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� QED Lagrangian� U ��� invariance and Feynman rules

We will consider the simplest case of a gauge theory� quantum elec�
trodynamics �QED�� describing the interaction of spin��� particles
with photons� A gauge��xed Lagrangian for QED is given by

L
QED

� ��

�
F��F�� � �

�
�C

A
�� �X

f

�f ��� � ieQf�A �mf ��f � ���

where
F�� � ��A� � ��A� � C

A
� ��

�
��A� � ���

and where the sum runs over the fermion �elds� f � Each with
charge eQf � e� being the charge of the positron� and massmf � We
have leptons f � l � e� �� � � with Ql � ��� quarks f � u� c and

t with Qf �
�
�� and quarks f � d� s and b with Qf � �

�
��

The Feynman rules of QED are particularly simple�

p� �

����� i

�i�p �mf

p� �m�
f � i�

�

� � �

����� i

�

p� � i�

�
	�� �

�
�� � �

� p�p�
p�

�
�

� ����� i ieQf 
� �

���

We will con�ne the calculations to a special gauge� the renormal�

izable or Feynman gauge where � � �� It is well known that the
��dependence cancels in the S�matrix for a given physical process�
although this is not necessarily true for Green functions�

� The processes e�e� � ����� e�e�

A process of special interest in QED is the annihilation of an e�e�

pair with the creation of a pair of di�erent fermions� for example�
����� as in Fig� �



�
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��

��

Figure �� The diagram for e�e� � ���� annihilation�

In this case� only the annihilation diagram contributes to the
cross�section at the lowest order� If� instead� the �avors of the
incoming and outgoing fermions are the same� then we have two

diagrams and� for f � e �Bhabha scattering��

�

e�

e�

e�

e�

Figure �� The t�channel diagram for Bhabha scattering� e�e� � e�e��

Beyond the lowest order the situation is more complicated due
to the presence of radiative corrections� We will face multi�loop
diagrams with all the complications inherent to the renormaliza�

tion procedure but also another class of divergences will appear�
infrared and collinear�
We can now compute the unpolarized cross�section in the Born

approximation�

e� �p�� e
� �p��� f �q�� f �q�� � ���

The total cross�section for such a reaction is given by

�ff �
�����

�
q
 �s�m�

e�m
�
e�

Z
d��

X
spins

j M j�� �	�

whereM is the amplitude of the process� The Eq���� de�nes the
normalization of the amplitude� symbol

P
spins stands for summa�

tion over initial and �nal spin degrees of freedom� If the initial



pair is assumed to be unpolarized� then we should also average
over the initial spin states� with an additional factor ��� in Eq����
and below� The d�� is an element of �� � phase space

d�� �
dq�

�����
dq�

�����
	
�
q�� �m�

f

�
	
�
q�� �m�

f

�
� �q��� � �q��� 	 �p� � p� � q� � q�� �

�
�
The variable s is the square of the total energy in the centre�of�mass
system �c�m�s�� and the K�allen ��function is de�ned by

 �x� y� z� � x� � y� � z� � � �xy � xz � yz� � ���

We now introduce the usual Mandelstam invariants s� t and u to re�
place the non�covariant quantities� for example� energies and scat�
tering angles�

s � � �p� � p��
� � � �q� � q��

� � ��

t � � �p� � q��
� � � �p� � q��

� � ��

u � � �p� � q��
� � � �p� � q��

� � �� ��

If we introduce the scattering angle � in the centre�of�mass system
as the angle between the incoming e� and the outgoing f � then

t � m�
e �m�

f � �
�
j �p� jj �q� j cos � � Ee�Ef

�

� ��

�
�s� �

�
m�

e �m�
f

�� s �e�f cos ���

u � ��

�
�s� �

�
m�

e �m�
f

�
� s �e�f cos ��� ���

where

��f �

�
s�m�

f �m
�
f

�
s�

� �� �m�
f

s
� ����

with �f being the relativistic velocity j 	p j �E� The quantities s� t
and u are not independent but ful�l the identity

s� t � u � �
�
m�

e �m�
f

�
� ����

In this way we obtain to the following expressions for the di�erential
phase space and cross�section�

d�� �
�

� �����
�

s�e
dt�

d�ff
dt

�
�

�
 � s���e

X
spins

j MBorn j�� ����



with conditions de�ning the physical portion of the phase space�
i�e�

s � �m�
e � X � � � ����

where the complete expression for X is

X � � �

��
s��

�

�
s�m�

e�m
�
e

�
� 

�
s�m�

f �m
�
f

�
� 

���P � q����P ���q��� �
P � p� � p� � q� � q� � q � p� � q� � q� � p� � ����

The kinematic interpretation of the condition X 
 	 is that the
cosine of the scattering angle in the centre�of�mass system must lie
between �� and ��� The di�erential cross�section� Eq������ can
be related to the di�erential cross�section for the scattering angle
in the centre�of�mass system

d�ff
d�

c�m�s

�
d�ff
dt

s

� �
�e�f �

�


� ��s

�f
�e

X
spins

j MBorn j� � ��	�

��� The Born cross�sections

In this section we shall give the complete Born cross�section for

two of the relevant processes� Bhabha scattering and annihilation
into fermion pairs�

��� Bhabha scattering�

Consider now the amplitude of electron
positron scattering atO
�
e�
�
�

e� �p�� e
� �p��� e� �q�� e

� �q���

MBorn � � i e��v �p�� 
�u �p�� �u �q�� 
�v �q��
�

�p� � p��
�

� i e��u �q�� 
�u �p�� �v �p�� 
�v �q��
�

�p� � q��
� � ��
�

The full expression for the unpolarized cross�section is therefore
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with the standard notation for the �ne�structure constant�

� �
e�

� �
� ���

The amplitude Eq���� is the sum of two terms� s� and t�channel
photon exchange� Of particular interest is the behaviour of the
cross�section for two limiting cases�
Case � m�

e�s� 	� Here we have

d�e�e�

d�
c�m�s

�
��

� s

�
	sin� ����� � cos� ����� � �

cos� �����

sin� �����
�

� � cos� �����

sin� �����



� �
����

where the �rst two terms are s�s� the third is the s�t interference
and the last is t� t�
Case � �m�

e�s� �� Here we have�

d�e�e�

d�
c�m�s

�
��m�

e

�
 j �p� j� sin� ����� � ����

where only the t� t contribution survives�

��� The s�channel annihilation process�

The cross�section for the annihilation e�e� � ff �f �� e� can be
easily derived from the previous one by omitting out the t�channel
diagram and by scaling the charges of the �avors involved� In the
high�energy limit we obtain

d�ff
d�

c�m�s

� Q�
f

��

� s

�
� � cos� �

�
� ����

Note that the total cross�section for the annihilation process is ��
nite� which is not the case for Bhabha scattering� The correspond�
ing expression in Bhabha scattering cannot be integrated over all
angles because the integral diverges at � � 	� This divergence is
connected with the physically unrealizable requirement that the
two fermions scatter without the emission of photons� Very low�
energy photon emission cannot be ignored when the momentum
transfer becomes very small �� � 	�� Therefore� it is one more
manifestation of the infrared problem in QED�

�
T

�
e�e� � ff

�
�

� ���

� s
Q�
f � ����



The di�erential cross�section is an even function of the scatter�
ing angle� which results in the vanishing of the forward
backward
asymmetry� de�ned by

A
FB

�

Z �

�
d cos �

d�

d cos �
�
Z �

��
d cos �

d�

d cos �Z �

�
d cos �

d�

d cos �
�
Z �

��
d cos �

d�

d cos �

� ����

This property is peculiar to the QED Lagrangian� which conserves
parity� It is modi�ed in higher orders� since they may induce
charge asymmetric e�ects� Charge conjugation invariance can be

invoked to show that only the interference terms between the low�
est order graph and the two�photon �box� diagrams contribute
to the forward
backward asymmetry to order ��� Similarly� for

bremsstrahlung contributions� e�e� � ff�� only the interference
between the C�odd initial state radiation diagrams and the C�even
�nal state radiation diagrams has to be considered for the asym�

metry�
Modi�cations are also expected by the inclusion of initial and

�nal state helicities for the fermions� which induce P�odd e�ects�

Finally� the inclusion of resonances with both vector and axial
couplings to fermions will produce P�odd e�ects� already in the
lowest order�

For Bhabha scattering� however� the lowest order cross�section
shows forward
backward asymmetry� in contrast with the annihi�
lation cross�section� This is due to the presence of the t�dependent
scattering diagram containing the propagator ��t in the di�eren�

tial cross�section Eq������ This term is cos ��odd and it causes a
non�zero A

FB
� This particular example is telling us that there are

many di�erent reasons why the forward
backward asymmetry may

arise� from P�C�non�invariance to a trivial kinematical origin�



� Electroweak Lagrangian and Feynman rules

��� Lagrangian building

In this section we give the explicit form of the StandardModel �SM�
Lagrangian in the R� gauge� We assume the simplest �minimal�

scalar sector�
Within the SM Lagrangian there is a triplet of vector bosons

Ba
�� a singlet B

�
�� a complex scalar �eld K� fermion families� and

Faddeev
Popov ghost��elds �hereafter FP�X�� Y Z� Y A� The phys�
ical �elds Z and A are related to B�

� and B
�
� by�

 Z
A

�
A �

�
 c� �s�
s� c�

�
A
�
 B�

B�

�
A � ����

where s��c�� denote as usual the sine and cosine of the weak mixing
angle� The scalar �eld in the minimal realization of the SM is

K �
�p
�

�
BBB

�

p
�i��

�
CCCA � � � H � �

M

g
� i��� ��	�

where by H we denote the physical Higgs boson and moreover
M and g are Lagrangian parameters corresponding to the bare
W mass and to the SU��� bare coupling constant� The total
Lagrangian will be the sum of various pieces� The �rst is L

YM
�L

S
�

with the standard Yang
Mills Lagrangian given by

L
YM

� ��

�
F a
��F

a
�� �

�

�
F �
��F

�
�� � ��
�

and the minimal Higgs sector by

L
S
� � �D�K��D�K � ��K�K � �

�

�
K�K

��
� ����

where � 
 	 and symmetry breaking requires ��  	� Moreover�
we use standard de�nitions for

F a
�� � ��B

a
� � ��B

a
� � g�abcB

b
�B

c
� �

F �
�� � ��B

�
� � ��B

�
� � ���



and the covariant derivative for the scalar �eld assumes the follow�
ing form

D�K �
�
�� � i

�
gBa

��
a � i

�
gg�B

�
�

�
K� ����

with the standard Pauli matrices � a and g� � �s��c�� They follow
from the fact that K� as de�ned in Eq������ belongs to a doublet
representation of the symmetry group� The scalar �eld can be
rewritten as

K �
�p
�

�
H � �

M

g
� i�a� a

�� �
�

�
A � ����

so that its covariant derivative becomes

D�K �
�p
�

�
�� � i

�
gBa

��
a � i

�
gg�B

�
�

� �
H � �

M

g
� i�a� a

�� �
�

�
A

�
�p
�

�
��H � i

�
gg�B

�
�

�
H � �

M

g

�
�

�

�
gBa

��
a

�i
�
���

a � �

�
gBa

�

�
H � �

M

g

�
� i

�
gg�B

�
��

a�
�

�
g�cbaB

c
��

b
�
� a
�� �

�

�
A�

����

We split the Lagrangian into LYM � �D�K�
�D�K and LI

S
� the

latter containing the interactions of the scalar sector and write

L
YM
� �D�K��D�K � L��M

�
�

c�
Z����

� �W�
� ���

� �W�
� ���

�
�
� ����

where the charged �elds have been introduced as

W�
� �

�p
�

�
B�
� � iB�

�

�
� �� �

�p
�

�
�� � i��

�
� �� � ��� ����

This part of the Lagrangian contains Z � ���W� � �� mixing

terms� they are of the zeroth order in the coupling constant and
their contribution must be summed up if we want to develop per�
turbation theory� There we discover the singularity of the La�

grangian� The construction of the SM continues as follows�
First we add a gauge��xing piece to the Lagrangian �called Lgf

in the following� that cancels these mixing terms� However� it



breaks the gauge invariance and successively we must introduce
the so�called Faddeev
Popov ghost �elds to compensate for this
breaking� We now specify a non�singular gauge� in fact� a set of
gauges R� depending on a single parameter �� We have a renor�
malizable gauge for �nite � and the physical �unitary� gauge is
obtained for � ��� The gauge��xing piece is

Lgf � ��

�
CaCa � �

�

�C��� � �C�C� � �

�

��C��� � �C���
�
� ����

where we can write

Ca � ��

�
��B

a
� � �M�a� ��	�

The various components are given in the following equations� �rst

C� � ��

�
��W

�
� � �M��� C� � ��

�
��B

�
� � �

s�
c�
M��� ��
�

Then we write

��

�

��C��� � �C���
�
� ��

�
C�
Z
� �

�
C�
A
� ����

and derive the gauge��xing term in the Z �A basis�

C
A
� ��

�
��A� � C

Z
� ��

�
��Z� � �

M

c�
��� ���

In the R� gauge we have that

L
YM
� �D�K��D�K � C�C� � �

�
C�
Z
� �

�
C�
A
� Lprop �Lbos�I � ����

The quadratic part of the Lagrangian� Lprop� now reads

Lprop � ���W�
� ��W

�
� �

�
� � �

��

�
��W

�
� ��W

�
�

��

�
��Z���Z� �

�

�

�
�� �

��

�
���Z��

�

��

�
��A���A� �

�

�

�
� � �

��

�
���A��

�

��

�
��H��H � ���

����
� � �

�
���

����
�

�M�W�
� W

�
� �

�

�

M�

c��
Z�Z�

���M����� � �

�
��
M�

c��
���� � �

�
M

H
H�� ����



The quadratic part of the Lagrangian allows us to derive propaga�
tors� Those for the gauge �elds are as follows�

Lprop � W� �

p� �M�

�
	�� �

�
�� � �

� p�p�
p� � ��M�

�

�
�

p� �M�

�
	�� �

p�p�
M�

�
� p�p�
M� �p� � ��M��

�
�

p� �M�

�
	�� � p�p�

p�

�
�

��

p� � ��M�

p�p�
p�

�

Z is obtained from W� by replacing M � M

c�
�

A
�

p�

�
	�� �

�
�� � �

� p�p�
p�

�
�

����

The scalar �eld propagators are given by

��
�

p� � ��M�
�

��
�

p� � ��
M�

c��

�
����

��� Interactions�

Having �xed the propagators we can spell out the weak Lagrangian�
describing the vector bosons and their interactions including inter�
actions with the scalar system�

Lbos�I � �igc�
n
��Z�W

��
� W��

� � Z�W
��
� ��W
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� � Z�W
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o
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�
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n
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�
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n
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� W
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A�Z�W
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� W��
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�
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where we have introduced the antisymmetrized combination�
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The interactions in the scalar sector will be given by the scalar
potential written as
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In terms of these we arrive at the following expression for the in�
teraction Lagrangian�
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��� Faddeev�Popov ghosts�

In order to de�ne the FP ghost Lagrangian we must subject Ca to
a gauge transformation� In what follows we list the SU����U���
transformation laws of the various �elds�
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where the appropriate combinations of gauge parameters are
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The gauge transformations can be summarized in terms of the
following equation

Ci � Ci � �
Mij � gLij

�
�j � �	��



We can see that Mij has an inverse and we thus have a permissible
gauge� In the charged sector we obtain
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The interaction is derived from Eq����� and is given by gX
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LijXj�
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where X� and Y Z are the FP ghosts associated with the three
vector bosons of weak interaction� Y A is the FP ghost associated
with the photon� The interaction Lagrangian in the FP sector may
be cast in the following form
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Although most of the calculations are usually done in the R� gauge

described above �and in its limit � � �� there is the possibility of
introducing a three�parameter gauge��xing term�

��� Interactions with fermions�

Having derived the �rst part of the Lagrangian we now switch to
discussing the coupling of vector bosons with fermions� A generic
fermion�isodoublet will be denoted by
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This part of the Lagrangian can be written as
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The parameters g�� g� and g� are arbitrary constants� Actually�

there is a Ward identity� ensuring the relation g� � g� � g�� In
other words� these constants are not completely free if we want to
generate fermion masses with the help of the Higgs system�
Thus� �

L
transforms as a doublet under SU��� and the �

R
as a

singlet� The parameters �i are then �xed by the requirement that



the e�m� current has the conventional structure� iQfef��f � We
put e � gs� and derive the solution as
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where the �rst sum runs over all fermions� f � and the second over
all doublets� d� of the SM�
For the Higgs�fermion sector� in the presence of quarks� we need

not only the �eld K but its conjugate Kc too� that is� we need
bothK and Kc in order to give mass to the up� and down�partner
of the fermionic isodoublet� The Kc is
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which completes the construction of the SM Lagrangian�

��� Tadpoles

In the SM the role of tadpoles is particularly delicate�

� In the Lagrangian� a tadpole constant should appear that is
zero in the lowest order� and must be adjusted in such a way
that the vacuum expectation value of the H �eld remains zero

order by order in perturbation theory�

Here we will adopt a strategy di�erent from that used in Eqs�����
and ���� Instead of trading �� for a new parameter �

H
� as carried

out in Eq����� we renormalize the vacuum expectation value itself
as follows�
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� In the two di�erent procedures two di�erent parameters are
introduced� �
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and �t� to be �xed by the requirement of can�

celling the one�loop contribution to the vacuum expectation
value� These two parameters are related by
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Note that the only practical di�erence �cf� Eq������ is related�

so far� to the H� term and it will be shown that this di�erence
is irrelevant insofar that it can be renormalized away�

� From the renormalized shift of the H �eld� we are automati�
cally led to the addition of tadpoles in theW �W and Z�Z
self�energies and in the corresponding vector
scalar transitions�
It can be seen from the following terms�
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� These tadpoles are usually not added to the various bare self�
energies� since they do not contribute to the renormalized ones�

However� they are essential for proving that the same self�
energies are ��independent when put on their bare mass shell�
that is p� � �M� and p� � �M�

�
� respectively� At the

same time� the �tH
� terms will be crucial for showing ��

independence of the H �H self�energy at p� � �M�
H
�

��� The QCD Lagrangian

For the QCD Lagrangian there are eight �� � Hermitian matrices
�a� a direct generalization of the ��� Pauli matrices� which satisfy
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with T a � �i�a��� The structure constants f are antisymmetric
in all three indices and satisfy the Jacobi identity� while the d

are symmetric in all indices� The QCD Lagrangian contains three
pieces�

� the colour gluon Lagrangian� Lc�

� the colour fermion Lagrangian� Lfer
c �



� the colour Faddeev
Popov Lagrangian� LFP
c �

All indices a� b� � � � take the values �� � � � � � corresponding to the
eight gluon vector �elds� Ga

�� The indices i� j� � � � take the values
�� � � � � �� corresponding to three colours� An index � designates the
�avors� u� d� c� s� t� b� of quark �elds� q�i � Furthermore� we limit the
presentation of the QCD Lagrangian to the Feynman �covariant�
gauge� There are other sets of standard choices� for example� the
non�covariant axial �or physical� gauges� The �rst two pieces read�
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The FP ghost Lagrangian of QCD is written in terms of a ghost
color �eld �a�

LFP
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is the strong coupling constant� We will use also
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Finally� note that even for an arbitrary gauge the Lagrangian LFP
c

would not change� that is� in QCD the coupling of the ghosts to
vectors is independent of the gauge��xing parameter�



� Appendix� Feynman rules for vertices

In this appendix� we shall present all the vertices in the electroweak

sector of the minimal SM and in the R� gauge� There are a few
conventions deserving a comment�

�� there are three gauge parameters� denoted by �� �
Z
and �

A
�

�� s��c�� denotes the sine �cosine� of the weak mixing angle�

�� Qf � I
��	
f denote the electric charge �in units of e� and the third

component of isospin of a genuine fermion�

�� we will show the particle symbol next to the line�

To summarize�

A�Z�W� for vector bosons�

��� �� for the unphysical components of the scalar �eld� Eq��
H for the physical Higgs boson�
X�� Y A� Y Z etc� for FP ghosts�

u�d� for a generic I
��	
f � �

���
�
�� fermionic �eld�

We should keep in mind that X
�
is not equal to X��

The arrow convention is as follows�

�� The arrows occurring in lines are denoting fermion lines� or the
�ow of the electric charge or the �ow of the FP ghost number�

An incoming W� will� therefore� be denoted by an incoming
arrow�

�� An arrow pointing inwards implies a positive charge �owing

into the vertex� For a negatively charged FP �eld the �ow
of the charge is opposite to the direction of the arrow� for a
positively charged FP �eld it is in the direction of the arrow�

�� In vertices all momenta are taken to be ingoing�



First the fermionic Feynman rules�
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Secondly the bosonic Feynman rules�
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� Quadri�linear vertices
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� Trilinear vertices involving FP ghosts
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� A list of QED one�loop diagrams

The one�loop corrections in QED are given by the photon self�

energy� the electron self�energy� the e�e�� vertex and by the ���

boxes� The �rst three diagrams will enter into any renormalization
scheme� QED boxes� however� are free from ultraviolet divergences

and therefore irrelevant from the point of view of renormalization�
Before going on� we should emphasize that the quantities of

interest in QED have two sources of in�nities� Correspondingly�

we must introduce two regulators�

� The �rst corresponds to the ultraviolet singularities where we
use dimensional regularization� The corresponding regulator

has been denoted by � and we have to consider a number of
space dimensions� n � �� �  ��

� For infrared divergences we could use massive regulators or reg�
ulate the mass singularities again in the dimensional scheme�
n � � � �� 
 �� This will be referred to as the � � ���

correspondence and it implies that the theory is not simul�
taneously ultraviolet�regular and mass�singularity�free for an
arbitrary number of dimensions� This leads us to the following
prescription�

The general prescription is to �rst renormalize the theory di�
mensionally and� after the counter�terms are included� to con�

tinue to n � � � ���

� In summary� we have to introduce two epsilon�parameters� �
and ��� de�ned by n � � � � and n � � � ��� They are
both positive and allow us to perform the integration in the
complex n�plane� Correspondingly� we will use two regulators�



ultraviolet �� and infrared ���

�

��
�

�

�
� 
 � ln��

�

��
�

�

��
� 
 � ln�� ���

where � � 	������ is the Euler constant�

� The regulators satisfy the following relevant identity�

�

��
�

�

��
� �� �	�

��� Photonic self�energy

The photon self�energy in QED consists of a single Feynman di�

agram with an internal fermion loop of a given �avor f and is
described by a tensor� ��� � as in Fig� �

� �

f

f

Figure �� Photonic self�energy in QED�

Note that ��� is transverse� a consequence of the QED U��� gauge
invariance� We obtain the following expression for ���� written in
terms of the scalar function �

�
p�
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��� � � i��e�
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For QED things are relatively easy and we obtain

��p��� ���� �
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dx ln
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� � ���

��� Fermionic self�energy

Fermionic self�energy is correspondingly given by a �� � matrix�

� ��p� � ����� i
e�

�
��
f��B�

�
p��m� �

�
���i�p� ���B�

�
p��m� �

�
���mg� ��



Figure �� Fermionic self�energy in QED�

originating from the diagram of Fig� �

Again� in QED things are easy� Direct calculation results in

� ��p� � i��e�f�
��
n

�
� �

�
i�p � nm

�
�

��
� �

Z �

�
dx �x i�p � �m� ln�g� ���

with � � �p�x� � �p� �m��x �m��

It should be stressed that for the electron the corresponding self�
energy diagram has a well�de�ned value in the mass shell limit but
not its derivative� which shows a singularity due to the zero mass

of the photon�

� This is the �rst example of an infrared divergence and it raises

the question of the interplay between ultraviolet and infrared
singularities� Also� the QED vertex function gives rise to an
infrared divergence�

� However the renormalization of the e�m� coupling in QED
through the de�nition of the �ne�structure constant introduces

no infrared divergences in the perturbation series� In summary�
we have a theorem stating that

In QED� on�shell renormalization is possible� because the
vertex correction at zero momentum transfer cancels the elec�

tron wave�function renormalization exactly� and because the
photon self�energy is infrared �nite�
After ultraviolet renormalization� we are left with the resolu�

tion of the infrared problem in QED� that is� of the momentum�

dependent infrared divergences that requires the introduction of
�real� �as opposite to virtual� radiative corrections� At the present



stage the theory must be understood as regularized in the infrared

regime by means of dimensional regularization�

��� QED vertex

The one�loop QED e�e�� vertex corresponds to the diagram in
Fig� ��

�

p�

p�

q

Q

Figure �� QED vertex diagram�

With both e� on their mass shell the QED vertex is reducible to
the following structure� ����� i ie�� � ����� i ie�� � ��� where

�� � � ����� i
ie�

�
��
�
�V�

�
Q��m�m

�
� ��� �p� � p��� V�

�
Q��m�m

�
�� ����

� The V� part is the Dirac electric form factor� containing ultra�

violet and infrared divergences�

� The V� part� giving the anomalous magnetic moment of the

electron� is ultraviolet �nite�

For the on�shell vertex we can use the relations

�v �p�� �p� � �im�v �p�� � �p� u �p�� � imu �p�� � ����

With p�� � p�� � �m� and Q� � �p� � p��
� and � as the mass

scale we have
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Z
dnq

�

d�d�d�
N� �

N� � ��p� � p�
� � � ��p�
�
� � 
�
��p�� q� � �� � n� 
�
�
�q�q� � ����

with propagators given by
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Introducing the auxiliary vector kx � xp� � ��� x� p�� and per�
forming the standard Feynman parameterization� we obtain

�� � �ie�� ���
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�
dx

Z �
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Z
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For the scalar integral we use the infrared regulator ���
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Here and below the following quadratic form has been introduced�
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�
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For the vector and tensor integrals we use instead the ultraviolet
regulator � and calculate integrals with the aid of the following
equations�
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The y�integration can be performed for all values of n� leading toZ �
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dyy�k�� �
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�� k � �
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Substituting all the integral Eqs�����
���� into Eq����� and ex�
panding around � � 	 and �� � 	� we arrive at some expression for
���
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where the scalar part in charge renormalization may be written in
the compact form
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After applying the Gordon identity� and using the usual C and
B�functions instead of one�fold integrals� we arrive at the �nal rep�
resentation for V���

�
Q��m�m

�
where no approximation has been

made� not even ignoring the electron mass�
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where Bff is a peculiar combinations of B��functions� namely
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There are two limiting cases of special interest� s � �Q� � m�

and Q� � 	� Here� we shall content ourselves with the large s
limit� where we derive
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Collecting the various terms we obtain for m� 	�

V� ��s�m�m� �
�

��
� ln

m�

��
� �

�
�
��
� ln

m�

��

�
A ln �s� i�

m�

� ln�
�s� i�

m�
�

�

�
�� � � ln

�s � i�

m�
� ���
�

For Q� � 	 we obtain instead
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In the above results we have kept an explicit distinction between
the ultraviolet and the infrared poles� The quantity of physical



interest is always V� subtracted at zero momentum� which reads
therefore as
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If needed� the exact expression for V� is also very simple�
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where we have introduced
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m�

s
� � �

�� �
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� �����

��� QED box diagrams

QED represents some special case of the full electroweak theory
with its distinctive simplicity and� for this reason� we discuss here
the speci�c example of QED � � � boxes� Let us consider the

annihilation e�e� � ff � There are two QED box diagrams� the
direct one and the crossed one �see Fig� �

	a
 � 	b


Figure � Two QED box diagrams� 	a
 direct� 	b
 crossed�

These are easily related and if the �nal expression is given in terms
of t� u variables� this is tantamount to exchanging t � u with an
additional overall minus sign in the cross�section� We can de�ne
two di�erent distributions� D� ����

D� ��� �
d� ���

d�
� d� �� � ��

d�
� �����



� D� is the relevant angular distribution when the charges of the

�nal states are not detected� while

� D��the asymmetry function�is available when one measures
the di�erential cross�section with charge detection�

Note that charge conjugation invariance implies that only the
interference terms between the lowest order amplitude and the box
diagrams contribute to D� to order ��� as far as virtual radiative
corrections are concerned� The lowest order amplitude squared
and summed over polarization is
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X
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The corresponding contribution from the interference of the direct
box diagram can be written as
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where
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Similarly� the crossed box is obtained with the replacement t� u �
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Thus� only two functions D�
�� �s� t� u� are needed to describe boxes

and they are given by
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The infrared�divergent scalar function d
�
is split into an infrared

divergent c��function plus a �nite remainder� namely

d� �s� t� � t �J		 ��s��t�me�mf �� � c� �t�me� ��mf � � ����

The functions B� �C�� D�� are the scalar two� �three�� four�� point
integrals �see Section �� From this result it is immediately obvi�
ous that the infrared divergences in the direct �and also crossed�
diagram do factorize into the lowest order� Indeed� the infrared�
divergent part is fully speci�ed in terms of
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the remainder being infrared �nite� For completeness of presenta�
tion we write again all the ingredients entering the �nal results for
the interference of box diagrams with the lowest order�
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These relations hold form�
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interference terms� lowest order � box diagrams we have therefore
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As expected� there are no collinear divergences and the limit of

zero fermion masses can be taken�



� Scalar integrals� vectorial and tensorial reduction

To cope with the complications of the SM� we must derive a com�

plete set of formulas valid for arbitrary internal and external masses�
We will deal with expressions for scalar diagrams with one� two�
three and four external lines� Besides scalar functions we also need

tensor integrals with up to four external legs and as many pow�
ers of momentum as allowed in a renormalizable theory� These
tensor structures can be reduced to linear combinations of scalar

functions�

��� One�point integrals	 A�functions

m

Figure �� The one�point Green function�

The one�point function is given in Fig� � and the corresponding

expression will be discussed below�

��� The scalar one�point integral�

We start by introducing the one�point scalar integrals which are
needed for tadpole diagrams and in the reduction of higher�order
functions�
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Z
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This integral can be easily evaluated in terms of the Euler ��
function giving
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If we introduce � � � � n and expand around n � �� then the
following expression is derived�

A� �m� � m�

�
��

�
� 
 � ln� � � � ln

m�

��

�
A �O ��� � �����

where � � 	������ is the Euler constant�
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and to write
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��� Two�point integrals	 B�functions

p�

m�

m�

Figure �� The two�point Green function�

The family of two�point functions is given in Fig� � and it is dis�

cussed below�

��� The scalar two�point integral�

Consider the scalar two�point function which is met in the calcu�
lation of self�energy diagrams containing two propagators� d� and
d��
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It is convenient to introduce the general expression for propagators�
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A�� considered above� involves the simplest� external momentum
independent propagator d�� For arbitrary internal masses the B�

function becomes
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There are simpli�cations for special values of the arguments� For
instance� if m� � m� � m� then we �nd
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where �� � � � �m���p� � i��� Similarly� if one of the internal
masses is zero� then we have
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Finally� for massless internal lines we obtain
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From all these functions we can easily extract the corresponding
imaginary parts� With s � �p� we write�
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��� Tensor two�point integrals�

Tensor two�point integrals can be reduced to linear combinations
of scalar functions� We start with

i��B�

�
p��m��m�

�
� ���n

Z
dnq

q�
d�d�

� i��B�

�
p��m��m�
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p� � �����



Using the relation q� � d� �m�
�� with

q � p � �

�

�
d� � d� � f b�

�
� f b� � �p� �m�

� �m�
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we derive the following identity�
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The function B� obeys the symmetry
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�
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�
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The rank two tensor integral can be reduced as follows�
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The last relation can be multiplied by ��� and by p� to give
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In order to solve this system of equations we have to compute the
singular parts of the scalar one� and two�point functions in terms
of the quantity �� de�ned by Eq����	�� First we de�ne a function
� as

��x� � �p�x� � �
p� �m�

� �m�
�

�
x�m�

� � i�� ���
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A simple calculation shows that
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By using these relations we arrive at a system of equations� Eq�������
with

nB��

�
p��m��m�

�
� �B��

�
p��m��m�

�
�
K�
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At this point we introduce an X��matrix
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�
 p� �
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�
A �����

and the vector b whose components are
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�B�

�
p��m��m�

�� K�



�

b� �
�

�
�A� �m�� � f b�B�

�
p��m��m�

�
�� ��	��

The B�i

�
p��m��m�

�
form factors can� therefore� be obtained by

using the inverse matrix of Eq������
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�
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We explicitly list the �nal results�
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��� Derivatives of B�functions

In the actual evaluation of one�loop radiative corrections we will
also need derivatives of the B�functions� They will appear in renor�
malization factors associated with external lines which are derived



by the corresponding two�point Green functions and are given by
the following results�

�Bf������g
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For the QED corrections some of the previous derivatives are in�
frared divergent and must be regulated� For instance� with ��x� �
��� x�

�
p�x �m�

�
we have for the scalar integral
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�
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With n � � � �� we� therefore� derive
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which in turn gives
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Expanding the various terms in �� we derive the Laurant series
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Similarly� for the derivative of B� we obtain
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giving the following result�
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 Three�point integrals	 C�functions
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Figure �� The three�point Green function�

The scalar three�point function� �Fig� �� associated with vertex
corrections is more involved and will require some additional work�

��� Basic de�nition�

First we de�ne of the scalar three�point function�

i�� C�

�
p��� p

�
�� Q

��m��m��m�

�
� ���n

Z
dnq

�

d�d�d�
� ��
��

with di given by Eq������� which in this case are

d� � q� �m�
� � i�� d� � �q � p��
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� � i�� d� � �q �Q�� �m�
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where Q � p��p� andQ
� � �p� � p��

� denotes one of the Mandel�
stam variables� Q� � �s� t or u� for an arbitrary �� � amplitude�
Two Feynman parameters are enough for the three�point function�
and in terms of a particular choice of Feynman parameters C�

becomes
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�� Some particular cases of C��functions�

Before deriving the general result we consider a few special cases�
First� we select

p���� � �� �p� � p��
� � Q�� m� � m� � �� m� � M� ��
��



In this case
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Actually� there is only one �generic� three�point scalar integral that
occurs in the calculation of two�fermion production when we use
the approximation where all fermionic masses� with the exception
of the top�quark mass� are ignored� It corresponds to the following
choice�

p���� � �� �p� � p��
� � Q�� m� �M� � m� �M� � m� �M� � ��

�

Then the coe cients� in quadratic form� become
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and the result for C� reads
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where the function � is a quadratic form in x and y�
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with four di�erent roots
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All masses squared are understood to have equal in�nitesimal imag�

inary parts� M�
i � M�

i � i�� necessary to properly de�ne the
analytic continuation at Q� � �s�



The following special cases are also met in any realistic calcula�
tion�
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One more interesting case is
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Also of some relevance is the scalar integral with all internal masses
set to zero�
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The result ���� is valid in the Euclidean region�
Another simple case is given by a scalar integral with one very

small mass and two external momenta on�mass�shell� p�� � �m
�
�� p

�
� �

�m�
� and m� � �� with � small with respect to all other quanti�

ties� Although we are dealing with the infrared singularities within
the dimensional regularization approach� this example is a useful
bridge to the mass�regularization method� Holding m� �� m� will
allow us to discuss QED corrections to the decay W� � ud� By
using an appropriate implementation of the Feynman parameters
we can write
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with the integrand
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we obtain the following decomposition�
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In this equation y��� are the roots of the equation � �y� � 	� i�e�
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Note that � is arti�cially introduced in ���	� in order to show the
correspondence with the method of dimensional regularization� i�e�
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Expressions ���	�
����� greatly simplify if m� � m� � m� since
in this case we have y� � y� � �� Two integrals are useful for this
case� With ��
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���� Reduction of the vector three�point integral�

The rank�� tensor associated with the three�point function is given
by

i��C�
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�� Q

��m��m��m�
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Z
dnq
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which leads to the following decomposition�
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The corresponding reduction is based on the following relations�
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For the �nal result three additional pinches are needed�
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where k runs over all possible indices of the Bk�functions� i�e�
	� �� �� and ��� For instance�
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As we did for the two�point integrals� we introduce a matrix
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With their help we derive
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Figure ��� The four�point Green function�

���� Four�point integrals	 D�functions

The four�point functions� are again much more complicated than

the previous ones� including the three�point functions�

���� The scalar four�point integral	 D��function�

We start with the de�nition�

i��D� � i��D�
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with di as in Eq������� which in this case are written down as

d� � q� �m�
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with all four�momenta �owing inwards �as shown in Fig� �	�� so
that p��p��p��p� � 	� After making use of an alternative Feyn�
man parameterization� we arrive at the following representation�
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Z
d�u	

�
X

i

ui � �

�
AY

i

� �ui� I�fug�� ����

where the integrand may be written in compact form as
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By explicit evaluation we can show that the latter is exactly the
one�loop four�point function that is needed� Introducing the vari�
ables x� y and z this may be cast in the form
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The coe cients of the quadratic form are�

a � �p��� � �p�� � b � �p��� � �p�� � g � �p��� � �p�� �

c � �p��� � p��� � p��� � h � �p��� � p��� � p��� � p��� � j � �p��� � p��� � p��� �
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� �m�

� � p��� � p��� � k � m�
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f � m�
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���� Some particular cases of D��functions�

For four fermion processes in the approximation when all external
fermionic masses are ignored� we may derive rather compact ex�
pressions for D��functions� We consider two di�erent cases where

�� there are no virtual photons in a box diagram�

�� box diagrams contain one or two virtual photons�

The treatment of D� in these two cases is substantially di�erent�
In the �rst case the D��function is infrared �nite and we have no
particular problem in computing it� In the second case� however�

an infrared singularity will show up and it is more convenient to
isolate the singular part �rst by performing a splitting of the basic
integral�

Infrared�divergent boxes are always split into a combination of
infrared singular three�point functions plus an additional integral
which is �nite and for which a direct calculation is more convenient

as compared with a standard scalar reduction�
Case � The most general expression we encounter in considering
ZZ and WW boxes corresponds to the following choice�
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With an appropriate choice of Feynman parameters it may be pre�
sented and calculated as follows�

D�

�
�� �� �� �� Q�� P ��M�� ��M��M�

�
�
Z �

�
dz

Z �

�
ydy

Z �

�
dx



� �

�M�
�y �M�

� �� � y� � P ���� y���� z� �Q�zy�x�� � x���

�
�

Q��P � �M�
� �
p
d�

�X
i�

�X
j�

����
i��
j�
�
Li�

�
 �xj
�xj � xi

�
A � Li�

�
 �xj � �

�xj � xi

�
A��

with the six roots given by

x��� �
�

�

�
B��

vuuut� � �M�
�

Q�

�
CA � �x��� �

x�
�

�
��

q
d�
�
�

x� �
M�

�

M�
� �M�

�

� x� �
P � �M�

�

P � �M�
� �M�

�

� �����

and with

d� � � �
�M�

�P
�
�
P � �M�

� �M�
�

�
Q� �P � �M�

� �
� � �����

For M� � 	� which in practical applications means mt � 	� it
simpli�es to

D�

�
�� �� �� �� Q�� P ��M�� ��M�� �

�
�

�

Q�P �

r
d
	�

�

�X
ij�

����i�� Li�
�
 �xi
�xi � xj

�
A �

�����
where the roots now read as follows�

�x��� �
x�
�

�
��

r
d
	�

�

�
� d

	�

� � � �

�M�
�

�
P � �M�

�

�
Q�P �

� ���	�

Case � We encounter this case when considering ZA and AA
boxes where we introduce three auxiliary integrals�

i�� �J		
�
Q�� P ��me�mf

�
� ���n

Z
dnq

�q � �q �Q�

d� ��� d� �me� d� ��� d� �mf �
����
�

i�� �J	Z
�
Q�� P ��me�mf

�
� ���n

Z
dnq

�q �Q
d� ��� d� �me� d� �MZ

�d� �mf �
�

i�� �JZ	
�
Q�� P ��me�mf

�
� ���n

Z
dnq

�Q � �q �Q�

d� �MZ
� d� �me� d� ��� d� �mf �

�

which are simple to calculate�
Performing the standard reduction� we express the correspond�

ing D� functions in terms of these integrals�

D�

��m�
e ��m�

e��m�
f ��m�

f � Q
�� P �� ��me� ��mf

�
�����



�
�

Q�
�� �J		

�
Q�� P ��me�mf

�

�C�

�
�m�

e ��m�
f � P

��me� ��mf

�
� C�

�
�m�

f ��m�
e � P

��mf � ��me

�
��

D�

��m�
e ��m�

e��m�
f ��m�

f � Q
�� P �� ��me�MZ

�mf

�
����

�
�

Q� �M�
Z

�� �J	Z
�
Q�� P ��me�mf

�

�C�

�
�m�

e ��m�
f � P

��me�MZ
�mf

�
� C�

�
�m�

f ��m�
e � P

��mf � ��me

�
��

D�

��m�
e ��m�

e��m�
f ��m�

f � Q
�� P ��M

Z
�me� ��mf

�
�����

�
�

Q� �M�
Z

� �JZ	
�
Q�� P ��me�mf

�

�C�

��m�
e ��m�

f � P
��me� ��mf

�� C�

��m�
f ��m�

e � P
��mf �MZ

�me

�
��

To conclude� we present the answers for the auxiliary integrals in
terms of one�fold integrals� An explicit form is also given�

�J		
�
Q�� P ��me�mf

�
�

Z �

�
dx

�

� �P ��me�mf �
ln
�
�
P ��me�mf

�
Q�

� F�jm��me�m��mf � Q��P �� ���Q� � �����

�J	Z
�
Q�� P ��me�mf

�
� � �JZ	

�
Q�� P ��me�mf

�
� ln

M�
Z
�Q�

M�
Z

J�
�
P ��me�mf

�
�

Here �
�
P ��me�mf

�
� P �x ��� x� � m�

e ��� x� � m�
fx is the

usual quadratic form and F� is given by Eq�������



	 Renormalization in QED


�� The basic approach to renormalization

Before entering the details of the renormalization in QED at the
one�loop level we brie�y summarize the main procedure for dealing

with in�nities� To discuss renormalization we assume QED to be
the theory of photon and electrons� therefore everywhere we put
Qf � Qe � ���

In computing one� or multi�loop diagrams we face the problem
of having to deal with ultraviolet in�nities� In any theory the �rst
step will be to de�ne its regularized version and only afterwards

address the procedure for in�nity subtraction� Regularization is
simply the replacement of a theory by a slightly di�erent one� using
some cut�o�� As it happens� there is now a general consensus on
what regularization scheme to use� i�e� dimensional regularization�

� Any Lagrangian contains two types of objects� �elds and pa�
rameters 
 masses and other than mass parameters� for exam�
ple� the coupling constant e in QED� We may replace the bare
parameters of the Lagrangian� fp�g� by renormalized ones by
multiplicative renormalization� For each bare parameter p� we
write

p� � Zp p � p � 	p� 	p � e�	p	�
 � � � � � �����

with renormalization constants Zp di�erent from � by loop
corrections�

� An example is the electron mass m� The quantity m � e��m

is called the bare mass� m�� and m itself the experimental
mass� This notion also re�ects an intuition about the physical

meaning of the bare mass� if the interactions could be switched
o� �e � 	� that is what we would see�

The renormalization constants are� in general� in�nite and �xed
by a �nite set of renormalization conditions�



� The decomposition in Eq������ is to a large extent arbitrary�

Only the divergent parts are determined directly by the struc�
ture of the divergences of the one�loop amplitudes� The �nite
parts depend on the choice of the explicit renormalization con�

ditions which� in turn� de�ne the renormalization scheme�

� The choice of a renormalization scheme�a rather technical
subject�is mostly dictated by practical considerations� but

where physical observables are concerned� all renormalization
schemes �RS� have been made equal� This� of course� applies as
long as they respect gauge invariance and do not involve ad hoc

treatments of leading and sub�leading higher�order corrections�

Before actually discussing the options that we have in working
with speci�c RS� let us brie�y summarize the main ingredients that
enter into the calculation�

�� From any unrenormalized Lagrangian and from the corres�
ponding Feynman rules we compute the Green function of the
theory� say� at one�loop� These Green functions are controlled

by Ward identities� which re�ect the gauge invariance of the
theory and after subtracting the in�nities we will again need
these identities in order to see that the renormalization does
not spoil gauge invariance�

�� In dealing with Ward identities for Green functions there is no
need to con�ne ourselves to external lines that are transversal

�photon sources satisfying the condition ��J� � 	� or on their
mass shell� Physical observables are obtained when we move
from Green functions to S�matrix elements� In any renormal�

ization scheme this is a crucial step�

The main object to discuss� in summarizing the steps leading
from a Green function to the corresponding S�matrix elements� is



the two�point Green function� which will� in general� have a pole�

In any theory this pole becomes a property of the S�matrix and
therefore in any gauge theory the pole is gauge�invariant by con�
struction�

p p�

Figure ��� The two�point Green function�

Whenever massive and unstable vector bosons�as well as any
other unstable particle�are present in the theory� these poles must
be examined with due care since one can be shown that they lay

in the complex plane� actually on the second Riemann sheet�

� In QED� however� the only mass that we care about is the
electron mass� a stable particle� For many applications in QED
it is most natural to use our knowledge of the electron mass�

and all RS will use m as an input parameter to be related to
the pole of the S�matrix�

� For QCD� however� many calculations have to be independent
of quark masses and in this case it will be natural to choose
RS where we do not need to use a renormalization condition

related to the poles of the S�matrix�

� At the physical mass pole the two�point Green function can be
cast in the following form

Gij �p� p
�� � ����� i 	� �p � p��

Kij �p�

p� �m�
� p� � �m�� �����

where the index i stands for a spinor� Lorentz� etc� index�
Next� wave�functions Ji are de�ned� for each non�zero eigen�
value of K� and they must be normalized�

As an example� we consider fermions in QED� Here� we compute



one�loop electron self�energy�

� ��p� � ����� i
e�

�
��
f��B�

�
p��m� �

�
���i�p����B�

�
p��m� �

�
���mg� �����

then the Dyson re�summed �or complete� propagator

S �
�

����� i

�
i�p �m� e�	m � � ��p�

����� i

���
� �����

where we introduce the mass renormalization counter�term

e�	m �
��im�

����� i
� ���	�

Expanding " ��p� in a Taylor series around the physical electron
mass i�p � �m �the so�called subtraction point�� we obtain�

� ��p� � � �im� � �i�p �m� �
WF

�O �
�i�p �m��

�
� ���
�

where the coe cient of the linear term is the so�called wave�function
factor�

�
WF

�
�� ��p�

� �i�p�
ji�p�m� �����

After mass renormalization� Eq������� and wave�function renor�
malization� Eq������� we arrive at the following residual matrix�

K �p� �
�

Z
��i �p �m� � ����

Here� the factor

Z � �� �
WF

����� i
� �����

is� by de�nition� the fermion wave�function renormalization con�
stant� which is in�nite� since "

WF
is ultraviolet divergent� Thus�

we must take for the fermion wave�function

J � u �p�
Z���

�m

p
�E � �����

in order to preserve wave�function normalization to � �the Dirac

spinors are assumed to be also normalized to ��� A similar proce�
dure will apply to the normalization of v spinors�



Finally� we consider any arbitrary Green function with an ex�

ternal fermion� multiply it by p� �m� and put the momentum of
the external line on its mass shell� The net e�ect in passing to the
S�matrix elements is to multiply each external fermion line �actu�

ally� every external line� by a factor Z����� which contains in�nities�

Di�erent RS may have di�erent procedures at any intermediate

step but all of them will give the same answer for the S�matrix�
as long as we respect the proper treatment of the external lines�

In QED there is more than mass renormalization and we also
have charge renormalization� Here� the situation is again simpli�ed
because of the basic properties of the Lagrangian�

� At zero momentum transfer the vertex corrections in QED can�

cel the electron wave�function factors exactly and� moreover�
the photon self�energy is infrared �nite�

Thus� in QED we can de�ne a perturbative coupling for on�shell
scattering�

The parameter renormalization� Eq������� is su	cient to ob�
tain �nite S�matrix elements if� in addition� wave�function

renormalization factors for external on�shell particles are in�
cluded�

O��shell Green functions� however� are not �nite by themselves�
If we choose a procedure where also vertices and self�energies are
to be made �nite� then� besides parameters �coupling and masses��
the bare �elds have to be rede�ned in terms of renormalized �elds
by another set of multiplicative renormalizations

�� � Z� �� �����



Expanding the renormalization constants

Zi � � � e�	Zi �����

gives
L ���� p�� � L ��� p� � Lct ��� 	Z�� p� 	p� � �����

where with fpg we denote the set of parameters e�m etc� and Lct

denotes the counter�term Lagrangian� Before actually discussing

the various options for choosing a renormalization scheme we will
describe in detail the notion of a counter�term�

� Consider some theory� described by a Lagrangian� depending

on certain �elds and parameters� At the tree level there is
no ambiguity and theoretical predictions from this Lagrangian
can be compared with the experiment� One data point� i�e�
one measurement� is needed to �x one p� After that any other

comparison is a test of the theory�

� Now suppose that we want to go beyond the tree approxima�

tion� Then radiative corrections must be calculated� The re�
lation between the parameters fpg and the experimental data
becomes much more complicated but it remains precisely true

that one measurement is needed to �x one free parameter p�
the rest is a test� Of course� the values of fpg as determined
using only the tree approximation will be di�erent from the

values determined taking into account radiative corrections�
As it happens� this di�erence is usually in�nitely large because
the radiative corrections contain in�nities� Such in�nities are

well�de�ned and understood�

� Because of the awkward situation that the corrected fpg and

the tree fpg are so di�erent one introduces the notion of a
counter�term� As we have explained before� in the Lagrangian
we write fp � �pg instead of fpg� and f�pg is chosen in some



well�de�ned manner such that now fpg remain in the neigh�

bourhood of the tree fpg� It is� however� purely a matter of
convenience� the only thing that ever emerges in the confronta�
tion with the data is fp � �pg�

� This is why all RS are indeed equivalent� Of course di�erent

theoretical predictions for some observable quantity may refer
to a di�erent choice of experimental data points needed for the
renormalization conditions or to the same data points taken

at two di�erent scales� This fact alone should not be related�
under any circumstance� to a di�erence in the renormalization
scheme and we prefer� therefore� to introduce the notion of in�

put parameter set �IPS��

Before we can make predictions from a theory described by n

independent parameters we must specify an IPS� i�e� a choice

for n experimental data points to be used as input�

Two predictions for the same observable will inevitably di�er

by an amount proportional to the missing higher orders if they
refer to di�erent IPS� even if they are performed within the same
renormalization scheme� In turn� the use of di�erent scales as a

subtraction point is closely connected to the scale behaviour of the
theory that is controlled by the renormalization�group equation� to
which we will return towards the end of this section�

In order to de�ne a consistent procedure� it is necessary� when
talking about fpg� to specify what f�pg are used� Stating our
conventions on this matter is what is usually termed the renor�

malization scheme� Two essentially di�erent approaches may be
distinguished�

�� prescribe fpg precisely�



�� prescribe f�pg precisely�

Again� only the combinations fp� �pg appear in the confronta�
tion with the data� and we are discussing here a matter of conven�
tion� As a matter of terminology� we will call quantities such as

f�pg counter�terms�

� In the early days of QED� method � was used� The convention

was to prescribe fpg� and to use for that some very well�de�ned
experimental quantities� The quantities f�pg were then ob�
tained from the data� including radiative corrections�

� In QED� the mass and the charge of the electron are very well

known� and the scheme is well understood� Again� the situation
will be di�erent in QCD where� on the contrary� we would like
to avoid any reference to quark masses�

� An example of approach � is the on�shell renormalization scheme�
de�ned as the procedure of parameters and �eld rede�nition
by Eq������� Eq������ when the renormalization factors are

�xed for external on�shell particles such that the meaning of
these parameters is preserved to be the same as in the tree
approximation�

� Convention � has many advantages but sometimes there is no

clear precisely known experimental quantity that can play the
role of de�ning fpg� Such is the case for QCD with respect
to the coupling constant g

S
of that theory� This g

S
� at least

as seen experimentally� is a function of the scale� and cannot
be measured at a low scale due to con�nement� Consequently�
theorists� after considerable wrangling� have carefully consid�

ered method ��

� The quantities f�pg are prescribed and fpg are determined
from some experiments depending on fpg� This method is con�



sequently realized within the minimal subtractionMS renor�
malization scheme�

Perhaps the best way to illustrate how RS work in practice is to
consider mass renormalization in QED� Coming back to Eq�������
we expand " ��p� around a �nite intermediate massmR� Then the
complete propagator will become�

S �
�

����� i

�
i �p �mR � e�	m �

e�

�
 ��
�S

���
�

�S � �mR

��
��
� ln

m�
R

��
�

�

�

�
��rest �p� � �����

where "rest �p� contains additional ultraviolet divergences� There�
fore� we have a freedom in �xing the mass counter�term� This is
done with a condition

	m � � �

�
 ��
mR

�
	�

�
�
��
� ln

m�
R

��
�

�

�

�
A � C



� � ���	�

containing an arbitrary �nite constant C�

The Renormalization scheme �RS�� Any explicit de�ni�
tion of the constant C in Eq����
� is a de�nition of the RS�
Clearly� � and C are arbitrary parameters and once we have spec�

i�ed our IPS� say� m and the �ne�structure constant �� then dif�
ferent choices of � and of C will correspond to bare Lagrangians
with di�erent bare parameters m� and e�� The choice C � 	 de�

�nes the familiar MS scheme� Leaving C as well as � and �

arbitrary and including wave function renormalization factors
de�nes the generalized minimal subtraction scheme� or

GMS�
The parametermR is �xed in terms of the physical electron mass�

mR � mR ���m� �� C� � ���
�

and this relation is uniquely governed by the requirement that the

physical mass be in the position of the single�particle pole in the
two�point Green function�



In conclusion� di�erent RS may or may not indulge in present�

ing di�erent intermediate parameters� like mR� but all of them will
agree in any prediction for physical observables�at a �xed order
in perturbation theory�once the IPS is uniquely chosen� Stated

di�erently� as long as the theory is renormalizable and the scale at
which we perform the subtraction is the same �if we can �nd an
on�shell S�matrix element that corresponds to some well�measured

quantity� then any procedure for cancelling the in�nities will pre�
dict S�matrix elements that are �nite� ��independent and scheme
independent�

Renormalization procedure� A renormalization procedure
comprises the speci�cation of the gauge �xing term including

the corresponding ghost Lagrangian� the choice of the regular�
ization scheme�nowadays dimensional regularization�� the
prescription for the RS and a choice for the IPS�

A typical example of what we call the IPS dependence of ra�
diative corrections is the following� Suppose that in a theory like
QED with two parameters we have already made use of the de��
nition of the physical mass of the electron� Suppose� in addition�
we assume that some S�matrix element has some value Sa� Then
up to one�loop we will have

Sa � e�
Ra
S	�
 �m

Ra
� �� � �����

where we have explicitly indicated the number of loops� Then we
can solve for m

Ra
and e

Ra
in terms of m and Sa� Suppose we

compute the second matrix element Sb� giving the second solution
m

Rb
and e

Rb
in terms of m and Sb� In predicting any matrix

elementM we will have options

Ma�b �M��
n
a�b �� �M��a�b� � ����

with �a�b � e�
Ra�b

and where to one�loop order �b � �a �� � ��a��



Then we obtainMb �Ma � �M� with

	M �M��
n
a

��
�
�
	n �n� ��

�

� � �n� �� 
M�



���

a � � � �� 
n��M��
n��
a

��
� �
�����

Unless higher orders are computed we always consider �M to be
the uncertainty associated with the two IPS�


�� On�shell versus MS renormalization in QED

The main motivation of this subsection will consist in carrying
out the one�loop renormalization programmes in QED within two

schemes� on�shell and MS� and in illustrating how the physical
result is RS independent�
The QED Lagrangian in the Feynman gauge can be derived

from Eq����� setting � � � and Qe � ��� It is unambiguous at the
tree level� Moving to higher orders� we assume that it is made of
bare �elds and parameters labelled with sup� or sub�indices 	 and
speci�es the renormalization constants for the two �elds�A� and
��and the two QED parameters�the electron mass m and the
charge e�

A�
� � Z���

A
A� � �� � Z

���
 ��

e
�
� Ze e� m� � Zmm � m � e�	m �O �

e�
�
�

Zi � � � e�	Zi �O
�
e�
�
� �����

The Lagrangian can now be rewritten� up to terms O
�
e�
�
� as

LR

QED
� L

QED
�Lct � �����

with a counter�term Lagrangian�

Lct � e�L	�

ct �O �

e�
�
�

L	�

ct � ��

�
	ZA F��F�� �

�

�
	ZA ���A��

� � 	Z����

� �	Zm� 	m� �� � i
�
	Ze � 	Z �

�

�
	ZA

�
eA��
��������

The counter�term part of the Lagrangian is made of three terms�
the �rst is bilinear in the photon �elds� the second is bilinear in the



fermion �eld and the third is a three�linear QED�like interaction�
We may say that it generates a new set of QED Feynman rules to
be denoted by a cross� First� the �ZA counter�term�

A � �e�	ZA � �����

Then the �Z� and �m counter�terms�

e � �e� �	Zi�p � 	Zm � 	m� � �����

And �nally� the remaining combinations�

A
�

e�

e�

� �ie
�e�
�
	Ze � 	Z �

�

�
	ZA

�
� ���	�

Equipped with these additional Feynman rules and using the re�
sults for the one�loop QED diagrams we may write down answers
generated by both pieces of the Lagrangian Eq������� This part

of the presentation is absolutely general and common to all ap�
proaches�
We begin with the photon self�energy� The electron�loop dia�

gram gives
��� � i��e�

�
p�	�� � p�p�

�
��

�
p�
�
� ���
�

Here we introduce

�
�
p�
�
� ��B��

�
p��m�m

�
�B�

�
p��m�m

�
�� �����

where the limit p� � 	 gives�

���� �
�

�

�
��

��
� ln

m�

��

�
A � ����

The p�p� part does not contribute whenever we consider ��� as
coupled to conserved fermionic currents� Thus� for ��� we may use

��� � �� p
�	�� � �����



with a scalar coe cient de�ned by

�� � ����� i
e�

���
�
�
p�
�
� �����

We may now compute the Dyson re�summed �sometimes called
complete or dressed� photon propagator

D�� �
�

����� i

	��
p�

�

� � e�	ZA � e�

���
�
�
p�
� � �����

Similarly� for the dressed electron propagator� the following is ob�
tained�

S �
�

����� i

��
� � e�	Z

�
�i�p �m� � e�	m

� �

����� i
�� �im� � �i�p �m� �

WF
�O �

�i�p �m��
�
�
���
� �����

We shall also need a few other ingredients� From the fermion
self�energy� Eq������� we derive the �rst two terms in the Taylor
expansion

� �im� � i��e�m

�
��

��
� � ln

m�

��
� �

�
A � �����

and the wave�function coe cient�

�
WF

� i��e� f�B�

�
�m��m� �

�
� � � �m��B�p

�
�m��m� �

�
� �B�p

�
�m��m� �

�
�g

� i��e�
�
��

��
�

�

��
� � ln

m�

��
� �

�
A � �����

In terms of V�
�
Q��m�m

�
� the ���part of the one�loop e�e�� vertex

becomes

� ����� i ie
�
� � e�

�
	Ze �

�

�
	ZA � 	Z �

�

�
��
V�

�
Q��m�m

���

� � ���	�

Having at our disposal Eq������� Eq������� and Eq������� we can
easily illustrate the practical implementation of di�erent RS�


�� The on�mass�shell renormalization scheme�

The essence of the on�mass�shell �hereafter OMS� RS is to preserve
the meaning of the original parameters of the Lagrangian� We be�
gin with a discussion of the dressed photonic propagator Eq�������



requiring that its residue should be unchanged at the photonic
mass shell� p� � 	� i�e�

e�	ZA �
e�

���
���� � ���
�

This requirement guarantees that the wave�function for external
photonic lines does not change due to one�loop radiative correc�
tions� Using Eq������� this requirement �xes one of the counter�
terms to be

	ZA �
�

����

�
��

��
� ln

m�

��

�
� �����

Now we consider the dressed electron propagator that we require
to be of the form

S �
�

����� i �i�p �m�
����

at the electron�mass�shell� i�p � �m� This requirement preserves
the external line electron wave�function from being renormalized
by one�loop radiative corrections� It allows us to �x two other
counter�terms from the condition

�

i�p �m

�
e�	Z �i�p �m� � e�	m �����

� �

����� i

h
� �im� � �i�p �m� �

WF
�O

�
�i�p �m��

�i�
u �p� � ��

yielding the following two equations�

e�	m �
��im�

����� i
� e�	Z �

�
WF

����� i
� ��	��

which allow us to write

	m �
m

�
��

�
��

��
� � ln

m�

��
� �

�
A �

	Z �
�

�
��

�
��

��
�

�

��
� � ln

m�

��
� �

�
A � ��	��

Finally� we move to the one�loop corrected vertex Eq������ and
require it to be

� ����� i ie
� � ��	��



at Q� � 	� which preserves the Thomson limit of the electric
charge from being renormalized by one�loop radiative corrections
and which leads to the condition�

	Ze �
�

�
	ZA � 	Z �

�

�
��
V� ���m�m� � �� ��	��

Substituting the counter�term �Z�� which is already �xed and the
derived expression for V� �	�m�m�� Eq���	��� we observe the well�
known QED Ward identity�

	Z �
�

�
��
V� ���m�m� � �� ��	��

which allows us to �x the last counter�term�

	Ze � ��

�
	ZA � ��		�

Now all the counter�terms in the Lagrangian Eq������ are �xed
and we may calculate any QED process at the one�loop level with

the Lagrangian Eq������� that is� accounting for diagrams gener�
ated by the renormalized part and by the counter�terms�
The QED coupling constant becomes the e�e�� coupling in the

Thomson limit of Compton scattering� Then� the theorem is telling
us that ��free of infrared singularities�has a value independent of
the order of perturbation theory� only determined by the accuracy

of the experiment�
In full generality� the one�loop and counter�term contributions

for any external on�shell line compensate each other identically

�this is known as the principle of non�renormalizability for ex�
ternal lines�� For any � � � fermion process� at the one�loop
level� we encounter only two building blocks� Eqs������ and ������

while Eq������ has only played an auxiliary role in the counter�term
�xation� These two building blocks become ultraviolet �nite once
we substitute the counter�terms as dictated by the renormalization
procedure� They may be described in terms of two quantities�the

e�ective �running� electric charge� e�
�
p�
�
� and the renormalized

vertex� V ren
�

�
Q��m�m

�
�



�� The photon propagation is now described by

e�D�� �
e�
�
p�
�

����� i

	��
p�

� ��	
�

The following point is important� in Eq����� we observe the
presence of the running parameter

e�
�
p�
�
�

e�

� � e�

���
�ren

�
p�
� � ��	��

where the evolution is governed by the renormalized quantity�

�ren
�
p�
�
� �

�
p�
�� ���� � ��	�

�� The electromagnetic interaction

�� � ����� i
ie�

�
��
�
�V

ren
�

�
Q��m�m

�
� ��� �p� � p��� V�

�
Q��m�m

�
��

��	��
is expressed in terms of the renormalized vertex

V ren
�

�
Q��m�m

�
� V�

�
Q��m�m

� � V� ���m�m� � ��
��

To understand the quantitative behaviour of the running of �
we start from

�ren
�
p�
�
�

�

�
�

�

�

�
� � �

m�

p�

�
A Z �

�
dx ln

�
�
p�� x

�
m�

� ��
��

with �
�
p�� x

�
determined by Eq����� and derive its behaviour� for

both low and high p�� For instance

�ren
�
p�
�
�

p�

�	m�
� for p� � � � ��
��

where we �nd the well�known contribution to the Uehling e�ect�
that is� the modi�cation of Coulomb�s law due to vacuum polar�
ization� Alternatively� for large s � �p� we have

�ren
�
p�
�
�

�

�

�
ln

s

m�
� i �

�
� for s � �p� �
� ��
��

It is perhaps worth mentioning that the re�summation in Eq������
will remain valid also when QED is embedded into the Standard



Model� but only as long as we limit ourselves to the inclusion of

fermion loops� There are problems� however� with boson loops that
are not gauge�invariant by themselves�
We also present the V ren

�

�
Q��m�m

�
once more in an integral

form�

V ren
�

�
Q��m�m

�
� �

�
�
��
� ln

m�

��

�
A
�
	�� �

Q� � �m�
� Z �

�
dx

�

� �Q�� x�



� ��
��

�� �Q� � �m�
� Z �

�
dx

�

� �Q�� x�
ln
�
�
Q�� x

�
m�

�
Z �

�
dx ln

�
�
Q�� x

�
m�

� �
�
Q� � �m�

� Z �

�
dx

�

� �Q�� x�
� 
�

in order to emphasize that there remains a pole and a scale�dependent
factor�

�

��
� ln

m�

��
� ��
	�

which has an infrared origin and which will be compensated for in
any realistic calculation by the contribution of the real soft photons
emission and also by the box diagrams� which are ultraviolet �nite

by themselves�


�� The MS renormalization scheme�

The main motivation of this subsection will consist in carrying out
the one�loop renormalization programme by prescribing precisely
what the counter�terms are� after which the parameters of the La�

grangian are determined from some set of experiments�
We will make contact with the MS renormalization scheme

where we start by computing the ultraviolet singularities of the

one�loop diagrams for de�ning the counter�terms� These will in�
clude self�energy diagrams as well as vertices� since boxes in QED
are free from ultraviolet poles� The residues of the pole at n � �
are listed in the following where we adopt the general strategy of

the MS scheme� where not only the pole but also the various fac�
tors containing � and ln�� i�e� ��� are renormalized away� Thus�



in MS the singular parts are subtracted and the parameters are
de�ned at an arbitrary scale� This scheme has its natural habitat
in QCD where� because of con�nement� there is no special mass

scale in the renormalization procedure�
Actually our main emphasis in this section will rather be on the

fact that� in principle� any value could be assigned to the constant

C in Eq������ since physical observables will not depend on any
particular choice of C� assuming that gauge invariance is preserved�
or� in other words� that no ad hoc procedure spoils the underlying

cancellations in the theory�
So� the residues of the pole at n � � are

� ���� the photon self�energy�

PP ����� � ����� i
e�

�� ��
�
p�p� � p�	��

� �

��
� ��

�

� "� the electron self�energy�

PP ��� � � ����� i
e�

�
 ��
�i�p � �m�

�

��
� ��
��

� ��� the e
�e�� vertex�

PP ���� � � ����� i �ie�
e�

�
 ��

�

�

��
� ��
�

The structure of the divergences �xes the renormalization constants
up to a choice of C that we �x according to the MS renormaliza�
tion scheme�
First� we deal with the photon propagator� From Eq����	��

PP ���� � � ����� i
e�

�� ��
�

��
� ��
��

The renormalization in this case amounts to the requirement that

	ZA � � �

�� ��
�

��
� �����



We now consider the dressed electron propagator� Eq������� with

PP

�
	 �

����� i



� � � e�

�
 ��
��m � �i�p �m��

�

��
� �����

The denominator of S becomes� for i�p� �m
h
����� i S

i��
� i�p �m � e�	S�

	S � 	Z �i�p �m� � 	m�
�

�
 ��
m
�

��
�

�

�
 ��
�i�p �m�

�

��
�

which we require to be �i�p �m� This gives

	m � � �

�
 ��
m

�

��
� 	Z � � �

�
 ��
�

��
� �����

From the e�e�� vertex� Eq������� which we require to be� ����� i ie���
we obtain another counter�term�

	Ze � ��

�
	ZA � 	Z � �

�
 ��
�

��
�

�

�� ��
�

��
� �����

As a result� the MS renormalized QED Lagrangian becomes

LR

QED
� ��

�

�
�� e�

����
�

��

�
AF��F�� � �

�

�
� � e�

����
�

��

�
A ���A��

� �����

�
�
� � e�

�
��
�

��

�
A ���� �m

�
� � e�

���
�

��

�
A �� � ie

�
� � e�

�
��
�

��

�
AA��
���

In this way� all one�loop Green functions of QED in the � � �
gauge have been made �nite and the renormalized parameters are
subsequently �xed by comparing with some set of experimental

data points� noticeably the electron mass and the �ne structure
constant�
For instance we start from the Lagrangian Eq������ and compute

the residue of the pole at p� � 	 in e�D�� � The electric charge
is de�ned through the coe cient of the pole at zero momentum
transfer of the scattering between two charged particles� From the
de�nition of the �ne structure constant� e� � ���� we obtain

e� �
� ��

� �
�

� �
ln
m�

��

� ���	�



Then e�D�� for arbitrary p� is considered� where according to
Eq����	� and Eq������

�
�
p�
�
� ���	ZA �

�

�
�

�

�

�
�� �

m�

p�

�
A Z �

�
dx ln

�
�
p�� x

�
m�

� ���
�

The physically relevant object is the e�ective electric charge� Eq�������
for which we need

�
�
p�
�
� �

�
ln
m�

��
� �����

In this way� it becomes clear why the physical building blocks are
identical to those in the OMS scheme� The main reason is that in
computing Feynman integrals we always have the combination

�

��
� ln

scale�

��
� ����

and in any observable�where ultraviolet in�nities cancel�evaluated
at a given scale the renormalization condition replaces the ��dependence

with a physical scale� In the e�ective electric charge this replace�
ment is �� m� In short� while �

�
p�
�
is ��dependent in the MS

scheme the whole scale dependence disappears in �ren
�
p�
�
�

The same will remain true for the renormalized vertex� Eq���	��
Indeed� from the de�nition of the QED vertex� Eq���		� we see that
the ultraviolet pole is Q��independent� thus� in its renormalization

the �� �ultraviolet� dependence will drop out�


�� Parameter renormalization and the S�matrix� the GMS framework

To continue our discussion of the renormalization procedures within

QED we turn to parameter renormalization� Eq������� with wave�
function renormalization factors for external on�shell particles� This
procedure� as we have already stressed� will be enough for dealing
with �nite S�matrix elements�
The starting point will be the following Lagrangian�

LR

QED
� ��

�
F��F�� �

�

�
���A��

� � � ��� �m�� � e�	m��

�ieA��
�� � i	Zee
�A��
��� �����



In this subsection the �nite parts of all diagrams will always be
included� For the electron propagator we have

S �
�

����� i

�
	i�p �m� e�	m � � ��p�

����� i



���� ����

We can rewrite it as a Taylor expansion around i�p � �m
h
����� iS

i��
� i�p �m� e�	m � 	S�

	S �
�

����� i

h
� �im� � �i�p �m� �

WF
�O �

�i�p �m��
�i
�

S will show a pole at i�p � �m� where m is the physical electron
mass� Thus� mass renormalization should be as follows�

e�	m �
�

����� i
� �im� � ����

and the electron propagator S becomes

S �
�

����� i

��
� � �

����� i
��

WF
�O �i�p �m��

�
�i�p �m�

���
� ����

The proper renormalization of the electron wave function requires
us to consider the introduction of Dirac spinors and a limit for
on�shell electrons� It gives

�uSu �
�

����� i
�uZ���� �

i�p �m
Z���� u� for p� � �m�� ����

As before� we have de�ned a Z factor as

Z � �� �
WF

����� i
� ����

Consider now any amplitude M with an external electron line�
then the corresponding S�matrix element becomes

Z��� �u
i�p �m

Z �i�p �m� �O �
�i�p �m��

�M� Z�����uM � �u
�
��

�

�

�

����� i
�

WF

�
M�

��	�
Substituting the corresponding expressions for the B functions� we
obtain

�
WF

����� i
�

e�

�
 ��

�
��

��
� ln

m�

��
� � � �

IR

�
A � ��
�



There are several possible realizations for the infrared part� accord�
ing to the adopted regularization� but here we just use dimensional
regularization�

�
IR
�

�

��
� � ln

m�

��
� ����

It is instructive to compare "
WF
� Eqs����� and ������ with �Z�

derived in Eq�������
For the e�e�� vertex we use again the de�nition� Eq���	�� The

V� part does not contribute to renormalization and for V� we could
use some general result but� given the inherent simplicity of QED�
we simply refer to Eq���	��� For Q� � 	 we obtain

�
�
Q�

�
� ����� i

i e�

�
 ��
V�

�
Q��m�m

�
�

� ��� � ����� i
i e�

�
 ��

�
��

��
� ln

m�

��
� � � ��

IR

�
A � ���

Now vertex corrections and fermion wave�function factors are com�
bined and we are naturally led to consider everything in the limit
of zero momentum transfer where the residue of the pole in the
scattering of two charged particles de�nes the �ne structure con�
stant� We have again veri�ed� by explicit calculation� the Ward
identity

� ��� � ie�
WF
� �� ����

Therefore� only the photon self�energy contributes to the electric
charge renormalization when we impose the renormalization con�
dition at zero momentum transfer� Note that both contributions�
vertex and fermion wave�function factor� are separately infrared�
divergent� The dressed photon propagator� which happens to be
infrared �nite� becomes

e�D�� �
�

����� i

	��
p�

e�
�
	�� e�

� ��
�
�
p�
�
���� �����

where �
�
p�
�
is de�ned by Eq������� For our choice of the renor�

malization condition it follows that

� �� ��� � e�
�
	�� e�

� ��
����



���� �����



Substituting back in the photon propagator we �nd the well�known
phenomenon of the evolution of coupling constants in �eld theory�
We actually �nd more� the � dependence cancels and we �nd ex�
actly the same result as in any renormalization scheme�

e�D�� �
�

����� i

	��
p�

� ��
�
p�
�
� �

�
p�
�
� � ���

�
	�� � ���

�
�ren

�
p�
�
����
�����

where �ren
�
p�
�
is given by Eq�������

This is exactly Eq������� Clearly� all divergences and scales drop
out in the di�erence since�this is really the crucial point�they

do not depend on p��
Recall now Eq������� In QED� as in any other renormalizable

theory� the in�nities cancel after renormalization in any physical
observable� Therefore� we can re�formulate the theory by setting
everywhere ���� to zero and by promoting the bare parameters to
MS parameters� In other words� de�ning an MS parameter is
equivalent to adopting the heuristic rule �valid at one�loop�

�

��
� ln�� � ln��

MS
� �����

in the relation expressing the bare parameters in terms of the renor�
malized ones� Thus�

e�
MS

�
��
�
� � �� ���

�
�� � ���

� �
ln
��
MS

m�

��� � � �� ���
�
� �

� ���

� �
ln
��
MS

m�

�
�

�����

Obviously� �
�
p�
�
and e�

MS
are di�erent objects and only the former

has a physical interpretation� while the latter is nothing more than
a convenient way of expressing the bare parameters of a renormal�
izable theory� since it is universal� that is� process independent� and

takes into account the universal large e�ects from fermion loops�

� Note that we could start from a QED Lagrangian without
counter�terms and relate the bare parameters directly to the

experimental data� Indeed� nowhere from Eq����	� to Eq������
is the notion of counter�term actually needed� Certainly� the



bare parameters have no physical meaning but� on the other

hand� relations between measurable physical quantities� where
the parameters drop out� are �nite and it is therefore possible
to perform tests of the theory in terms of such relations by

eliminating the bare parameters�

By virtue of the renormalizability of the theory� all divergences
drop out in the �nal answer� What is left� for practical convenience�

is the introduction of intermediate parameters like e�
MS

�
��

�
� The

only meaningful quantity will be the running coupling constant�
Eqs������ and ������


�� Gauge dependence and renormalization

It is� of course� important to verify the gauge independence of the
S�matrix and for that we reconsider some of the building blocks in
a general R� QED�like gauge where the only modi�cation occurs
for the photon propagator

�

p�

�
	�� �

�
��
A
� �

� p�p�
p�

�
� ���	�

At one�loop the photon self�energy remains unchanged� since the
diagram of Fig� � is manifestly gauge�invariant� while the fermion
self�energy receives an additional contribution

� � �	�
 �
�
��
A
� �

�
��� ���
�

The extra piece is given by

�� � � ����� i
e�

�
 ��
��B� � B�� i �p �mB� � �

�
p�b�� � b��

�
i �p�� �����

Making use of the relations among the Bij�functions and the bij�
functions we arrive at

�� � � ����� i
e�

�
 ��
�i �p�m� �B� �p� ��m� � ��i �p �m� i �p b� �p�m���

����
From Eq������ it is immediately seen that the additional contribu�
tion vanishes on�mass�shell� therefore the mass counter�term will



be independent of �
A
� The same is not true for the wave�function

renormalization factor or� which is equivalent� for Z�� Indeed� we
�nd that

��
WF

� � ����� i
e�

�
 ��
�B�

��m�� ��m
� � �m�b�

��m��m
�
�� �����

The term in brackets is easily evaluated and gives

B�

��m�� ��m
� � �m�b�

��m��m
�
�

�

��
�

�

��
� �����

where we have used the relation b�
�
�m��m

�
� �B�p

�
�m�� 	�m

�
�

Thus� the gauge�dependent addition to the wave�function renor�
malization factor� or Z�� is neither infrared �nite nor gauge inde�
pendent� For the vertex corrections we �nd that

�
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Q�

�
� �	�
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Q�
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with an extra factor
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��m��m
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After using again the properties of the bij functions we end up with
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�
Q�

�
� �B�

�
�m�� ��m

�
� �m�b�

�
�m��m

�
� �����

In this way we can prove that the usual Ward identity

� ��� � ie�
WF
� � �����

is satis�ed for arbitrary �
A
and that� in turn� the Ze factor is gauge

independent�

Therefore� one obtains that the physical parameters e and m

in QED are renormalized in a gauge�independent way�


 The Standard Model vector�boson self�energies�

For the ��� part of the vector
vector transitions all the results can
be cast in the following form�

S		 � ����� i
g�s��
�
 ��

�		�p
�� p�� SZZ � ����� i

g�

�
��c��
�

ZZ
�p���



SZ	 � ����� i
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SWW � ����� i
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WW
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g�
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HH
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where we have transformed from the �A�Z� basis to the ��� Q�
basis� de�ned by�

�
ZZ
�p�� � �
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�p��� �s����Q

�p�� � s���		�p
�� p��

�
ZA
�p�� � �

�Q
�p��� s���		�p

�� p�� ���
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Within the SM and in the � � � gauge we also have the following
identities� expressing the results for total transitions�
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The most important observation here is that "
�Q
�	� is not zero

and so it will be the Z
� transition that is most important for
the electric charge renormalization� Next we split the self�energies
into a p��proportional part and the rest� according to the following
de�nition�
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The various components are given by�
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It is worth presenting here the fermionic component of the Higgs
boson self�energy�
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Note that the fermionic component of the Higgs
vector boson tran�
sition vanishes identically as it should� since it is proportional to

�B�

�
p��mf �mf

�
� �B�

�
p��mf �mf

�
�p� � �����

In the above expressions we have not yet included tadpoles for
the W 
W and for Z
Z transitions� To understand that no real
problem is hidden in tadpoles we will say that in all physical observ�

ables we encounter combinations like "
WW
�p�� � "

WW
�q��� where

tadpoles drop out� or like "
WW
�M�

W
��"

ZZ
�M�

Z
� where again tad�

poles drop out and where the combination is gauge�parameter in�

dependent� If we do not add tadpoles� then the combination is still
gauge independent but the two pieces are not separately indepen�
dent�

� Fermion wave�function renormalization

The fermionic self�energies are the building blocks used for the
evaluation of wave�function renormalization factors� After writing
the parameterization

��i�p� � ����� i �a� � a� 
� � �a� � a� 
�� i�p� ���	�



� �WV �WA��

� �WV �W �

A
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Figure ��� Treatment of external fermion line in an S�matrix element�

and using derivatives� a�i � �ai��p
�jp�
�m�� we obtain the wave�

function factors shown in Table �� with

WV �
�

�
a� �m�a�� �ma�� � WA �

�

�
a� � ���
�

In the SM we always have a� � 	� In going from a Green function
to the corresponding S�matrix element the wave�function renor�
malization factors enter multiplicatively�

�� Wave�function renormalization factors in the � 
 � gauge�

In what follows we present the explicit expressions for the quantities
W �

V and W �
A � in the � � � gauge� The superscript ��� will be

dropped since no confusion is created� It is convenient to split WV

into a QED and a non�QED part� WV � W e	m	
V �Ww

V � that is�

Table �� Wave�function renormalization factors for fermionic lines

� �WV �WA�� incoming particle

� �WV �W �

A
�� outgoing particle

� �WV �WA�� outgoing anti�particle

� �WV �W �

A
�� incoming anti�particle

to separate out photonic �em� and purely weak �w� components�



We derive for the electromagnetic part�
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and for the remaining �weak� factors�
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with p� � �m�
f �

� The Standard Model V ff vertices

One of the essential ingredients of any calculation of radiative cor�
rections in the SM is given by the three�point vertex functions�
With di�erent external and internal lines they will enter into the
calculation of decay rates like

Z�H � ff� W � ud�ud�� �����

and of processes that share a special relevance for the renormaliza�
tion procedure� namely

e��� � e���� �at Q� � ��� or �� e�e�� � �����

Finally� there are distributions for various processes�

e�e� � e�e�� ff �W�W�� 

� Z
� ZZ�HZ� �����

In this section we examine a particular class of vertices de�ned by
having the structure V �S�� ff � i�e� vector �scalar� into fermion



pairs� We do it �rst in the �t Hooft
Feynman � � � gauge� and

extend the results to arbitrary � including the unitary gauge�
Every diagram is expressible as the sum of an appropriate num�

ber of Lorentz structures � scalar form factors bearing some sub�

and superscripts�

���� V ff vertices in the �t Hooft�Feynman gauge and in the massless limit

For the � � � gauge and in the limit where we ignore fermion

masses� all diagrams can be classi�ed according to their internal
lines in a unique way and only two types will occur� the F�V F�

abelian type and the V�FV� non�abelian type� where di�erent F

or V internal �elds are only required inW �decay� If the top quark
occurs in the �nal state� then H�lines or ��lines will be present and
we will also have FHF � etc� structures�
The most general vector boson
fermion
antifermion coupling�

V �Q�� f��p��f��p��� �����

can be reduced to a combination of six form factors �for vector�like
structures��
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with Q � p� � p� � 	 and p�� � �p� � p��� � p�� � �p� � p��� �
For the neutral current sector there are �� diagrams of this kind

and only �	 for �ff � while we have �� of them for charged currents

and �� for the Hff vertex�
In this subsection we are mostly interested in the limit of small

fermion masses where only F
V
and F

A
contribute� They can be

computed starting from the scalar three�point functions� Another
way of representing the vertex corrections� always in the massless
fermion limit� is
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We consider �rst the neutral current �hereafter NC� case� i�e� �� Z �

ff � Two vertices survive in the massless limit� in our terminology
they are of the FV F or V FV type� and are shown in Fig� ���

Z�A

f

f

V

f

f

f

W
f �

W

f

Figure ��� FV F and V FV vertices

The result depends on the V�A ratios for the vertices and these
two di�erent structures can be written as

V FV F
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Z
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v���
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�

where v�
� is the corresponding three�vector boson vertex and

d� � q� �m�
� � d� � �q � p��

� �m�
� � d� � �q � Q�� �m�

� � �����

FV F Con�guration� For the �rst diagram we can obtain the �nal
result by using

p�� � �m�
f � p�� � �m�

f � �p� � p��
� � Q��

m� � mf � m� � m� m� � mf � where m � ��M
�
�

m� � mf � � m� �M� m� � mf � � ����

where f � is the isospin partner of the f �fermion� We obtain for the
abelian �a� case

F
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V
F
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� F

A�Ba
� �g

A
F
Ba
� �����

where B � �A�Z� and where � is a coe cient coming from the
internal vertices� Furthermore� we have introduced

f
V
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Ignoring again terms proportional to the fermion masses we �nd
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Within the SM we have six possible diagrams of FV F abelian�

type� the corresponding constants are listed in Table ��
The higher�order C�functions� which appear in Eq������� can

be reduced to purely scalar functions by using the results of the
previous sections� However� this reduction simpli�es considerably
for massless fermions and in what follows we indicate the results�
First� we introduce a subtracted B��function�
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where we have introduced r� � �M��Q��
V FV Con�guration� For the second type of diagram we have
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with the following assignment of variables�
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Table �� Constants of FV F abelian�vertices
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In this case� we easily �nd the important combinations as f
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the ��� Z� ff vertices� For the V FV con�guration and in the limit
of massless fermions we introduce another subtracted B��function�
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CC Con�guration� Also very important is the charged current
�CC� case� a vertex with an external W boson line� We will give
the explicit expression for the W�du couplings� where u and d
denote arbitrary partners in the isodoublet� First� we have two
abelian diagrams in the massless limit� They can be cast in the
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Figure ��� CC F �V F vertices�

following form�
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A reduction of higher�order form factors is again achieved with the
help of Eq������� The remaining four non�abelian diagrams that
survive the massless limit are again written as
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The non�abelian form factors are expressible through the auxiliary
function
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where all Cij functions have arguments f	� 	� Q��Ma� 	�Mbg� The
result for the form factors is
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It can be easily proven that Vab is symmetric in its two indices� i�e�
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� In this case� the reduction is given by
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So far� we have discussed only the massless approximation� To go
further with our derivation we need to consider themt�dependence�

���� The mt�dependent part in � 
 �

For massless fermions the Zff couplings receive a correction fac�
tor�
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When we consider the Zbb vertex there will be two additional
diagrams involving internal ��lines� Collecting all terms we end up
with the following expressions where mb has been ignored every�
where� but not mt�
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It can be seen that four di�erent combination of Cij�functions are
needed in this case� They are de�ned by
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For the �bb vertex we obtain
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As a result� the vector and axial
vector current vertices are given
and we may turn to the scalar current�

�� One�loop renormalization of the electric charge

To begin the actual discussion on renormalization of the SM we

consider the one�loop renormalization of the electric charge� We
will use the �ne structure constant �� de�ned through the residue of
the pole at zero momentum transfer of charged particles scattering�

for example� electron
muon scattering� First� we introduce the
problem by discussing some of its aspects in the t�Hooft
Feynman
gauge and subsequently we will prove the gauge invariance of the

result�

���� Electric charge renormalization� the � 
 � gauge

An unpleasant feature that shows up in the SM is that the Z
�
transition does not vanish at p� � 	� i�e� "

�Q
�	� �� 	� due to bosonic

loops� Accordingly� we should add the corresponding contribution
to the one�loop renormalization of the electric charge�

� �� � g�s�� �� � 	�� � 	� � 	
WF

� 	V � 		 � 	mix � ��	
�

where �
WF
is the wave�function factor for the external fermions� �V

derives from the �ff vertices at zero momentum transfer and ��
and �mix from the photon self�energy and from the �
Z transitions
again evaluated at zero momentum transfer�

There is nothing wrong with the one�loop procedure illustrated
in Fig� ��� but we prefer to present an alternative derivation that
will become useful whenever we improve upon the pure one�loop
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Figure ��� The electron scattering in the Coulomb �eld�

calculation� Let us consider the Z
� transition in the R� gauge�
For p� � 	 we obtain
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Consider now the Lagrangian written in terms of the non�diagonal
�elds Ba

� and B
�
�� The mass term originates from the interaction

with the Higgs �eld� through the term

L� � ��

�
g�hv�iW�

� W
�
� �

�

�
hv�i �gB�

� � g�B�
�

��
� ��	�

where hvi denotes the Higgs vacuum expectation value� The
whole procedure amounts to de�ning a diagonalization in the neu�
tral sector at p� � 	 and� after the inclusion of one�loop corrections�
respecting gauge parameter independence� This is best accom�
plished by a re�de�nition of the SU��� coupling constant g�

g � g
�
� � � g�

�
� ��	��

where � is a constant yet to be speci�ed� As we did before� the
weak mixing angle is introduced in terms of g��

g� � �s�
c�
g � ��
��

together with the physical �elds�
 Z

A

�
A �

�
 c� �s�
s� c�

�
A
�
 B�

B�

�
A � ��
��

The bareW mass is now de�ned by the following equation� g�hv�i �
�M�� Thus� for the Lagrangian we obtain

L� � �M�W�
� W

�
� �

�

�

M�

c��
Z�Z��g�M��

�
�W�

� W
�
� � Z�Z� �

s�
c�
Z�A�
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The new terms of order g� will contribute to the self�energies� re�
sulting in a shift

�
�Q
�p�� � �

�Q
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�Q
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 ��M���

�
���WW
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The choice of � is almost immediate� we observe that

�
�Q
���j�� � ��M���M� ��
��

and choose
� �

�

 ��
��M� � ��
	�

which is ��independent by construction� For arbitrary � we still do
not have "

�Q
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However� if we choose the � � � gauge� then�here and only here�
we have "

�Q
�	� � 	� The shift g � g will introduce new terms

also in other sectors of the Lagrangian� For our present purposes
the relevant ones come from the fermionic part which� written for
an arbitrary isodoublet� becomes

Lf �
i

�
�
�

�
g�B

�
� � gBa

��a
�

�� �

i

�
g�B

�
� d
�
�d�
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�
g�B

�
� u
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We put
gi � ��is�

c�
g� i � �� �� �� ��
�

and obtain the solution

�� � � � �Qu � �� � �Qd � �� � ��Qd � �� � ��Qu � ��
��

From Lf we derive new vertices which will be called special ver�
tices�

fA�Zgff � � ����� i
i

�
g�fs�� c�gI 	�
f �
�
� �

Wud � � ����� i
i

�
p
�
g�� 
�
� � �����

In our convention a special vertex will always be denoted by an
open box� �Fig� �� The introduction of special vertices will prove



to be crucial in showing the ultraviolet �niteness of many results�

Later on we will introduce also special trilinear vertices� for exam�
ple� ��Z�W�W��

�� Z

f

f
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Figure �� Special vertices�

Once all relevant one�loop terms are computed then the renor�
malization condition at zero momentum transfer gives

� �� � g�s�� �� � 	�� � 	� � 	
WF

� 	V � 		 � �����

Each correction will be split into an e�m� part and a genuinely weak
part� �i � �e	m	

i ��wi � There is a QEDWard identity �Fig� ��� which
can be written as follows�

	e�m�
WF

� 	e�m�
V

� � � �����

and we are left with the purely weak sector� For de�niteness we
study the scattering of two charged particles� ff � � ff �� The
corresponding wave function factor for the whole process is

	w
WF

� �
�
Ww�f

V
�Ww�f �

V

�
� �����

In the limit where we ignore all fermion masses but mt the result
is rather simple� The wave�function renormalization factors to be
associated with external fermion lines read as follows�

fWw�f
V

� W f
A
g � g�
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with w
��	
W given by Eq������ The non�e�m� vertex corrections�

evaluated at p� � 	� can be cast in the form
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We can write
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where the F
��	
cl �	� functions are de�ned by Eqs������ ���� and ����

to be the abelianW and Z clusters and the non�abelianW cluster�
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Figure ��� U	�
 Ward identity�

We repeat here� for completeness� the de�nition of cluster of
vertices� although already given elsewhere in the book� A neutral
current vertex is termed abelian if it contains one vector boson
internal line with no trilinear vector couplings� and non�abelian
otherwise� A cluster is obtained by replacing vector boson internal
lines with ��lines in all possible ways that are allowed by Feyn�
man rules� Collecting Eqs������� ����� and ���� we can prove
The validity of the U��� Ward identity contained in Eq�����
�Fig� �� is naturally extended in the full SM to include the
non e�m� parts� i�e�

	w
WF

� 	w
V
� � � �����

This theorem allows us to write the complete �ff interaction as

V 	ff
�

�
p�
�

� ����� i
ig�s�
�
 ��

�v
��FV �p
�� �GA�p
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��u�

FV �p
�� � F vert

V
�p��� F vert

V
��� � GV �p

�� � Gvert
A

�p��� Gvert
A

��� � ����

where the superscript �vert� indicates that wave�function renormal�
ization factors are excluded�
To summarize� we �nd that in the � � � gauge the non�self�

energy corrections are ultraviolet �nite� there is no parity violation

in the e�m� current at low energy and the renormalized neutrino
charge is zero�



���� Electric charge renormalization� the R� gauge

Having performed the electric charge renormalization in the renor�
malizable � � � gauge we must enquire about the gauge indepen�
dence of the procedure� Let us consider the �bb interaction in the
R� gauge and let us �x p� � 	� in order to see how gauge parameter
independence is achieved� even in the presence of a heavy fermion�
The �rst ingredient that we need is given by
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which represents the sum in the R� gauge of vertex diagrams

�abelian and non�abelian�W and Z clusters� and of wave�function
factors �Fig� ����
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Figure ��� �� correction� including vertex diagrams and wave�function factors�

Using the low�energy limits of the scalar functions Fcl �	�� and
wave�function renormalization factors for b�quarks in the R� gauge�
we �nd ���V �A��� and� moreover� V � A � �� with

� � ����� i
ig�s�Qf
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If we decompose �� into Q and L components� according to the
equation

�� � �Q 
� ��L
�
� � ����

then only �L is non�zero and gauge parameter dependent� as can
most easily be seen by using B��elds instead of the physical ones�



This particular combination of one�loop corrections is zero in the

pure QED sector� while here it di�ers from zero even in the � � �
gauge when we compute it prior to the �eld re�diagonalization� In
general we �nd a ��dependent expression which� however� is quite

simple if compared with Fk �	� or W
w�b
V �A separately�

In the vertex corrections that we have shown the fermion wave�
function factors are not yet included� We observe that the vector

and the axial
vector parts are di�erent and� moreover� they also
depend on �

Z
� M� and mt� All these dependences cancel when we

include the appropriate corrections for the external fermions� and

in turn this is related to the fact that the only gauge parameter
dependence of vector boson transitions in the neutral sector�the
missing ingredients�comes from W and charged � loops�
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Figure ��� The transition T� that accounts for the Z�� mixing and for the photon wave�function
factor�

In order to complete the one�loop �ff interaction we also need
the Z
� transition� The reason for this is simple� in the R� gauge
the transition "

�Q
�	� is not zero� Therefore� we must consider

T� � ����� i
ig�

�� ��

�

�
	s��Qf�		��� � s�

�
�Q
���

M�

�
��

�
� �s��Qf � �

�

�

�
� �
����

The transition T�� which accounts for the Z
� mixing and for
the photon wave�function factor� splits naturally into two parts
�Fig� ����
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As before� only TL is gauge parameter dependent� From the special
vertex we also obtain
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It can now be proved that the complete�one�loop�interaction
�ff is given in terms of transitions by
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With this result we have been able to prove the following theorem�
The low�energy axial�vector coupling of the photon is zero

in the arbitrary R� gauge� This is evident from Eq�������
The renormalization of the electric charge� e � gs�� in the
SM is gauge parameter independent� Indeed� using ����	� and
"

�Q
�	�� we obtain that in the sum the ��dependent terms cancel

and the �nal result is
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