitrary constant (the gauge parameter). Gauge-fixing
condition: 0*A,, — b{G = 0. Choose b = ev = m 4; then
the A#9,,G term is cancelled.

A term
1 1
—§€b2G2 = —ifmiG2

arises, which gives a squared mass é&m? to the unphysical
field G.



Let us now compute the propagator. We have

1 1 1
~ (0RO, 4, 0" A0, A,) + S AT A~ (0" A,)°
which gives
‘ 1 — &kHEY
A,ul/ — v MV (
§ k2 —m? (= Em

The propagator has now the correct behaviour at large

momenta.

New singularity at k* = £m?. Its contribution to phyisical
quantities exactly cancelled by the contribution of GG

exchange.

Two common choices: the Feynman gauge, £ = 1, which

gives
1gH”

ARV — —
F 2 2
k m4

and the Landau gauge, £ = 0, for which
k“k’/]

(

pro_
AV

[_g R

5 . 2
k m45



In the standard model:

¢—|—
qu

-
|
=
S
|
—_

V(g)=m? o[> +X 10",

minimum at

m2

2__—

DO | =

We can reparameterize ¢ as

b= A v @) 0
V2 v+ H(z)

convenient in the unitary gauge: 6, can be rotated away by
an SU(2) gauge transformation. The scalar potential takes
the form

1 1
V= 5(zw)H2 + \H? + ZAH‘*

and m?2 = 2\v?.



Covariant derivative term:

Dt = (a“ rwi - iZ BM) = ’
"2 V2 \ v+ H(z)

Vector boson masses:

1 1
Mo = 192’02 mZ=—(g> + ¢ n? m2=0

The value of v can be obtained:

~ 246.22 GeV.

1
G2



Fermion masses:

—mpth = —m(Y YR + YrYL),

not invariant under a chiral transformation.

Hadrons:
uy
I L I Il
Q=1 Up =upp, Dy=dsp.
IL

A Yukawa interaction term can be added to the lagrangian:
LY = —(Q'¢hp D'+ D' R Q") ~(Q'dchyy U'+U sl Q).

where h;; and h', are generic n X n constant matrices in

the generation space,

¢
_¢—



Define new quark fields v and d by
uy =V ur, ugp=Viugr
" =VPdp, dnp=V2dg,
where VL‘f]_;{D are unitary matrices, chosen so that
_ T/
hU — VLU hUVRU

and
hp = VPThL VP

are diagonal with real, non-negative entries (it is always
possible).

In the unitary gauge

N
adr 1 ¥ —
Ly = —E(UJFH)Z(thdfdf + hiTsug),
F=1

where h{}D are the diagonal entries of the matrices hy p.



We can now identify the quark masses by

vh{]

\/5 )

fuhé

75

The charged hadronic weak current takes the form

Jﬁadr — @’YMT—FQ/ — Zﬂé’y“‘/ff/dé/7
i f
where

V — VUTvD
is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.



How many independent real parameters are needed to
specify the CKM matrix?

Generic N x N unitary matrix — N? independent real
parameters. Split them into “angles” and “phases”:

2 A
N* = Nangles + Nphases

Clearly,

Nowe = | ) = tvev 1
angles — 9 —§ .

What about phases? We have

. 1
Nphases = N? — Nangles — §N(N -+ ]-)

However, some (2N — 1) of them can be eliminated by
redefining the left-handed quark fields. So

. 1
Nphases — 1IVphases — (2N — ]-) — §<N _ 1)(N _ 2)



Leptons: same procedure, but no Yukawa coupling
involving the conjugate scalar field ¢. (no R neutrinos):

Llert — —(TghE' + Fotn'i L),

diagonalized by
hg = VETWLVE .



In this case we may redefine the left-handed neutrino fields
using the same matrix V,* that rotates charged leptons:

This puts the Yukawa interaction in diagonal form,

Ly = Z hip(Lydey +epd' L),
f=1

but leaves the interaction term unchanged:

Jlept = L'y*7TL = Ly*7TL = ZVL7 eL.
f

No lepton flavor mixing! (without vg).



Beyond the tree level

Z1J] =< 0|Te' ] = 7@ 10 s — < 0[]0 >,

Functional derivatives of Z[.J] with respect to J at J =0
<> Green's functions of the theory. Define the functional
for connected Green's functions

WJ] = —ilog Z[J]

L SWI] < 0]g(z)]0 >,

be() = 6J(xz)  <0[0>y

and the effective action I'[¢,] as

T(pe] = W[J] - / 2 (2) o).

The effective action has an expansion in powers of the
classical field,

T[d.] = ZO% /dajl...danbc(xl)...qbc(xn)I‘n(xl,...xn),

whose coefficients ', (z1, ...z, ) are the connected,
one-particle irreducible Green’s functions of the theory.



Spontaneous symmetry breaking if ¢. # 0 even when the
source J = (. On the other hand, for J =0

ol [¢c]
0pc

We conclude that spontaneous symmetry breaking takes

= 0.

place when the classical field that minimizes the effective
action is different from zero.

Fourier transform:

dpl dpn 7 1:131—|—... nTn
Fn(xl,xn) — / (27T)4 WG (p p )

(277)45(])1 + ...+ pn)f‘n(pl, e DPn),

and expand T',, in powers of momenta around p; = 0,

~ ~

Pn(ph e 7pn) — Fn(()) T



The effective action becomes

Tlpe] = Z%/dazl...d:cnqbc(xl)...qbc(:cn)

/ dp1 dpn ei(plazl—l—...pn:cn)
(2m)*  (2m)*

/d4xe—z‘az(p1+...+pn) {fn(()) 4. ]

- L
— Z — )+ ...
— 1!
The first term in this expansion is usually written as

- [ (@),

where



V(¢.) is called the effective potential (no field
derivatives). The neglected terms, originating from higher
powers of momenta in the expansion of T',,, contain
instead two or more derivatives of ¢..

Minimum condition:

5 V()
6@/ AV (fe) = g4, =0

if we require translational invariance of the vacuum state.




Direct computation of V':

Vo(6) = gm®6? + J A6

One-loop Green's functions at p = 0:

7

L2 (0) :—"Sn< 4'%) / (;ijrl; [k2

where
(2n)!

2n2n°

Sp =

Therefore

—m? 4 in

1

|

i % 1 [ d*%
c — a )\ -
zz:: (310%) n/(?w)‘l G
n = 1,2— UV-divergent integrals.

Finite part, n > 2:

Vﬁmte _ 3 ‘ Z 3>\¢ 1>n F(n — 2) m4_

2 (47)?2
or, defining z = 3)\qﬁg/m2,

Vﬁnlte o

1 N 327T2 n—l

’n,_

—m2+in)"



The serie can be summed, using

1 1 1 1

nn—1n-2) 2n n-1 2m-2)

and the log expansion. We get

4
finite m 2 3 2
- 1 log(1+2)—2— >
Vi 1 [( +2)%log(1+2) — 2 % ]
1 5 2. Mm%+ 32
T 64n? [ (m” + 3X¢;)" log m?

~3A2m? — (306207



Divergent parts:

: ' d*k 1
div L 2
Vi = [(3)\¢c) / (27)4 k2 — m2 + in

2\ 2 d*k 1
(3X¢7) /(2ﬂ)4 (k2 —m? +in)?

After regularization,

DO | = DO | =

_|_

VAY = AN\, m, cutoff)¢? + B(\, m, cutoff)¢?,

Some renormalization prescription must be assigned. For
example, require

~ ~

[5(0) = —m?; T4(0) = —6).

Already true at tree level potential; moreover, the finite
part of the one-loop corrections starts with ¢°. Then

V1Ct — _Aﬁbg o B¢§>
so that, in this case,

__ y/hnite
V]_ — 1 .



Another (among infinite) possibility: minimal subtraction
(M S): subtractions of poles in e = (d—4)/2.

Modified version (M S): subtracting terms proportional to

1
Py + log(4m)
We find
: 1
div _ 2, 2
T e 6xEm

2 5, 3.\ o 1 M2
+6Ap; | m” + SAP; ) | = — v +1og(4m) + log —; }
2 € m

and finally

o 1 2 m? 4+ 3?3
MS 2 2 c
VS = s (m? 4 3)7) [log s 5] |



A more efficient way to compute the effective potential:
define a new theory by

d—¢ + w.

The corresponding effective potential is

0

Zi, ) (Betw) = = = T (w,0) 67,
n=0 n=0

where the Green's functions I, can be computed in terms
of T',,. We have in particular

0) = 3 E 0
— n!
and therefore
b - 1 -
[ w0 = Y 2B 6 =-V(oo),

A tree-level test:

—m* (¢ + w)? + i/\(qb +w)*.

Vi(9) =

Tree-level tadpole:

—miw — \w?,



One-loop correction:

- d°k i
I'(w,0) = =3\ / :
1(w, 0) “ (2m)4 k2 — m? — 3\w?
(47T)€ 2 2\1—e
= —3\w (Im)? ['(—1+€)(m” + 3 \w?)
3w
= (in)? (m? + 3\w?)
1 2 2
[E — v + log(47) — log e —;23)@ + 1]
+0O(e),
which gives
Vl (Cbc)
1 Pe m? + 3w?
— d 2 2 _
(Im)? /0 w 3 w(m* + 3 w?) (log 2 1)
1 m? + 3\ 3

_ 2 22 9
= a1 (m~ 4+ 3Ap7) [log " 2].



The same procedure, applied to the standard model, gives

V() = ZmPd+ N8

2
1 H 3 G 3
H? [log = — = 2 [ 1oo — — 2
647T2[ <Ogu2 2)+3G (Ogu2 2)

w 5 Z 5
+ 6W? (log—2 — —) +37° (log—2 — —)

_|_

1 6 14 6
T 3
—127% [ log — — =
(o253
where
H = m? + 3\¢°
G = m? + \¢?
1
W:_ 2 2
4g<b
1 2
Z = Z(g2+g’ )
T_1h2¢2
2 t

This is the standard model effective potential at one loop

in the Landau gauge.



Renormalization scale dependence:

dV () 5
since
0 0 5 0 ~
— + Bame + MYy T =0,
(5t+6A8)\+mﬁy 6m2+7w) 0
where
d)\ dm? 5 dq52 5
e e U el

On the other hand, dV/dt can be computed explicitly:

dV () !
= 4\
o 1 B + 44Xy
1 3 3 2
. 12 2 < 4 e 2 / 2_ 4
167T2[ ATt g9+ elet +g7)" = 3k

1
—|—§m2qb2 [’Ym + 2’7 —

12\
3272



We have therefore

3 3 2
ANy = 12X + Zg* + — (%> + ¢'")? — 3h?
Br+4My = g9 50 +g7) "
P 12\
Tm AT T go 2
X Xk Xk

Behaviour of V (¢) for large ¢;. We require V(¢)— + oo
for large ¢2.

Assume ¢? ~ A2, A > G-2. We have

1 4 1 2 | 3 4 3 9 122
~ - 12 — —
V(o) R {A+16W2[ A H g9t el g
A2
—3h4] log —
t Mg}
1 5 5 12\ A?
- 1 log —
—I—ngb [ +327r2 Og/ﬂ :



or

14
with A = A(u), m? = m?(u), ¢* = ¢*(n). So
Vio(8) = 5m*(A)¢*(A) + TAA)GH(A).

We see that the stability condition for the potential is
simply the positivity of the running coupling constant A(A)
at large scales.



The stability condition can be translated into a lower limit
for the Higgs boson mass.

d\ 1 3 3 2
o — 12)\2 = 4 o 2 / 2
dt 1672 39t g0 t9)
3
—3h% —3Xg% — SA(g% + ¢°) + 6ARZ|.

2
This equation must be solved together with the one-loop

renormalization group equations for gauge and Yukawa
coupling constants, which in the standard model are given

by
dg 1 (19 3
i 3272\ 67

dg’ o 1 41 /3

dt 3272 67

dgs 1

dt 32%2(_79‘39)

it~ 3272 [2ht (895+ FCARTUAN R



Ap)

OOOM....i..'

|
103 106 109 101% 1015
A (GeV)
Figure 1:

The running coupling constant A(u) for different values
A(my) corresponding to my = 60, 100, 130, 150, 190 GeV.
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Figure 2:

Theoretical upper and lower bounds on the Higgs mass.



Anomalies

QED with one massive fermion, 1. Consider the operators

Jy =y
Ji = @7“75@5
Jp = ¢ys1).

It is easy to show, using the equations of motion, that

0, Ji = 0; 0, JY = 2imJp.

Now consider the Green functions
TP (ki ka) = i / d'zydigyettrmitihers
< O|T[Jy (1) Iy (22) T4 (0)]]0 >
THY (B ko) = i/d4x1d4w2eik1x1—|—ik2x2

< O[T [Jy, (z1) Iy (22) P (0)]]0 > .



They formally satisfy the Slavnov-Taylor identities
kaWp = k3T, =0
Q"1 =2mT,,,

where ¢ = k1 + ks.

Are they satisfied in perturbation theory? The answer is
not obviously yes, because of regularization procedures. At

one loop
Y u 7v
SAVAVARN'S ANk,
k+k, k+k,
7p75 7p75
k k
AAVAVAR'S AVAVAVARRTS
Yv 7w
Yu
ANk,
k+k,
75
R k R
k—k,
SAAA'S

Tv



We have

THP (ky keg) = TP (i, kig) + T (e, k)
TH (k1, ko) = T (K1, ko) + 15" (k1, k2),

where
d4k I ; ; ;

TMVP — _7: T'l“ _ _ Y 5 = _ VA 19

' @) btk —m h—ky—m k—m7]
d4k [ ; ; ;

T = —i Tr | — V5 — v = yH

' /(277)4 k+ki—m k—ka—m k—m
and

T3 (k1 ko) = T7 " (k2, k1)
15" (k1, ko) = 17" (k2, k1).

The overall minus sign is due to the presence of a fermion
loop.



Conservation of the vector current:

[kibT“”’p} M
. d4k T 1 7 7 ];
= —1 T | ——= YpV5 = Yv = 1
(277)4 k—l-kl—mp k—ko—m k—m
') ') N 1
+ = Yo V5 = k1 Yo — (m—M)




Now, shifting k—k + ko in the first term and shifting
k—k — k1 4+ ko in the second one, they cancel against the
fourth and second terms, respectively. We have therefore

[k/fTWp]M =0,

and also

ks Twplyy =0
by an analogous argument. The limit M —o00 can then be
taken safely, thus obtaining the announced results.



We may use a similar procedure to check the identity for
the axial current. Using

(?75 = 2mys + (]AC + ]%1 — m)75 —|-")/5(]A€ — ]%2 — m)
and
Gvs = 2mys + (k + ky — m)ys +y5(k — ky —m)

in ¢,71"" and q,T5"" respectively (and making similar
replacements in the terms with m— M), we get

[QpTWP]M — [QWTW]M + [RW]M v

where

d*k
RHY = Tr

(2m)%

7 y 7 " 7 7 "
= = Y577 = YT = = Y577 = Y
{k—l—kl—m k—m k—ko—m —m
7 7

+= v = v - Y5y = v



It is now easy to see that [R*”],, = 0. Therefore,
4o THP = [2mTH ]y

Let us now compute [2mT*"],, explicitly. We find

(k1 = k3 = 0)

1 o
2mTw]y, = 2 €vpo k1 K3

1 1—=x 2 M2
/dx/ dy[ 2m2 T a2 2
0 0 m= — qg=ry M= — g=xy

Notice that the RHS is finite when M —o00. The limit can
now be taken safely, giving

Q"I =2mT,, — 2—7T2€ngkfkg.

or equivalently

: 1 174 o)
a“JZ p— 2’&me + WGNVPUFM FP



Non-abelian gauge theories: the condition for anomaly

cancellation is
Tr({T®,T°}T°) =0
In the standard model
Tr({r®, 7°}7¢) = 26°°Tr(1¢) = 0.
Since 7® = 0 for right-handed fermions, we have
Tr({r%, m°}Y) = 26°°Tr (Y1),

Since Y = 1/3 for the doublets of left-handed quarks, and
Y = —1 for the doublets of left-handed leptons, we find

1
Tfr(YL):nq><3><2><§+nl><2><(—1):2(nq—nl),

Trivially
Tr(Y?*t) =0



Finally we must prove that Tr(Y?) = 0. To show this, it is
convenient to write the axial current as

Pyiys = %”%(1 +795)% — %”%(1 —75)¢.

In this way, it is clear that left-handed fermions and
right-handed fermions contribute to the axial anomaly with
opposite signs. We have therefore

Tr(Y?3) =Tr(Y}) —Tr(Yy).
Using Y = 2(Q — T53) we find

Tr(Y7) = 6n, (%)3 + 2ny(—1)°

Tr(Yg) = 3ng [(%)3 + (—%)3

and therefore

+ nl(—2)3,

Tr(Y?) = —6(n, — n;).



It is easy to prove that, because of the axial anomaly, the
currents associated with the leptonic and barionic numbers,

ny

LF = Z eivte; + vyt v
i=1

B = % Z iy ug 4 diytd]

1=1

Ng

are anomalous. This results in a (numerically negligible)
non-conservation of leptonic and barionic numbers L and
B, due to instanton effects. The difference B — L is
however conserved.



