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1 QED Lagrangian, U (1) invariance and Feynman rules

We will consider the simplest case of a gauge theory, quantum elec-
trodynamics (QED), describing the interaction of spin—% particles
with photons. A gauge-fixed Lagrangian for QED is given by

1 1

Cam = = FurFu = 5 (€. = 207 0= ieQeh+mp) vy (1
where .
F., = @LA,, — 8,,Aﬂ, C, = —g @LA”, (2)

and where the sum runs over the fermion fields, f. Each with
charge eQ) ¢, e, being the charge of the positron, and mass m,. We
have leptons f =1[=-e,u 7, with Q; = —1, quarks f = u,c and
t with @y = 3, and quarks f =d, s and b with Qy = —3

3
The Feynman rules of QED are particularly simple:
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We will confine the calculations to a special gauge, the renormal-

pupul
p?

(3)

izable or Feynman gauge where ¢ = 1. It is well known that the
&-dependence cancels in the S-matrix for a given physical process,
although this is not necessarily true for Green functions.

+o- +,,— ot

2 The processes eTe™ — uu ,eTe”

A process of special interest in QED is the annihilation of an eTe™
pair with the creation of a pair of different fermions, for example,

utp, asin Fig. 1



Figure 1: The diagram for eTe™ — pp~ annihilation.

In this case, only the annihilation diagram contributes to the
cross-section at the lowest order. If, instead, the flavors of the
incoming and outgoing fermions are the same, then we have two
diagrams and, for f = e (Bhabha scattering).

Figure 2: The t-channel diagram for Bhabha scattering, eTe™ — eTe™.

Beyond the lowest order the situation is more complicated due
to the presence of radiative corrections. We will face multi-loop
diagrams with all the complications inherent to the renormaliza-
tion procedure but also another class of divergences will appear:

infrared and collinear.
We can now compute the unpolarized cross-section in the Born
approximation.

e (p-) e (p+) = fla-) flas). (4)
The total cross-section for such a reaction is given by
(27T
e LT

where M is the amplitude of the process. The Eq.(5) defines the
normalization of the amplitude; symbol Ygpins stands for summa-
tion over initial and final spin degrees of freedom. If the initial



pair is assumed to be unpolarized, then we should also average
over the initial spin states, with an additional factor 1/4 in Eq.(5)
and below. The dI's is an element of 2 — 2 phase space

ir, — dQ+3 dq—3
(27)" (27)
(6)

The variable s is the square of the total energy in the centre-of-mass
system (c.m.s.) and the Kéllen A-function is defined by

My, 2) =2 +y* + 22 =2 (xy+ 22+ y2). (7)

We now introduce the usual Mandelstam invariants s, t and u to re-
place the non-covariant quantities, for example, energies and scat-
tering angles:

s = —(pr+p)’=—(¢:+¢) >0,
t= —(py—q)’=—(p-—¢) <0,
= —(pr—g) == —q) < (8)

If we introduce the scattering angle 6 in the centre-of-mass system
as the angle between the incoming e™ and the outgoing f, then

t = mi+mi+2 (| p; ||q1|cos€—Ee+Ef)
1

= —5ls-2 (m2+m3) — s B3y cos ],
wo= —gls =2 (w24 md) 4 4.0 cos ), 9)
where (5.t ) .
fj=—"g—=1-—1 (10)

with 3 being the relativistic velocity | | /E. The quantities s, ¢
and u are not independent but fulfil the identity

s+t+u=2(ml+mj). (11)

In this way we obtain to the following expressions for the differential
phase space and cross-section:

Iy =

1 1 do .~ 1 —

ff Born |2

=t — S 12
4 (27T)5 sB. dt 16 w s232 o | M I (12)

0 (g5 +m3)d (a2 +m3) 0 (q10) 0 (q-0) 0 (P4 +p- — g1 —q-).



with conditions defining the physical portion of the phase space,
le.

s>4m?, X >0, (13)
where the complete expression for X is
1
X = g O (smtamt) A somf ) X (=P 0" =P =),
P=pi4+p=q¢+q¢, q=pr—q¢=q¢ —p_. (14)

The kinematic interpretation of the condition X > 0 is that the
cosine of the scattering angle in the centre-of-mass system must lie
between —1 and +1. The differential cross-section, Eq.(12), can
be related to the differential cross-section for the scattering angle
in the centre-of-mass system

do ~+ do,+ s 1
I If _
ds)_ dt 4w Bells = 64 725

&i | MBorn |2 ‘ (15)

2.1 The Born cross-sections

In this section we shall give the complete Born cross-section for
two of the relevant processes: Bhabha scattering and annihilation
into fermion pairs.

2.2 Bhabha scattering.
Consider now the amplitude of electron—positron scattering at O (e?),

e” (p_)et (py) = e (g-) e (g1):
1

MP = — 07T (py) uu (p=) T (=) v (q4) P

it () p (p) @ () v () (_;
P+ Q+)

=

(16)

The full expression for the unpolarized cross-section is therefore

dt  s(s—4m?)

2
o+ 2mo {51_2 [(u_ 2m?)’ + (t - 2m§)2+4m§s] (17)

2 1
s+ 07 = dmf] 4+ 5 [(u—2m2)" + (s = 2m?)" +4ml]},



with the standard notation for the fine-structure constant:

62
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The amplitude Eq.(16) is the sum of two terms: s- and ¢-channel

0%

(18)

photon exchange. Of particular interest is the behaviour of the

cross-section for two limiting cases:
Case 1 m?/s — 0. Here we have
2 4 4
Cclz?zm = o |sin' (6/2) +cos™ (8/2) =2 Egg)) + “Sri;iffs( 9%2) ,
(19)
where the first two terms are s —s, the third is the s —1 interference
and the last is ¢t — £,

Case 2 4m?/s — 1. Here we have:

do o+ .- onmz

where only the t — ¢ contribution survives.

(20)

2.3 The s-channel annihilation process.

The cross-section for the annihilation ee™ — ff (f # €) can be
casily derived from the previous one by omitting out the ¢-channel
diagram and by scaling the charges of the flavors involved. In the
high-energy limit we obtain
dO'fT
ds?

c.m.s

2
= Q% Z—S (1 + cos? 6) : (21)

Note that the total cross-section for the annihilation process is fi-
nite, which is not the case for Bhabha scattering. The correspond-
ing expression in Bhabha scattering cannot be integrated over all
angles because the integral diverges at § = (0. This divergence is
connected with the physically unrealizable requirement that the
two fermions scatter without the emission of photons. Very low-
energy photon emission cannot be ignored when the momentum
transfer becomes very small (§ — 0). Therefore, it is one more
manifestation of the infrared problem in QED.

0, (e+e_ — ff) = Q?: (22)

4 ra
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The differential cross-section is an even function of the scatter-
ing angle, which results in the vanishing of the forward-backward
asymmetry, defined by

1 do do
d g d g
A = /0 C%Y dcos 6 / C%Y dcosd (23)
v /ldcosﬁ do —|—/ dcos f do_°
0 dcos 0 -1 dcos 0

This property is peculiar to the QED Lagrangian, which conserves
parity. It is modified in higher orders, since they may induce
charge asymmetric effects. Charge conjugation invariance can be
invoked to show that only the interference terms between the low-
est order graph and the two-photon (box) diagrams contribute

3. Similarly, for

to the forward-backward asymmetry to order «
bremsstrahlung contributions, ete™ — f f~, only the interference
between the C-odd initial state radiation diagrams and the C-even
final state radiation diagrams has to be considered for the asym-
metry.

Modifications are also expected by the inclusion of initial and
final state helicities for the fermions, which induce P-odd effects.
Finally, the inclusion of resonances with both vector and axial
couplings to fermions will produce P-odd effects, already in the
lowest order.

For Bhabha scattering, however, the lowest order cross-section
shows forward—backward asymmetry, in contrast with the annihi-
lation cross-section. This is due to the presence of the t-dependent
scattering diagram containing the propagator 1/t in the differen-
tial cross-section Eq.(17). This term is cos#-odd and it causes a
non-zero A,. This particular example is telling us that there are
many different reasons why the forward—backward asymmetry may

arise: from P, C-non-invariance to a trivial kinematical origin.



3 Electroweak Lagrangian and Feynman rules

3.1 Lagrangian building

In this section we give the explicit form of the Standard Model (SM)
Lagrangian in the R, gauge. We assume the simplest (minimal)

scalar sector.
Within the SM Lagrangian there is a triplet of vector bosons
B, a singlet Bg, a complex scalar field K, fermion families, and

Faddeev—Popov ghost-fields (hereafter FP) X* Y7, Y4, The phys-
ical fields Z and A are related to BEL and Bg by

(5)-(2 ) (%) o

where sg(cg) denote as usual the sine and cosine of the weak mixing
angle. The scalar field in the minimal realization of the SM is

1 X M
K=—z =H+2—+i¢
ﬂ(ﬂwﬁ) X +29+¢, (25)

where by H we denote the physical Higgs boson and moreover
M and g are Lagrangian parameters corresponding to the bare
W mass and to the SU(2) bare coupling constant. The total
Lagrangian will be the sum of various pieces. The firstis £, + L.
with the standard Yang-Mills Lagrangian given by

1 1
L, =—-F F — -F) [ (26)

YM i 4 %

and the minimal Higgs sector by

1
L= = (DR) D — KK AR )

S
where A > 0 and symmetry breaking requires p? < 0. Moreover,
we use standard definitions for

Fi, = 9,B)— 0,B}+ gcu.B, B,

pve

Fﬁu = @LBS—&,BS, (28)



and the covariant derivative for the scalar field assumes the follow-
ing form .

1
2
with the standard Pauli matrices 7¢ and g; = —sgy/¢gp. They follow
from the fact that K, as defined in Eq.(25), belongs to a doublet
representation of the symmetry group. The scalar field can be
rewritten as

< a__a /L %
D,K = (@L gB,T" — §gng2) K, (29)

K= % (H + 2% + zqs%a) ( . ) | (30)

so that its covariant derivative becomes
4 1 ‘ a._a U 0 M . a._a 1
DX = ﬁ (au - §9Bu7_ - 59913ﬂ) (H + 2? +io"T ) ( 0 )

1 i MY 1
= —={0,H — - BO(H 2—) —gB%p°
\/5{3“ 29N B (H 427 )+ 5980

. a 1 a M l a 1 c a 1

(1 24) b
. . . _I_

We split the Lagrangian into L., — (D,K)" D,K and Eé, the

latter containing the interactions of the scalar sector and write
Lo, — (DK DK = Lo+ M (Clzﬂaﬂgso + W0 + Wﬂ_c‘?ﬂqﬁ*) , (32)
0

where the charged fields have been introduced as

1 . 1 :

Wi= S (BLEB), = s@Fe),  S=0 6
This part of the Lagrangian contains Z — ¢°, W* — ¢ mixing
terms; they are of the zeroth order in the coupling constant and
their contribution must be summed up if we want to develop per-
turbation theory. There we discover the singularity of the La-

grangian. The construction of the SM continues as follows.
First we add a gauge-fizing piece to the Lagrangian (called Ly
in the following) that cancels these mixing terms. However, it

)



breaks the gauge invariance and successively we must introduce
the so-called Faddeev-Popov ghost fields to compensate for this
breaking. We now specify a non-singular gauge; in fact, a set of
gauges [7¢ depending on a single parameter {. We have a renor-
malizable gauge for finite ¢ and the physical (unitary) gauge is
obtained for ¢ — co. The gauge-fixing piece is

1 una 1 2 _ 1 2 2
Ly = —50C" =S (C") = —crem =S [(@) + ()], (4
where we can write
a 1 a a
C" =~ Ou B+ €M (35)
The various components are given in the following equations: first
1
Cct = —gaﬂwj + EMo®, % ga B, +g quo. (36)
Then we write
1 2
5 @)+ ()] = 62 - §C§, (37)
and derive the gauge-fixing term in the Z — A basis,
1 1 M
C, = _gaﬂAﬂ, C, = _Eaﬂzﬂ + gaqso. (38)
In the R¢ gauge we have that
1 1
L., — (D,K)"D,K—CtC™ — §c§ - 563 = Loop + L7 (39)
The quadratic part of the Lagrangian, Lo, now reads
Loy = _auwjaﬂW;Jr( 52) 0,W,W;
1 1 1
007 (1 52) (0,2,)?
1 1 1
50 ABA + ( 52) (a 4,)?
1
~5OuHOH = 0,67 0,07 — 5 ,0°0,,0"
1 M?

297+ T~
MWW, —§—ZZ

—EMPT T - f 2¢0¢0 MHQ- (40)



The quadratic part of the Lagrangian allows us to derive propaga-
tors. Those for the gauge fields are as follows:

1 Pubv
+ 2 Iz
‘CPFOP - W pz + M2 {5NV + (f o 1) p2 + §2M2}
_ 1 (5 n pupv) _ PuPv
p2 + M2 Ry M2 M2 (p2 + fQMQ)
1 Pubv & puby
- (s ﬂ_) y 41
p2_|_M2 ( H p2 +p2_|_£2M2 p2 ’ ( )
. . . . M
Z is obtained from W= by replacing M — —,
Co
1 Pubv
A — {(5 L+ (2 =12 }
2 ( ) 2
The scalar field propagators are given by
. T 1
+ 24 202 0 ek 49
¢ PP+E ¢ el (42)

3.2 Interactions.

Having fixed the propagators we can spell out the weak Lagrangian,
describing the vector bosons and their interactions including inter-
actions with the scalar system:
ot = —ige {0, 2,WiW, — Zz,wlto,w 1 + Z,wlto,w 1} (43)

—igse {0, AWHW I — A wo,w )+ 4w, w1

L, N2 N2

+59 {(WJWV) - (Wiwy) }
oG {Z, 2 WIW, - 2,Z,W, W, |
o sg { A AWITW, — A AW}
+g°soco { A Z,WIW, T — 24,2, W)W,

1

—gMH {WJW; + 2—2ZﬂZﬂ}
Cop

(W (0,67 — 670,6") = Wy (6°0,07 — 670,0")}



b0 (W) (HO,6™ — 6 0,H) — W, (HO,0% — 670,H))

;ﬁz@nw 50, H)

+ig (SQAﬂ - —Zﬂ) MW e

2 89

+1g (SQA + Z ) (¢+au¢_ - ¢_au¢+)
—ngWqu‘ (HH +0°0" +2¢7¢7)

2
—lg—zﬂzﬂ{HH+¢0¢0+2( —s3) otom)

8 c2
1 25_32 W=l — ! QSHZ HW[ ¢ ]_,_l 250 A, WH ]

29 ey TP 27 p¥ 20O My

1 Sg _
+50 50 A HW o7 — g —9( = 51) ZuAudt 0T — gPsi A A0t o,

where we have introduced the antisymmetrized combination:
AFBl = ATB~ — A B". (44)

The interactions in the scalar sector will be given by the scalar
potential written as

B TR
Ei = — KT K — 5/\ ([x+[x) : (45)
where it 1s particularly convenient to introduce new parameters,
A A 1 M*
9 9 9 2 _

In terms of these we arrive at the following expression for the in-
teraction Lagrangian:

L = —ﬁH{Q%H—I—%[HQ—I— (¢0)2+2¢+¢—]}
~go, M [H' 4+ H (o) + 200" 0]
_%QQQH [H4 4 (¢0)4 4+ oH? (¢0)2
HAH2 G 6T + 4 (8") 6o + 4 (¢+¢—)2]. (47)



3.3 Faddeev—Popov ghosts.

In order to define the FP ghost Lagrangian we must subject C* to
a gauge transformation. In what follows we list the SU(2) @ U(1)
transformation laws of the various fields:

a a b e a 0 0 0
B, = B, + g&?abc/\ B, - d, A, B,— B, — N7,
K — (1 — igAaT“ — igglAO) K, with ¢ = —ﬁ,

2 2 Cq

H+id® = H+id"— g [(A3 + gAY (H + 2% + igbo) + 2iAt o

2 9
B o = 5o (8 ) (H 427 ) + g (A0t - Ao,
_ 1 M l _
07 = 67— 59A (H+2?+z¢0)—§g (A% +iA) o7, (48)

where the appropriate combinations of gauge parameters are
1

?

Al = W(AHFA—), A% = ﬂ(M—A—),
AP = CQAZ —I—SQAA, AV = —SgAZ-I;CQAA,
N gA? = a7, Y, R A Cy, AV
Co Co

(49)
So that we may write

1 A? MY\
O = So (B2 )4 g (Vo aTe),
27 ¢y g 2
1 M . 2 .2
S s (H T iqSO) iy (69 YN 4 QSQAA) 6,
2 g 2 Cy
W, — W, —ighA” (coZ, + spA,) + ig (coA” + sgA”) W, —0,A7,

A, — A, +1igsg (A_M/;r — A+Wﬂ_) — J, A",

Zy = Zy+igeg (MW — ATW) = 0,07 (50)

The gauge transformations can be summarized in terms of the
following equation

C'— '+ (MY 4 gL7) A/, (51)



We can see that M¥ has an inverse and we thus have a permissible
gauge. In the charged sector we obtain

- = —%aNWg+gM¢—

1
- C — Eﬁﬂ{—ig/\_ (coZy + s0A,) +ig (coA” + sgA" )W — 9,A7}

1 M
FgEM {——A— (H Fo 4 iqSO) i
g

5 9AZ¢ + isgA o™ }

2 Cy

1 .
= ¢ 40N - EMPA™ + égc‘%{A‘ (coZyu + soAu)}

_éga {(chZ +soA) W} s €aMd (H +i6%) A~

+— ggM . 9AZ¢ + igseMA ™. (52)

Since we have
C- = C+(M7+gL )N, i=4ZA, (53)

the corresponding propagator is

1 §
—D _ 2 ............. ». .............
f fM X:I: p2 +£2M2 (54)
For the transformation of C, we obtain:
1 1
C, = —EaﬂAﬂ —C, - Eaﬂ[zg% (AW = ATW,) — 0,0
1 . .
= C, + gDA — ggsmﬂ (AW —AYW, ), (55)
giving the propagator of Y4
1 §
_D ............. ». ............. =
5 > = (56)

For the transformation of C , we find:

C, = —Eaﬂzﬁgaqs

1 . _ _ s
—C, — Eﬁﬂ{zg@ (AW = ATW) = 0,A7}



M., 1A i .
zZ 4 Z — —
= CZgEIA —ggA —gg@aﬂ (AW, —AYw))

1 M M
—5593/\2[{ + ifga (A_¢+ — A+¢_) ; (57)

giving the propagator of Y7 as follows:

2
l|:| — gM_Q ............. »Z ............. %
§ ¢ Y ) +£2J\C4_2 (58)
0

The interaction is derived from Eq.(51) and is given by gYiLij X,
where X' = X+, X~ Y? Y4 and

1 !
X' = = (XT+ X"~ X? = —(XT-X~

\/5( +X7), \/5( ) (59)
X? = CQYZ—l—SgYA, X0 = —SQYZ-I—CQYA,

where X+ and Y7 are the FP ghosts associated with the three
vector bosons of weak interaction. Y is the FP ghost associated
with the photon. The interaction Lagrangian in the FP sector may
be cast in the following form

. 1 X7 — ~-+ VA . 1 _ - VA X7

Ly = igea W) (0,77X™ = 9,X"y?) +igaog WV (0,X v - 9,7 x*)
1 A ~ A SUS A

+igso W (0,7 X~ - 9,X"v) +igsrg WV (0, X V* - 9,7 X¥)

_ - 1
Z, (0, X X* = 0,X X7) +igsoz

A (0, XX+ -9, X X7)

i 1
1gCy—
§

1
——ggMH (X X"+X X" +5Y YZ)

9
2

_Z‘ggM 909 ( YZ¢—|— YZ¢ )

+£gng Y'X " -Y'XT¢)
2 Co
igseE M (X‘YAqs— _ 7+YA¢+)

+%g£M (wao _ Y‘X—qso) . (60)



Although most of the calculations are usually done in the [?¢ gauge
described above (and in its limit & — 1) there is the possibility of
introducing a three-parameter gauge-fixing term.

3.4 Interactions with fermions.

Having derived the first part of the Lagrangian we now switch to
discussing the coupling of vector bosons with fermions. A generic
fermion-isodoublet will be denoted by

o= (5) vm e, 61

with a covariant derivative for the L-fields which we write as
Dy, = (0u+gB,T" ), . i=0,..3 (62)

and which is written in terms of the following generators of SU(2)®

U(1):

T" = —%}a, T = —3921. (63)
For the R-fields we have instead
Dy, = (9. + gBjt') vy, i=0,..3, (64)
" = 0, toz—%(%” ;4). (65)
This part of the Lagrangian can be written as
L = 0 Pv =T Pbas == (66)

The parameters g9, g3 and ¢4 are arbitrary constants. Actually,
there is a Ward identity, ensuring the relation g3 = g1 + ¢». In
other words, these constants are not completely free if we want to

generate fermion masses with the help of the Higgs system.
Thus, 9, transforms as a doublet under SU(2) and the 1), as a
singlet. The parameters \; are then fixed by the requirement that



the eam. current has the conventional structure, iQ pe fy, f. We
put e = gsy and derive the solution as

Mo=1-2Qu = —-1-2Qu. A3 =-2Qu. Ai=-2Q4, (67
where the charge is

Qs =21;"|Qy]. (68)
W always couples to a V' 4+ A current and £l reads

L = Zf:llgsleAuf%erl Zf (If —2Qysi + 1If )75) f]

—I—Zd:lzéﬂ ﬂﬂfyﬂ(l—I—’y5)d—i—i2\/§Wﬂ_8'yﬂ(1+’V5)u

, (69)

where the first sum runs over all fermions, f, and the second over

all doublets, d, of the SM.
For the Higgs-fermion sector, in the presence of quarks, we need
not only the field K but its conjugate K¢ too; that is, we need

both K and K¢ in order to give mass to the up- and down-partner
of the fermionic isodoublet. The K¢ is

. ( V2ig* )
K'=—— : (70)
2 ]
V2 X
with the corresponding part of the Lagrangian:
LY = —app Ku, — B, Kd,, + h.c. (71)
The solution for the Yukawa couplings gives
1 my 1 m
Oéfzﬁgﬁa 5f:—ﬁgﬁd- (72)
The last part of the Lagrangian is now
LS ==Y myff+ L (73)
f

with an interaction Lagrangian given by

e = oty [t o= 3en e

d
. g _ my—
a7 — g1 —
+22\/§¢ i (14+75)u Vi ( 75)U}

+ 3 (g TS+ 0l T ). (74)




which completes the construction of the SM Lagrangian.

3.5 Tadpoles
In the SM the role of tadpoles is particularly delicate.

e In the Lagrangian, a tadpole constant should appear that is
zero in the lowest order, and must be adjusted in such a way
that the vacuum expectation value of the H field remains zero
order by order in perturbation theory.

Here we will adopt a strategy different from that used in Eqs.(25)
and (46). Instead of trading p* for a new parameter 3 4> as carried

out in Eq.(46), we renormalize the vacuum expectation value itself
as follows:

1 \ M

K=—7 . ox=H+2— (1+46%8) +id", (75)
V2ig~ /

e Now we set p?+2 (AN g*) M*? = 0 and, in turn, it is 3; that one

fixes by the requirement of a zero vacuum expectation value of
the H field. The Eé part of the Lagrangian now reads:

L = —2gMM23 H — %MEI (1+39¢°0) H?
—% GG [(6) +20%07] — ga, M [H + H ()" + 2Ho" 7|
i oyt iy
+4H Yo" +4 (69 ot o + 4 (¢+¢—)2] . (76)

e In the two different procedures two different parameters are
introduced, 3, and [, to be fixed by the requirement of can-
celling the one-loop contribution to the vacuum expectation
value. These two parameters are related by

By
g*M

9
H

B = (77)



Note that the only practical difference (cf. Eq.(47)) is related,
so far, to the H? term and it will be shown that this difference

is irrelevant insofar that it can be renormalized away:.

e [rom the renormalized shift of the H field, we are automati-
cally led to the addition of tadpoles in the W — W and Z — Z
self-energies and in the corresponding vector-scalar transitions.
[t can be seen from the following terms:

—¢*5, (MO? 2,7, +2 MQWJW;)
1 L
—g* M B, (C—g 0.2, + 0 OW + ¢ aﬂwj) : (78)

e These tadpoles are usually not added to the various bare self-
energies, since they do not contribute to the renormalized ones.
However, they are essential for proving that the same self-
energies are {-independent when put on their bare mass shell;
that is p* = —M? and p* = —MOQ, respectively. At the
same time, the 3, H? terms will be crucial for showing ¢-
independence of the H — H sclf-cnergy at p? = —M;.

3.6 The QCD Lagrangian

For the QCD Lagrangian there are eight 3 x 3 Hermitian matrices
A, a direct generalization of the 2 x 2 Pauli matrices, which satisfy

TrA\ =0, TrAN =284,

1
T Tb — abcTc T Tb :_-dabcTc__5a
R O (L S VS PN
with T% = —iA?/2. The structure constants f are antisymmetric

in all three indices and satisfy the Jacobi identity, while the d
are symmetric in all indices. The QCD Lagrangian contains three
pleces:

e the colour gluon Lagrangian, L.;

e the colour fermion Lagrangian, Eier;



e the colour Faddeev-Popov Lagrangian, £FF.

All indices a, b, . . . take the values 1, ..., 8 corresponding to the
eight gluon vector fields, Gj;. The ndices 4, 7, ... take the values
1,...,3, corresponding to three colours. An index ¢ designates the
flavors: w, d, ¢, s,t, b, of quark fields, ¢7. Furthermore, we limit the
presentation of the QCD Lagrangian to the Feynman (covariant)
gauge. There are other sets of standard choices, for example, the
non-covariant axial (or physical) gauges. The first two pieces read:

1 a a abe a b e 12abcadebcde
L, = —3 3,,Gﬂ3,,Gﬂ —q.f @LGyGﬂGy — ng fof GNGVGNGV,
er 1 — a o a
££ = 5195 (Qi ’Vﬂ/\iﬂj) Gﬂ- (80)

The FP ghost Lagrangian of QCD is written in terms of a ghost
color field x*:
LV =Rk + g, [ O,F K G, (81)

Here, g is the strong coupling constant. We will use also
a, = % a=—. (82)

Finally, note that even for an arbitrary gauge the Lagrangian £V
would not change; that is, in QCD the coupling of the ghosts to
vectors is independent of the gauge-fixing parameter.



4 Appendix: Feynman rules for vertices

In this appendix, we shall present all the vertices in the electroweak
sector of the minimal SM and in the ¢ gauge. There are a few
conventions deserving a comment:

1. there are three gauge parameters, denoted by &, £, and ¢, .

2. s¢9(cg) denotes the sine (cosine) of the weak mixing angle.

3. Qy, ]J(cg) denote the electric charge (in units of ¢) and the third
component of isospin of a genuine fermion.

4. we will show the particle symbol next to the line.

To summarize:

A Z W= for vector bosons;

P, p* for the unphysical components of the scalar field, Eq.|
H for the physical Higgs boson;

X+, Y4 Y?etc. for FP ghosts;

u(d) for a generic ]](63) = 3(—3) fermionic field.

We should keep in mind that X is not equal to X .
The arrow convention is as follows:

1. The arrows occurring in lines are denoting fermion lines, or the
flow of the electric charge or the flow of the FP ghost number.
An incoming W1 will, therefore, be denoted by an incoming
ATTOW.

2. An arrow pointing inwards implies a positive charge flowing
into the vertex. For a negatively charged FP field the flow
of the charge is opposite to the direction of the arrow; for a
positively charged FP field it is in the direction of the arrow.

3. In vertices all momenta are taken to be ingoing.



First the fermionic Feynman rules:

f

A .

v ieQ 1Yy
f
u

W— . g

v i 5
d
f

0 ‘ m
f

Here
Y+ = 1+ 5,

=2

f

|

I~

vy = [}3) — QQfsg,

Secondly the bosonic Feynman rules:

e Trilinear vertices

W+t
(7, A) k,p
P,

q,«

g
el (vf + azys)

ap =1 (83)
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e Trilinear vertices involving FP ghosts
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5 A list of QED one-loop diagrams

The one-loop corrections in QED are given by the photon self-
energy, the electron self-energy, the eTe ™ vertex and by the v —~
boxes. The first three diagrams will enter into any renormalization
scheme. QED boxes, however, are free from ultraviolet divergences
and therefore irrelevant from the point of view of renormalization.

Before going on, we should emphasize that the quantities of
interest in QED have two sources of infinities. Correspondingly,
we must introduce two regulators.

e The first corresponds to the ultraviolet singularities where we
use dimensional regularization. The corresponding regulator
has been denoted by ¢ and we have to consider a number of
space dimensions, n = 4 — ¢ < 4.

e For infrared divergences we could use massive regulators or reg-
ulate the mass singularities again in the dimensional scheme,
n = 4+ ¢ > 4. This will be referred to as the ¢ — —¢’
correspondence and it implies that the theory is not simul-
tancously ultraviolet-regular and mass-singularity-free for an
arbitrary number of dimensions. This leads us to the following
prescription:

The general prescription is to first renormalize the theory di-
menstonally and, after the counter-terms are included, to con-
tinue ton =4+ ¢,

e In summary, we have to introduce two epsilon-parameters, €
and ¢, defined by n = 4 — ¢ and n = 4 + ¢'. They are
both positive and allow us to perform the integration in the
complex n-plane. Correspondingly, we will use two regulators:



ultraviolet € and infrared é:
1 2 1 2

€ € € €

where v = 0.577216 is the Euler constant.

e The regulators satisfy the following relevant identity:
1 1

—+-=0 85
-+ (85)

5.1 Photonic self-energy

The photon self-energy in QED consists of a single Feynman di-
agram with an internal fermion loop of a given flavor f and is

described by a tensor, II,, , as in Fig. 3

JI2Z)

f
HNAAAA@V\AANV
/

Figure 3: Photonic self-energy in QED.

Note that 11, is transverse, a consequence of the QED U(1) gauge
invariance. We obtain the following expression for II,,, written in

terms of the scalar function II (p?)
O, = 4ir’e (p°0u — pupy) I (p°) |
II(p*) = 2[By (p*sm,m) + By (p*;m,m)]. (86)
For QED things are relatively easy and we obtain

LY

H@%—Hmﬁzé+%@eﬂzgygdﬂnb+£§xﬂ—xﬂ. (87)

5.2 Fermionic self-energy

Fermionic self-energy is correspondingly given by a 4 X 4 matrix:

Y(p) = (27T)4ilgﬂ2{[2B1 (p*;m,0) + 1)ip + [—4By (p*;m,0) +2]m}, (88)




Figure 4: Fermionic self-energy in QED.

originating from the diagram of Fig. 4

Again, in QED things are easy. Direct calculation results in

E(]ﬁ):m%?{—[(g—l) if + nm §+2/01 de (zip+2m)Iny}, (89)

with x = —p*z? + (p* — m?)z + m?.

[t should be stressed that for the electron the corresponding self-
energy diagram has a well-defined value in the mass shell limit but
not its derivative, which shows a singularity due to the zero mass
of the photon.

e This is the first example of an infrared divergence and it raises
the question of the interplay between ultraviolet and infrared
singularities. Also, the QED vertex function gives rise to an
infrared divergence.

e However the renormalization of the e.m. coupling in QED
through the definition of the fine-structure constant introduces
no infrared divergences in the perturbation series. In summary;,
we have a theorem stating that

In QED, on-shell renormalization 1s possible, because the
vertex correction at zero momentum transfer cancels the elec-
tron wave-function renormalization exactly, and because the
photon self-energy 1s infrared finute.

After ultraviolet renormalization, we are left with the resolu-
tion of the infrared problem in QED; that is, of the momentum-
dependent infrared divergences that requires the introduction of
‘real’ (as opposite to virtual) radiative corrections. At the present



stage the theory must be understood as regularized in the infrared
regime by means of dimensional regularization.

5.3 QED vertex

The one-loop QED eTe™v vertex corresponds to the diagram in
Fig. 5.

JZAN
q 4

g Q

Figure 5: QED vertex diagram.

With both e* on their mass shell the QED vertex is reducible to
the following structure: (2r)" ey, — (2m )" ey, + A\, where

ied

A== @0l (@ m) + g (1 +p2), Va (QFmam)]. (90)

e The V] part is the Dirac electric form factor, containing ultra-
violet and infrared divergences.

e The V; part, giving the anomalous magnetic moment of the
electron, is ultraviolet finite.

For the on-shell vertex we can use the relations
U (p2) po = —imv (p2) , pru(pr) =imu(pr). (91)

With p? = p3 = —m* and Q* = (py —I—pg)2 and p as the mass
scale we have

1
A = —q 3,4-n d"o——— N
po= i g N
Ny = —=4p1-payu + 2 (P1yevu — Yuvab2) € + (2 — 0) Yavuv840qs.  (92)

with propagators given by

dy = ¢*, dy = (g4 p)* +m?, dy = (q — po)* +m?. (93)



Introducing the auxiliary vector k, = zps — (1 — ) py, and per-
forming the standard Feynman parameterization, we obtain

_ - 3 1 1 4—n n 1
A, = —ie F(S)/O dx/o dyy pt /dq(q2—2yq-kx)3

For the scalar integral we use the infrared regulator &’

N,. (94)

’L,L_E//d”q 1 :Wg,/QFa—g'/Q)y_Hg, 1 [x (QQ,x)]e’/Q‘
i (¢ = 2yq - k)’ I'(3) (@%b p?

(95)

Here and below the following quadratic form has been introduced,
% (QQ,x) = Q% (1—2)+ m2. (96)

For the vector and tensor integrals we use instead the wultraviolet

regulator ¢ and calculate integrals with the aid of the following
equations:

c n N el (14¢e/2) . 1 Y (Q?, x)1—¢/2
Ly — = gDt 2[(2)]7
o (4% = 2yq - k) ' (3) (@ x)b p
’U_E n Yaldp _ l 2 _6/2F(8/2) 1—¢
w7 Ty gy T e (@)t ke el gy

1 X (Q27 l‘) —¢/2
V(@) [ p ] ' o)
The y-integration can be performed for all values of n, leading to
1
/ dyy™* = k=123 (98)

Substituting all the integral Eqs.(95)-(98) into Eq.(94) and ex-
panding around ¢ = 0 and &’ = 0, we arrive at some expression for
Ay

e

9. _ 4. e
A, (Q ,m,m) =—(2m)" i 62

[%‘/1 (Q% m,m)+im (py — P2), /01 dxm]a

(99)
where the scalar part in charge renormalization may be written in
the compact form

2 X
Vi (Q%m.m) = —(Q°+2m°) /dx Q2 )ll—kln%l (100)
(@2, r) I 1
+E_/0 dxln e +2(Q2—|—4m2)/0 dxX(QQ,x) — 2.



After applying the Gordon identity, and using the usual C' and
B-functions instead of one-fold integrals, we arrive at the final rep-
resentation for V; 5 (Q% m, m) where no approximation has been
made, not even ignoring the electron mass:

Vi (QQ; m,m) = -2 (Q2 + 2m2) Co (—mQ, —m?, Q% m,(),m) (101)
+ By (QQ;m,m) — 4By (QQ;m,m) -2,
2
V?(QQ;m»m) = mef (QQSWW)» (102)

where By is a peculiar combinations of By-functions, namely
By (QQ;m,m) = B (QQ;m,m) By ( m? Tm O)

1, |
= =5 (Q —|—4m /0 dxix(@%x)'
There are two limiting cases of special interest, s = —Q? > m?
and ) = 0. Here, we shall content ourselves with the large s
limit, where we derive

(103)

1 2 —s —1e 1 —5—1
sCy (—mQ, —m?, —s;m,(),m) N — (7 + In m ) In 2= 2p2 70 ZE—I—
£

p? m? 2 m?
(104)
where m — 0, and also,
1 —5 — 1€ 9 1 m?
By (—5:0,0) ~ - In 2 + 2, Bﬂﬂnﬂmng—hk7+2
(105)
Collecting the various terms we obtain for m — 0:
1 2 1 2 —5—1
Vi(=sym,m) = j—lnm—Q—Q (7+1nm2) In —° QZE
g i é i m
g —s—16 1 , —5 — 1€
—1In s + 37 +31n e (106)
For () = 0 we obtain instead
1 2 m?
Vi(O;m,m) = ———<— 31n——|—4 (107)
g ¢ g

In the above results we have kept an explicit distinction between
the ultraviolet and the infrared poles. The quantity of physical



interest is always Vj subtracted at zero momentum, which reads
therefore as

1 2 _ _ . _ _ . 1 _ _ .
Vet = 9 (7 + In m_) (11’1 . 1) B 5 Z€—|—§712—|—3 n 2y
£

I m? m m?
(108)
If needed, the exact expression for V] is also very simple:
N 1 om? 1 4 32 3
§V1 = (E—HHF) (1—|— 2 Inn ——ﬁlnn—? (109)
1+ 3 [. . 1 im, 1 — 37
+ 3 ng(n)—l—3 ln n—i—lnnln(l—n)—zln |
where we have introduced
2 1 — ﬁ
2140 -7 110

5.4 QED box diagrams

QED represents some special case of the full electroweak theory
with its distinctive simplicity and, for this reason, we discuss here
the specific example of QED v — v boxes. Let us consider the
te” — ff. There are two QED box diagrams, the
direct one and the crossed one (see Fig. 6)

annihilation e

Figure 6: Two QED box diagrams: (a) direct; (b) crossed.

These are easily related and if the final expression is given in terms
of ¢, u variables, this is tantamount to exchanging ¢ <> « with an
additional overall minus sign in the cross-section. We can define
two different distributions, D4 (6):

do (0) n do (7 — 0)
d$2 d$2 '

D. (9) = (111)



e [, is the relevant angular distribution when the charges of the
final states are not detected, while

o [_—the asymmetry function—is available when one measures
the differential cross-section with charge detection.

Note that charge conjugation invariance implies that only the
interference terms between the lowest order amplitude and the box
diagrams contribute to D_ to order o, as far as virtual radiative
corrections are concerned. The lowest order amplitude squared
and summed over polarization is

1l 2+ u?
A = ZZ | M, [’=2€'Q2 Q; T (112)

The corresponding contribution from the interference of the direct
box diagram can be written as

T 66 1 (€€
A = =5 5 QIQ7 Z03 (s.t.u). (113)

where
0L (s,t,u) = u?DY (s, t,u) + D, (s,t,u) . (114)

Similarly, the crossed box is obtained with the replacement £ < u .

6
cro o € 3 31 box
Aint - 9 12 Qe@f g5'y'y (S7U7t) . (115)

Thus, only two functions D% (s,t,u) are needed to describe boxes
and they are given by

2

_ t
tQDW (s,t,u) = " [dy (s,t) + co (5:0,m,,0) 4+ ¢y (5;0,mp,0)], (116)
29+ t +u’ : :
uw'DY (s, tu) = 5 [do (s,t) + co (5;0,m,,0) + ¢y (5;0,my,0)]

+ (u—1) ¢o (t;me,0,my) + u[By (—s;0,0) — By (—t;m,, my)],

where we have itroduced scaled functions:

2 2 2 2
dy(s,t) = stDy (—me,—me,—mf,—mf,—s,—t;(),me,(),mf),

co (5;0,m.,0) = sCj (—mz, —m?, —S;O,me,()) :

co (t;me,0,my) = tCy (—mz,—m?,—t;me,(),mf). (117)



The infrared-divergent scalar function d; is split into an infrared
divergent ¢ -function plus a finite remainder; namely

dy (s,t) =t Ty (=8, —t;me,my) — 2¢o (t;me, 0,my) . (118)

The functions By (Cy, Dy) are the scalar two- (three-, four-) point
integrals (see Section 6). From this result it is immediately obvi-
ous that the infrared divergences in the direct (and also crossed)
diagram do factorize into the lowest order. Indeed, the infrared-
divergent part is fully specified in terms of

2 t2

U B t2 +U2
?D% (s,t,u) + ;Dw (s,t,u)| =—-2—=—co(t;me,0,my), (119)

IR 82

the remainder being infrared finite. For completeness of presenta-
tion we write again all the ingredients entering the final results for
the interference of box diagrams with the lowest order:

_ Iy, m2mi  —t 1. ,m? 1 ,mj 1
Jw(—s,—t;me,mf):;[ln ° fln——i——lrﬂﬁ—i——ln?—f—l——ﬂ?],

t? s 2 -t 2 -t 3
(120)
1 /1 21 2
Co (—mz, —mz, —s; O,me,()) = (5 In? % 4+ 6712 +i7ln %) , (121)

2 2
Ch (—me, —my, —t;me, 0, mf)

1, mim?% (1 —t\ 1. ,m? 1 ,m% 1
= |ln— f(— 1—) SIn? 24 S L 4 S22
Qt[n gz )Ty T —t+3”?<]L )

By (—s;0,0) — By (—=t;me,my) = —In it +im.

(123)
These relations hold for m?, m? < —t and m? < s. For the total
interference terms, lowest order x box diagrams we have therefore

6
ox € ox
A})nt = - 9 12 QEQ:} ,ly),y (57 ta U) 3 (124)
ox 1 ox ox
f'ly)'y (S,t,U) = g[é};y (S,t,U) - 5};7 (S,U,t)], (125)
2 +u* (1 5 t
box _
Re f'w (s,t,u) = 2 2 (g + In ?) In . (126)

i S U S t—u
+-In (——) — —In (——) +
S U S i S




As expected, there are no collinear divergences and the limit of
zero fermion masses can be taken.



6 Scalar integrals, vectorial and tensorial reduction

To cope with the complications of the SM, we must derive a com-
plete set of formulas valid for arbitrary internal and external masses.
We will deal with expressions for scalar diagrams with one, two,
three and four external lines. Besides scalar functions we also need
tensor integrals with up to four external legs and as many pow-
ers of momentum as allowed in a renormalizable theory. These
tensor structures can be reduced to linear combinations of scalar
functions.

6.1 One-point integrals, A-functions

{)

Figure 7: The one-point Green function.

The one-point function is given in Fig. 7 and the corresponding
expression will be discussed below.

6.2 The scalar one-point integral.

We start by introducing the one-point scalar integrals which are
needed for tadpole diagrams and in the reduction of higher-order
functions:

1
. 2 . 4-n n
im° Ay (m) = p /dqq2—|—m2—i6' (127)

This integral can be easily evaluated in terms of the Euler I'-
function giving

n m2 n/2—2
Ay (m) = 72T (1 - 5) m? (F) : (128)



If we introduce ¢ = 4 — n and expand around n = 4, then the
following expression is derived:

2

2
Ao(m):m2(_g_|_7+ln7r—1—|—ln%)—|—O(6). (129)

where v = 0.577216 is the Euler constant.
It is customary to define a quantity 1/& by

LI (130)
g g
and to write
1 m2

6.3 Two-point integrals, B-functions

Figure 8: The two-point Green function.

The family of two-point functions is given in Fig. 8 and it is dis-
cussed below.

6.4 The scalar two-point integral.

Consider the scalar two-point function which is met in the calcu-
lation of self-energy diagrams containing two propagators, dy and

dli

1
. 9 2 4—n n
1 B Ty, Mo = d"qg—-—,
0(]9 1 2) M / qdod1
dy = ¢* +m3 — ie, di = (¢ —|—p)2 + m3 — ie. (132)

[t is convenient to introduce the general expression for propagators:

di=(q+pi+-+pi) +miy — e (133)



Ay, considered above, involves the simplest, external momentum
independent propagator dy. For arbitrary internal masses the By
function becomes

1 myms m? —m2_ m?
By (p*; =--1 - R 1 2 134
0 (]9 7m1,m2) - e + 27 m + 2 (134)
where A SN
R=-lpiziermim =2 (135)
P 2mymy

and where we have introduced A% = X (—p?, m?, m3).

There are simplifications for special values of the arguments. For
instance, if m; = mo = m, then we find
1 m? I5; + 1
By (p*;m,m :——ln——|—2— In ——: 136
o (p ) =< . fn o (136)
where % = 1+ 4m?/(p* — ie). Similarly, if one of the internal
masses 18 zero, then we have

1 m2 m2 pQ—ZE
BO(pQ;O,m):g—ln—Q—i-Q—(1—|—p—2)11’1(1+ 5 ) (137)

1 m

Finally, for massless internal lines we obtain

1 p? — i€
2, _
Bﬂpﬁﬁ)—g—m.MQ + 2. (138)
From all these functions we can easily extract the corresponding
imaginary parts. With s = —p? we write:

m?

ImB, (p°;0,0) = w8 (s), ImBy (p2;o,m):7r(1__) 0 (s —m?),

S

9\ 1/2
Im B (pQ; m,m) =7 (1 — 4m—) 6 (5 — 4m2) ,

S

7 9
ImB, (pQ; ml,mg) = 7T\//\ (5, m3, m3) 0 (S — (my + m2)2) : (139)

S

6.5 Tensor two-point integrals.

Tensor two-point integrals can be reduced to linear combinations
of scalar functions. We start With

i™ B, (p ml,mg) = ' ”/ d"q = im’B, (pQ;ml,mg) pu.  (140)

d0d1



Using the relation ¢ = dy — m?, with
1
Q'p:§(d1_d0+f{))7 f{):—PQ‘i‘m%_m%a (141)

we derive the following identity:
1

5|
The function B; obeys the symmetry

P2 By (phimims) = - [Ag (my) — Ag (ma) + F1Bo (p%m1,ms)](142)

By (p*;mg,my) = =By (p*;m1,ma) — By (p*sm1, my) . (143)

The rank two tensor integral can be reduced as follows:

im* By (p'smymy) = p'™" [ d”qgﬁfg (144)

= i’ [ By (p*smu,my) pupy + Bz (p*sm1.ma) 6,).
The last relation can be multiplied by 0,,, and by p, to give
p*Bar (p*3mi,ma) + nBas (p*smy,my) = A (mg) — miBy (p*; my, mH)L45)
p*Bo1 (p*smi,ma) + Boy (p*smy,my) = %[Ao (m2) + 1By (p*smy,my)].
In order to solve this system of equations we have to compute the

singular parts of the scalar one- and two-point functions in terms
of the quantity & defined by Eq.(130). First we define a function

X as
X(2) = —p®a® + (p* +mi — m]) « + m} — ie. (146)

A simple calculation shows that

By (p*ymy.my) = —%Jr 1dxxln(%) g_%
) = S o3 23,
BQQ(pQ;ml’mQ) = _% (é-l—l) 01 dxx—i—%/ dxxln(—Q)



By using these relations we arrive at a system of equations, Eq.(145),
with

2
n Byy (p*imi,my) = 4 Boy (p*my, my) + %, K?=p*+3(mi+mj).

(148)
At this point we introduce an Xy-matrix

o= (% ) (149)

and the vector b whose components are

K?
by = Ay(ma) — m%Bo (]92;7711,7712) T

by = %[Ao (ma) + f1 By (p*; ma1,my)]. (150)

The Bs; (p*;mq, my) form factors can, therefore, be obtained by
using the inverse matrix of Eq.(149)

By; (p*ymi,my) = [XQ]i_jl b; . (151)
We explicitly list the final results:
1
By (p*;mi,my) = 5,7 [0 (m) = Ao (m2) + (Am* = p?) By (p*;m1, my)],
3 (m2 + m2) +p*  Am? —p? Am? — 2p?
2, _ 1 2
By (]9 7m1,m2) = 18)? + 31 Ag (m1) — TAO (m2)
A (=p?,m2,m2) — 3p*m?
+ ( 13 42) LBy (p*;my,ms) .
P
3 (m2 + m2) +p?  Am?-— p? Am? + p?
B 2, - _ 1 2 — A —A
22 (]9 7m1,m2) 13 12,7 o (my) + 12,7 0 (m2)
A (—p2 m2. m2
— ( Y 7m17m2) By (pQ;ml,mg) . Am® =m?i—m3.  (152)

12p?

6.6 Derivatives of B-functions

In the actual evaluation of one-loop radiative corrections we will
also need derivatives of the B-functions. They will appear in renor-
malization factors associated with external lines which are derived



by the corresponding two-point Green functions and are given by
the following results:

IBo;1,013 _ /1 dx{x; —a*a’} (1 - )
dp? 0 X 7
3B22 . 11 1 ,1 X
o7 = 13- + 5/0 drz (1 —x)In (E) : (153)

For the QED corrections some of the previous derivatives are in-
frared divergent and must be regulated. For instance, with x(z) =
(1 — ) (p?z +m?) we have for the scalar integral

1 n/2-2
By (p%m,0) = 7"/*°T (2 - g) | de (%) : (154)

With n = 4 + &’ we, therefore, derive

o <n(1-5) i ()

which in turn gives

d , S\ 1 (m2\ 1 1
By (ptm,0) . .= (12— [ (—— )
apQ 0 (p s m, )|p ——m T ( 2) m2 (MQ) e 14

(156)
Expanding the various terms in ¢’ we derive the Laurant series
0 5 1 1 m?
a—}?QBo (1% m,0) | o = 53 (g —2+In F) : (157)
where we may use
1 2 2 1
c=—+7+hr=——4y+Inr=—-. (158)
£ ¢ n—4 3

Similarly, for the derivative of By we obtain

s, : g —14e'/2 —¢' /2
L i o L

x(l— 2 2 ) (159)

g 14+ 24¢

giving the following result:

0 5 1 (1 m?
8—1?2 By (p ;m,O) |102=—m2 = 2m2 (g —3+1n ?) . (160)



6.7 Three-point integrals, C'-functions

Figure 9: The three-point Green function.

The scalar three-point function, (Fig. 9) associated with vertex
corrections is more involved and will require some additional work.

6.8 Basic definition.

First we define of the scalar three-point function,
iw® Co (pF, 3, Q% ma,my,my) = '™ [ d'g

with d; given by Eq.(133), which in this case are

161

dy=q* +mi—ie, di=(q+p) +mi—ie, dy=(q+Q)" +mj—ic

(162)
where Q = p;+py and Q* = (p; + p2)2 denotes one of the Mandel-
stam variables, () = —s.t or u, for an arbitrary 2 — 2 amplitude.

Two Feynman parameters are enough for the three-point function,
and in terms of a particular choice of Feynman parameters Cj
becomes

Cy (p%,p%,QQ;ml,mg,mg) = /01 dx /Ox dy (ax2 + by? + cxy + dx —I—ey—l—f)
2

a = _P%a b:_p%a C:p%—i_p%_QQ? d:p%—i_m%_mi%a

e = —pi+Q+mi—mi,  f=mi—ie. (163)

6.9 Some particular cases of Cj-functions.

Before deriving the general result we consider a few special cases.
First, we select

P%,Q =0, (m1 +P2)2 = Q*, my = mg =0, mo =M. (164)

-1
)



In this case

Co (O 0,Q%0,M,0 2/01 dx /Ox dy[—QQxy—i—MQx—l—(QQ—MQ)y—ie]_l

Q? 1 , Q? — ie
:_/ x+M21 (MQ;C) > [L12(1)—L12(1— e )

Actually, there is only one (generic) three-point scalar integral that
occurs in the calculation of two-fermion production when we use
the approximation where all fermionic masses, with the exception
of the top-quark mass, are ignored. It corresponds to the following
choice:

Pla=0, (m+p)=Q% mi=M, my=My, my=DM. (166)

Then the coefficients, in quadratic form, become

(165)

@ =0, b= 0, ¢ o= —Q
(167)
d:MQQ_Mi%Qa €:Q2+M12_M227 f:Mi%Q_iea
and the result for Cy reads
1 x
Cy (O,O,QQ;Ml,MQ,M;;):/O dx/o d (168)

where the function y is a quadratic form in z and y,
X(,y) = Qy (1 — o) + Miy+ M (¢ —y) + Mj (1 —x).  (169)

In this particular case we obtain

Co= &é (1) [Liy (xo = 1) — Li ( 0 )] (170)

Ty — &y

with four different roots

ry = 14+ 712 _ 22 = 732
"= o VP V)
QP+ ME-MEF VA (=Q%, M?, M3)
X119 = . (171)
! 2()2

All masses squared are understood to have equal infinitesimal imag-
inary parts: M? — M? — ie, necessary to properly define the
analytic continuation at Q> — —s.



The following special cases are also met in any realistic calcula-

tion:
1 —1

Co (0,0, Q% My,0,M;) = @m;ﬁllnxlxl , (172)
1 +1 4M?

C (0,0,Q% My, 0,0M,) = @m?gg_l, Po= 1+ (W)

C(0 (07 07 Q27 Mla M27 O)

el

C(0 (07 07 Q27 07 M27 Ml)

MR
—m)—LIQ(l—

One more interesting case is

1 1 1
Co (=m*, —m*, Q% 0,m.,0) = — [QLi2 (—) — 2Li, (—)
m (yl - 92) Y Y2

2 m2
+L1y (yl) — L1y (yQ)], with Yo = —% (1 + |1+ 4@2—2) . (175)

Also of some relevance is the scalar integral with all internal masses
set to zero:
(1)
1 a
O lar —a) [11’1 (aya_)In

Co (pi,p3.Q%;0,0,0) 0
a_

_ Q@+ pi = P YA Q% pi. i)
20Q)? '

The result (176) is valid in the Euclidean region.

Another simple case is given by a scalar integral with one very
small mass and two external momenta on-mass-shell, p? = —m?, p3
—m3 and my = A, with A small with respect to all other quanti-
ties. Although we are dealing with the infrared singularities within
the dimensional regularization approach, this example is a useful
bridge to the mass-regularization method. Holding ms # m; will
allow us to discuss QED corrections to the decay W+ — ud. By
using an appropriate implementation of the Feynman parameters
we can write

Co (==, Q% Noms) = [ dy [ da

o

1_a:|:7

a4

X

x(z,

0’ (177)

+ 2Liy (ay ) — 2Liy (a-) ]

(176)



with the integrand

X(2,y) = 2 () + X (1 —x)—ie, x(y)=mi (1 —y)+miy+Q% (1 —y).
(178)
Using the fact that

1 x 1 () A
[ i = e () ol o

we obtain the following decomposition:

1
Cy = Filn (§)+§F2, (180)

— ! 1 o (92— 1y (Y 1

F1‘~/dyx@ @%m—ng (yQ) 1 (yl)]a (181)
2 _ e _

Fy, = / dy 2 HX(;J) _F In (Q - ) n f(yz;;?()yl _f;:)%yl)

with f (y1,72) given by:

flyye) = %h’l (1—_y22) Inyo (2 = 1) (1 = v2)°]

_Li, ( ! _92) —|—Li2( — ) (183)
Y1 — Y2 Y1 — Y2
In this equation ¥ o are the roots of the equation x (y) = 0, i.e.
Q* + mi — mi £ YA (=Q*, mi, m3)
2()* '
Note that p is artificially introduced in (180) in order to show the
correspondence with the method of dimensional regularization, i.e.

In (3)2 ol (185)

(182)

Y12 = (184)

A €
Expressions (180)-(183) greatly simplify if m; = mg = m, since
in this case we have y; 4+ y» = 1. Two integrals are useful for this
case. With 32 =1+ 4m?*/Q? we have:

1 — 2 ﬁm""l
F = /0 dy [m? + Q% (1 — y)] 1:2Q25m21nﬁm—1’ | (186)
I 1 m? + Q% (1 — Q*—i
FQ = /0 dy m2—|—Q2y(1—y)ln[ My?( y)] :F1 11’1( MQ 6)
Lo Bl om0 o (Bt 1 (=1
+Q25m [lnﬁm_lln oL 2L12( 2, )—i—Qng( 2 )] (187)



6.10 Reduction of the vector three-point integral.

The rank-1 tensor associated with the three-point function is given
by

. n [ m, 4
in’C, (pip%’QQ;mth,m:%) = / d"q dodde’ (188)

which leads to the following decomposition:

i [Cy (pi, p3. Q% my,ma, m3) pru+Cha (1, p3. Q% my, ma, mg) pay]. (189)

The corresponding reduction is based on the following relations:

progq = %(dl_dO‘i‘ff)a P2'q:%(d2_d1+f§)a
fi = —pi+mi—my,  fi=-Q +pi+mi—ms. (190)
For the final result three additional pinches are needed:
¢\ = Bi(1.2) = By (p3ima, ms) .
ci” = By (0,2) = By (Q% mi,ms)
C¥ = Bi(0.1) = By (p};m1,my) (191)

where k& runs over all possible indices of the Bj-functions, i.e.
0, 1,21 and 22. For instance,

1
i By (i,§) = p* " | d"q——
/ d;d;
d;:d“ dljzdj, for Z:O,
d] = q2—|—m%, dy, = (q—i—pg)Q—l—m%. (192)

As we did for the two-point integrals, we introduce a matrix
Xsij=Dpi-pj, (193)
which satisfies det X3 = —Aj, and also the vector Rg)

) 1 C(l) _ C(O) e
R(12) D) ?2) ?1) i aE (194)
2\ Gy’ =Gy’ + £5C

With their help we derive

Cui (3,93, Q% my,ma,my) = (X571 RY.. (195)
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Figure 10: The four-point Green function.
6.11 Four-point integrals, D-functions

The four-point functions, are again much more complicated than
the previous ones, including the three-point functions.

6.12 The scalar four-point integral, Dy-function.

We start with the definition,

it*Dy = w2 Dy (p}, P2, 3. 13, (p1 + o)’ (p2 + p3)* s, ma, my, my)
1

=y [ A" 196
it Vdodidyds” (196)
with d; as in Eq.(133), which in this case are written down as
dy = ¢* +m} — ie, dy = (q+p1)” + m3 — ie.
2 2 . 2 9 . (197)
dy = (¢ +p1+p2)” +mj — ie, ds = (q+ p1 +p2 +p3)” + mj — i,

with all four-momenta flowing inwards (as shown in Fig. 10), so
that p1 +po +p3+ps = 0. After making use of an alternative Feyn-
man parameterization, we arrive at the following representation:

where the integrand may be written in compact form as

9
I{u}) =[Sl + X phuiauge)] (199)
J (A]

By explicit evaluation we can show that the latter is exactly the
one-loop four-point function that is needed. Introducing the vari-
ables x,y and z this may be cast in the form

1 z
Dy :/0 dx/o dy /Oy dZ(ax2+by2+922—i—cxy—l—hxz+jyz+dx+@y+kz+f)—?
(200)



The coeflicients of the quadratic form are:

a = —piy=—p3, b = —pi = —p3, g = —pii=-pi,
¢ = —piy+ply+ pss, h = —pis — p +pl +pis. j o= —pl+ i+ 0k,
d = mj—mj+ pi, e = mi—mj+ply — P k= mj—mi+pi;— pis.

— a2 ;
[ =mj —ie.
6.13 Some particular cases of Dy-functions.

For four fermion processes in the approximation when all external
fermionic masses are ignored, we may derive rather compact ex-
pressions for Dy-functions. We consider two different cases where

1. there are no virtual photons in a box diagram;

2. box diagrams contain one or two virtual photons.

The treatment of Dy in these two cases is substantially different.
In the first case the Dy-function is infrared finite and we have no
particular problem in computing it. In the second case, however,
an infrared singularity will show up and it is more convenient to
isolate the singular part first by performing a splitting of the basic
integral.

Infrared-divergent boxes are always split into a combination of
infrared singular three-point functions plus an additional integral
which is finite and for which a direct calculation is more convenient

as compared with a standard scalar reduction.
Case 1. The most general expression we encounter in considering
Z 7 and WW boxes corresponds to the following choice:

sz = 07 (pl +p2)2 = Q27 (pQ +p3)2 = P27
m, = Ml, MQ:O, mgle, M4:M2. (201)

With an appropriate choice of Feynman parameters it may be pre-
sented and calculated as follows:

Dy (0,0.0,0.Q%, P*: My.0. My My) = [ d= [ ydy [ de



X[M%y+M§(1 y)+ P = y)(1— =) + Q2eyta(l — )]

= Qi +1M2>ﬁ ZZHZ = [ (x x—x) b (x - 1-)]’

with the six roots given by

1 AM?
Tip = 2(1:F 1+QQI>, j1,22%(14:\/074)7

M? P? 4+ M3
_ - . (202
S VF I Yok “=pag-ag 0%
and with Yy ) )
AMEP? (P24 M} — M
dy=14—" (D% + M i) . (203)

Q* (P?+ M3)"
For M, = 0, which in practical applications means m; = 0, it
simplifies to

2 2 - v
DO (O,O,O,O,QQ,PQ;Ml,O,Ml,O) = m Z (_1)Z+1 L12 (~ : ) ’
Q2P2/dy) ii=1 T — X
(204)
where the roots now read as follows:

2 2 2
Sy 0 o, AM7(P* = M})

Tr12 = ? (1 F d4 ) s d4 =1 + QQPQ . (205)

Case 2. We encounter this case when considering ZA and AA
boxes where we introduce three auxiliary integrals:

2q - (¢ + Q)
dy (me)dQ(O)d3(mf)
s ot Pt N i [ 20 Q

T (@ Primesmy) = ™ [ e R g

97 2 2. _ 4-n n 2Q - (¢ + Q)
T JZ'Y (Q 7P 7m67mf) = H /d qu(MZ)dl (me)dQ (O)d3 (mf)7

in? . 2 Phme,my) = pt | A" (206
VY (Q f) K / qdo (0) ( )

which are simple to calculate.
Performing the standard reduction, we express the correspond-
ing Dy functions in terms of these integrals:

Dy (—mz,—mz,—m?,—m%,QQ,PQ;O,me,O,mf) (207)



1 _
= —[_J’y’y (QQJPQ;meamf)

QQ
+CO (_mza —m?:,PQ;me,O,mf) + C(0 (_mffa _mzap2;mf707me)]7
Dy (—mz,—mz,—m?:,—m?,QQ,PQ;O,me,MZ,mf) (208)
1 -
= 7[_J'yz (QQJPQ;meamf)
Q* + M?

—CYy (—mz, —m?,PQ;me,MZ,mf) + Cy (—m?:, —mz,PQ;mf,O,me)],
Dy (—m2 —m? m?,—m%,QQ,PQ;MZ,me,O,mJ») (209)

er er

1 _
= W[JZ'y (Q27P2;meamf)

+Ch (—mz, —m?:, P%m,,0, mf) — Cy (—m?:, —m?, P*;mg, M, me)]

To conclude, we present the answers for the auxiliary integrals in
terms of one-fold integrals. An explicit form is also given:

J ! 1 X PQ;meamf
Ty (Q2>P23me»mf) - /o dxx(P?;me,mf) " ( ()2 )
= F2|m1—>me, ms—my, Q?—P? 1n?—Q? (210)
2 2
j’YZ (QQJPQ;meymf) — _J_Z'y (QQ,PQ;me,mf) = In MJO (PQQme,mf) -

M;

Here x (P* me,ms) = Pz (1 —z) +m* (1 —z) + m%x is the
usual quadratic form and Fy is given by Eq.(183).



7 Renormalization in QED

7.1 The basic approach to renormalization

Before entering the details of the renormalization in QED at the
one-loop level we briefly summarize the main procedure for dealing
with infinities. To discuss renormalization we assume QED to be
the theory of photon and electrons, therefore everywhere we put
Q = Qe = —L

In computing one- or multi-loop diagrams we face the problem
of having to deal with ultraviolet infinities. In any theory the first
step will be to define its regularized version and only afterwards
address the procedure for infinity subtraction. Regularization is
simply the replacement of a theory by a slightly different one, using
some cut-off. As it happens, there is now a general consensus on
what regularization scheme to use, i.e. dimensional regularization.

e Any Lagrangian contains two types of objects: fields and pa-
rameters — masses and other than mass parameters; for exam-
ple, the coupling constant e in QED. We may replace the bare
parameters of the Lagrangian, {p}, by renormalized ones by
multiplicative renormalization. For each bare parameter py we
write

po=Zyp=p+dp,  Sp=eopl 4. (211)
with renormalization constants Z, different from 1 by loop
corrections.

e An example is the electron mass m, The quantity m + e?dm
is called the bare mass, mg, and m itself the experimental
mass. This notion also reflects an intuition about the physical
meaning of the bare mass: if the interactions could be switched
off (¢ = 0) that is what we would see.

The renormalization constants are, in general, infinite and fixed
by a finite set of renormalization conditions.



e The decomposition in Eq.(211) is to a large extent arbitrary.
Only the divergent parts are determined directly by the struc-
ture of the divergences of the one-loop amplitudes. The finite
parts depend on the choice of the explicit renormalization con-
ditions which, in turn, define the renormalization scheme.

e The choice of a renormalization scheme —a rather technical
subject—is mostly dictated by practical considerations, but
where physical observables are concerned, all renormalization
schemes (RS) have been made equal. This, of course, applies as
long as they respect gauge invariance and do not involve ad hoc
treatments of leading and sub-leading higher-order corrections.

Before actually discussing the options that we have in working
with specific RS, let us briefly summarize the main ingredients that
enter into the calculation.

1. From any unrenormalized Lagrangian and from the corres-
ponding Feynman rules we compute the Green function of the
theory: say, at one-loop. These Green functions are controlled
by Ward identities, which reflect the gauge invariance of the
theory and after subtracting the infinities we will again need
these identities in order to see that the renormalization does
not spoil gauge invariance.

2. In dealing with Ward identities for Green functions there is no
need to confine ourselves to external lines that are transversal
(photon sources satistying the condition d,.J, = 0) or on their
mass shell. Physical observables are obtained when we move
from Green functions to S-matrix elements. In any renormal-
ization scheme this is a crucial step.

The main object to discuss, in summarizing the steps leading
from a Green function to the corresponding S-matrix elements, is



the two-point Green function, which will, in general, have a pole.
In any theory this pole becomes a property of the S-matrix and
therefore in any gauge theory the pole is gauge-invariant by con-
struction.

7

P P

Figure 11: The two-point Green function.

Whenever massive and unstable vector bosons—as well as any
other unstable particle—are present in the theory, these poles must
be examined with due care since one can be shown that they lay
in the complex plane, actually on the second Riemann sheet.

e In QED, however, the only mass that we care about is the
electron mass, a stable particle. For many applications in QED
it is most natural to use our knowledge of the electron mass,
and all RS will use m as an input parameter to be related to
the pole of the S-matrix.

e For QCD, however, many calculations have to be independent
of quark masses and in this case it will be natural to choose
RS where we do not need to use a renormalization condition
related to the poles of the S-matrix.

e At the physical mass pole the two-point Green function can be
cast in the following form

Kij (P) 2 2
— — 212
Tt p me, (212)

Gij (p.p') = (2m)" id" (p+ )

where the index ¢ stands for a spinor, Lorentz, etc. index.
Next, wave-functions J; are defined, for each non-zero eigen-
value of K, and they must be normalized.

As an example, we consider fermions in QED. Here, we compute



one-loop electron self-energy,

62

=) = n) iz

then the Dyson re-summed (or complete) propagator

{[2B; (pQ; m,()) +1]ip+[—4By (pQ; m,()) +2]m}, (213)

S = (2711)41' i+ m+ eom — %}fl (214)
where we introduce the mass renormalization counter-term
e26m = (225:)7?2 . (215)
Expanding ¥ (p) in a Taylor series around the physical electron
mass ip = —m (the so-called subtraction point), we obtain:
S (p) = T (im) + (i +m) Sy + O ((ip +m)?) . (216)

where the coefficient of the linear term is the so-called wave-function
factor.,

_ =0,
T D)

(217)

After mass renormalization, Eq.(215), and wave-function renor-
malization, Eq.(217), we arrive at the following residual matrix:

1
K (p) = (=ip+m). (218)
Here, the factor
EWF
Z=1- i (219)

is, by definition, the fermion wave-function renormalization con-
stant, which is infinite, since X is ultraviolet divergent. Thus,
we must take for the fermion wave-function

J = u(p) ﬂ/2\/ﬁ, (220)

2m
in order to preserve wave-function normalization to 1 (the Dirac

spinors are assumed to be also normalized to 1). A similar proce-
dure will apply to the normalization of v spinors.



Finally, we consider any arbitrary Green function with an ex-
ternal fermion, multiply it by p? + m? and put the momentum of
the external line on its mass shell. The net effect in passing to the
S-matrix elements is to multiply each external fermion line (actu-
ally, every external line) by a factor Z —1/2 which contains infinities.

Different RS may have different procedures at any intermediate
step but all of them will give the same answer for the S-matrix,
as long as we respect the proper treatment of the external lines.

In QED there is more than mass renormalization and we also
have charge renormalization. Here, the situation is again simplified
because of the basic properties of the Lagrangian.

e At zero momentum transfer the vertex corrections in QED can-
cel the electron wave-function factors exactly and, moreover,
the photon self-energy is infrared finite.

Thus, in QED we can define a perturbative coupling for on-shell
scattering.

The parameter renormalization, Eq.(211), 1s sufficient to o0b-
tain finite S-matrix elements of, wn addition, wave-function
renormalization factors for external on-shell particles are in-

cluded.

Off-shell Green functions, however, are not finite by themselves.
If we choose a procedure where also vertices and self-energies are
to be made finite, then, besides parameters (coupling and masses),
the bare fields have to be redefined in terms of renormalized fields
by another set of multiplicative renormalizations

by = Zy 0. (221)



Expanding the renormalization constants
Zi=1+¢e%07; (222)

gives

L(doipo) = L(d:p) + Let (0.0Z4:p. p) | (223)
where with {p} we denote the set of parameters e, m etc. and L
denotes the counter-term Lagrangian. Before actually discussing
the various options for choosing a renormalization scheme we will
describe in detail the notion of a counter-term.

e Consider some theory, described by a Lagrangian, depending
on certain fields and parameters. At the tree level there is
no ambiguity and theoretical predictions from this Lagrangian
can be compared with the experiment. One data point, i.e.
one measurement, is needed to fix one p. After that any other
comparison is a test of the theory.

e Now suppose that we want to go beyond the tree approxima-
tion. Then radiative corrections must be calculated. The re-
lation between the parameters {p} and the experimental data
becomes much more complicated but it remains precisely true
that one measurement is needed to fix one free parameter p,
the rest is a test. Of course, the values of {p} as determined
using only the tree approximation will be different from the
values determined taking into account radiative corrections.
As it happens, this difference is usually infinitely large because
the radiative corrections contain infinities. Such infinities are
well-defined and understood.

e Because of the awkward situation that the corrected {p} and
the tree {p} are so different one introduces the notion of a
counter-term. As we have explained before, in the Lagrangian
we write {p + dp} instead of {p}, and {0p} is chosen in some



well-defined manner such that now {p} remain in the neigh-
bourhood of the tree {p}. It is, however, purely a matter of
convenience; the only thing that ever emerges in the confronta-
tion with the data is {p + dp}.

e This is why all RS are indeed equivalent. Of course different
theoretical predictions for some observable quantity may refer
to a different choice of experimental data points needed for the
renormalization conditions or to the same data points taken
at two different scales. This fact alone should not be related.,
under any circumstance, to a difference in the renormalization
scheme and we prefer, therefore, to introduce the notion of in-
put parameter set (IPS).

Before we can make predictions from a theory described by n
independent parameters we must specify an IPS, i.e. a choice
for n experimental data points to be used as input.

Two predictions for the same observable will inevitably differ
by an amount proportional to the missing higher orders if they
refer to different IPS, even if they are performed within the same
renormalization scheme. In turn, the use of different scales as a
subtraction point is closely connected to the scale behaviour of the
theory that is controlled by the renormalization-group equation, to
which we will return towards the end of this section.

In order to define a consistent procedure, it is necessary, when
talking about {p}, to specify what {dp} are used. Stating our
conventions on this matter is what is usually termed the renor-
malization scheme. Two essentially different approaches may be
distinguished:

1. prescribe {p} precisely;



2. prescribe {dp} precisely.

Again, only the combinations {p+ dp} appear in the confronta-
tion with the data, and we are discussing here a matter of conven-
tion. As a matter of terminology, we will call quantities such as
{dp} counter-terms.

e In the early days of QED, method 1 was used. The convention
was to prescribe {p}, and to use for that some very well-defined
experimental quantities. The quantities {dp} were then ob-
tained from the data, including radiative corrections.

e In QED, the mass and the charge of the electron are very well
known, and the scheme is well understood. Again, the situation
will be different in QCD where, on the contrary, we would like
to avoid any reference to quark masses.

e An example of approach 1isthe on-shellrenormalization scheme,
defined as the procedure of parameters and field redefinition
by Eq.(211), Eq.(221) when the renormalization factors are
fixed for external on-shell particles such that the meaning of
these parameters is preserved to be the same as in the tree
approximation.

e Convention 1 has many advantages but sometimes there is no
clear precisely known experimental quantity that can play the
role of defining {p}. Such is the case for QCD with respect
to the coupling constant g, of that theory. This g, at least
as seen experimentally, is a function of the scale, and cannot
be measured at a low scale due to confinement. Consequently;,
theorists, after considerable wrangling, have carefully consid-
ered method 2.

e The quantities {dp} are prescribed and {p} are determined
from some experiments depending on {p}. This method is con-



sequently realized within the minimal subtraction M.S renor-
malization scheme.

Perhaps the best way to illustrate how RS work in practice is to
consider mass renormalization in QED. Coming back to Eq.(214),
we expand ¥ (p) around a finite intermediate mass my. Then the
complete propagator will become,

0 (27?)41'<Z¢+m3+€5m+16ﬂ2AS)’
AS = 3mp(t o™y oy 294
= mR<g—H?+§)+ rest (D) (224)

where ¥, (p) contains additional ultraviolet divergences. There-

fore, we have a freedom in fixing the mass counter-term. This is

done with a condition
1

om = —Tg M

1 m2 4
3l=—In—2 4 = C 225
(5 n/ﬂ+3)+ ] (225)

containing an arbitrary finite constant C'.

The Renormalization scheme (RS): Any explicit defini-
tion of the constant C in Eq.(225) is a definition of the RS.

Clearly, p and C are arbitrary parameters and once we have spec-
ified our IPS; say, m and the fine-structure constant «, then dif-
ferent choices of p and of C' will correspond to bare Lagrangians
with different bare parameters mgy and e,. The choice C' =0 de-
fines the familiar MS scheme. Leaving C as well as u and ¢
arbitrary and including wave function renormalization factors
defines the generalized minimal subtraction scheme, or

GMS.

The parameter my is fixed in terms of the physical electron mass,
mp = mg (a,m, u, C') (226)
and this relation is uniquely governed by the requirement that the

physical mass be in the position of the single-particle pole in the
two-point Green function.



In conclusion, different RS may or may not indulge in present-
ing different intermediate parameters, like mpg, but all of them will
agree in any prediction for physical observables—at a fixed order
in perturbation theory—once the IPS is uniquely chosen. Stated
differently, as long as the theory is renormalizable and the scale at
which we perform the subtraction is the same (if we can find an
on-shell S-matrix element that corresponds to some well-measured
quantity) then any procedure for cancelling the infinities will pre-
dict S-matrix elements that are finite, p-independent and scheme
independent.

Renormalization procedure: A renormalization procedure
comprises the specification of the gauge firing term including
the corresponding ghost Lagrangian, the choice of the reqular-
wzation scheme—nowadays dimensional reqularization—, the
prescription for the RS and a choice for the IPS.

A typical example of what we call the IPS dependence of ra-
diative corrections is the following. Suppose that in a theory like
QED with two parameters we have already made use of the defi-
nition of the physical mass of the electron. Suppose, in addition,
we assumne that some S-matrix element has some value S,. Then
up to one-loop we will have

S = 612% S(l) (mRa7 ,LL) . (227)

where we have explicitly indicated the number of loops. Then we
can solve for m, and e, in terms of m and §,. Suppose we
compute the second matrix element S;, giving the second solution
m, and e, in terms of m and &;. In predicting any matrix

Rb Rb \ ;
element M we will have options

Ma’b = M()Oé;l’b (1 + ./\/lloza,b) , (228)

2

with o, p = €
’ Ra

, and where to one-loop order c, = (1 4 ya).



Then we obtain M, = M, 4+ 0 M, with

nn-—1
nin—1) 5 )72+(n—|—1)7./\/11 ozZ—l—---+7”+1MlozZ+2}.

(229)
Unless higher orders are computed we always consider 6. M to be

5/\4 = /V40(MZ {

the uncertainty associated with the two IPS.

7.2 On-shell versus M S renormalization in QED

The main motivation of this subsection will consist in carrying
out the one-loop renormalization programmes in QED within two
schemes, on-shell and M S, and in illustrating how the physical

result is RS independent.

The QED Lagrangian in the Feynman gauge can be derived
from Eq.(1), setting ¢ = 1 and ). = —1. It is unambiguous at the
tree level. Moving to higher orders, we assume that it is made of
bare fields and parameters labelled with sup- or sub-indices 0 and
specifies the renormalization constants for the two fields—A,, and
1)—and the two QED parameters—the electron mass m and the
charge e:

A0 — Z[l‘/Q A, 0 :Zih%
e, = Z.e, mozme:m—i—625m—|—O(e4),

Zi = 1+e5Zi+0 (") (230)
The Lagrangian can now be rewritten, up to terms O (e?), as

LF =L+ Le, (231)

QED QED

with a counter-term Lagrangian:
Lo = ALY +0(H),
1 1 _
£? = ~ 02, FFy = 502, (0,A,)% — 8Z, 0o

uvt py
_ 1 _
(5 Zym +m) T — i (526 + 670+ 55@,) e AT, 10(232)

The counter-term part of the Lagrangian is made of three terms:
the first is bilinear in the photon fields, the second is bilinear in the



fermion field and the third is a three-linear QED-like interaction.
We may say that it generates a new set of QED Feynman rules to
be denoted by a cross. First, the 0 7, counter-term:

w\/ﬁ@\/\m — —625ZA- (233)

Then the 07, and 0m counter-terms:

e

GV — —e* (0Zyip + 6 Zym + dm) . (234)

And finally, the remaining combinations:
€+

§M§< — —iey,e’ (526 + 67y + %5@) : (235)
n

e

Equipped with these additional Feynman rules and using the re-
sults for the one-loop QED diagrams we may write down answers
generated by both pieces of the Lagrangian Eq.(231). This part
of the presentation is absolutely general and common to all ap-

proaches.
We begin with the photon self-energy. The electron-loop dia-
gram gives

I, = in’e? (p25ﬂ,, — pﬂp,,) 411 (pQ) : (236)
Here we introduce
11 (p*) = 2[By (p%sm.m) + By (p*sm,m)], (237)
where the limit p> — 0 gives,
1 1 m?
IL(0) = 5 (_g +1In ?) . (238)

The p,p, part does not contribute whenever we consider IL,, as
coupled to conserved fermionic currents. Thus, for II,,, we may use

Hw/ = HO p25u1/7 (239)



with a scalar coefficient defined by
2
o = (2m)"i 5T (7). (240)

We may now compute the Dyson re-summed (sometimes called
complete or dressed) photon propagator

1 . 1
1 + 625ZA — WH (pQ)

Similarly, for the dressed electron propagator, the following is ob-
tained:

= G {1+ ¢%62,) (ip+m) + e*om
S )+ i m) S+ 0 () 202

We shall also need a few other ingredients. From the fermion
self-energy, Eq.(213), we derive the first two terms in the Taylor
expansion

2

3 m
S (im) = ir’e*m [ ==+ 3In — — 4 243
(im) m@m( g+ HM2 ), (243)

and the wave-function coeflicient,
S = in%e?{2B, (—mQ; m, O) +1 —4m?[By, (—mQ; m, O) + 2 By, (—mQ; m, O)]}
. 9 9 1 2 m2
= ime | ——+ - +3ln— —4]. (244)
S 1

In terms of V; (Q%;m, m), the v,-part of the one-loop e Te ™ vertex
becomes

1 1
— (2n)tiie {1 + 2 [5Ze + 5(SZA +67, +

1672 & (QQ; m, m)] } Vo (245)

Having at our disposal Eq.(241), Eq.(242), and Eq.(245), we can
casily illustrate the practical implementation of different RS.

7.8 The on-mass-shell renormalization scheme.

The essence of the on-mass-shell (hereafter OMS) RS is to preserve
the meaning of the original parameters of the Lagrangian. We be-
gin with a discussion of the dressed photonic propagator Eq.(241),



requiring that its residue should be unchanged at the photonic
mass shell, p?> = 0, i.e.

62

42
This requirement guarantees that the wave-function for external
photonic lines does not change due to one-loop radiative correc-

tions. Using Eq.(238), this requirement fixes one of the counter-
terms to be

e?07, = —11(0). (246)

1 1 m?
62, = = (—g +ln F) (247)
Now we consider the dressed electron propagator that we require
to be of the form

- ! (248)
@2m)ti (i 4+ m)
at the electron-mass-shell, i = —m. This requirement preserves

the external line electron wave-function from being renormalized
by one-loop radiative corrections. It allows us to fix two other
counter-terms from the condition

1
ip+m

{262, (i +m) + e*om (249)

1
2m)ti

[ (im) + (ip + m) Sy + O (i +m)*)] pu (p) =0,

yielding the following two equations:

¥ (im) Y
2 2 WF
sm =~ 57, = , 250
et T T e o
which allow us to write
m 3 m2
) = —— +3In— —4
SRTe ( ERY ) ’
1 1 2 m2
0L, = ——+—4+3ln——4]. 251
P 1672 ( =z + 2 +oln MQ ) ( )

Finally, we move to the one-loop corrected vertex Eq.(245) and
require it to be
—(2m) iiey,, (252)



at Q> = 0, which preserves the Thomson limit of the electric
charge from being renormalized by one-loop radiative corrections
and which leads to the condition:

1

1672

Substituting the counter-term 0 Z,,, which is already fixed and the
derived expression for Vi (0;m, mlﬁ, Eq.(107), we observe the well-

known QED Ward identity:

1
37, + §5ZA + 67y + Vi (0;m,m) = 0. (253)

1
0Zy + 167T2V1 (0;m,m) =0, (254)
which allows us to fix the last counter-term:
57, = _%MA. (255)

Now all the counter-terms in the Lagrangian Eq.(232) are fixed
and we may calculate any QED process at the one-loop level with
the Lagrangian Eq.(231), that is, accounting for diagrams gener-
ated by the renormalized part and by the counter-terms.

The QED coupling constant becomes the ete™ v coupling in the
Thomson limit of Compton scattering. Then, the theorem is telling
us that a—free of infrared singularities—has a value independent of
the order of perturbation theory, only determined by the accuracy
of the experiment.

In full generality, the one-loop and counter-term contributions
for any external on-shell line compensate each other identically
(this is known as the principle of non-renormalizability for ex-
ternal lines). For any 2 — 2 fermion process, at the one-loop
level, we encounter only two building blocks, Eqs.(241) and (245),
while Eq.(242) has only played an auxiliary role in the counter-term
fixation. These two building blocks become ultraviolet finite once
we substitute the counter-terms as dictated by the renormalization
procedure. They may be described in terms of two quantities—the

effective (running) electric charge, e* (p?), and the renormalized
vertex, VI (Q% m, m).



1. The photon propagation is now described by

€2D 62 (pQ) 5#‘_’/

M r)ti p?

The following point is important: in Eq.(256) we observe the
presence of the running parameter

(256)

2

W) = , (257)

1 — mnren (pQ)
where the evolution is governed by the renormalized quantity:
e (p*) = (p°) — I1(0) . (258)

2. The electromagnetic interaction

ied

A= (27)4 '

l 1672 [’Vﬂ‘/lren (Q27 m, m) + O pv (Pl + p2),, ‘/2 (QQ, m, m)],
(259)
is expressed in terms of the renormalized vertex
Ve (QQ; m,m) =V (QQ; m,m) — Vi (0;m,m) . (260)

To understand the quantitative behaviour of the running of «
we start from

1 1 2 27
™ () = 5+ 5 (1—22’3—2) IA dxlnX(Z;Qx), (261)

with x (p?, z) determined by Eq.(96), and derive its behaviour, for
both low and high p?. For instance

2
ren p
I1 (pQ) = e for p? — 0, (262)

where we find the well-known contribution to the Uehling effect;

that is, the modification of Coulomb’s law due to vacuum polar-
ization. Alternatively, for large s = —p* we have

1 5 ,
" (pQ) =3 (11’1 5 7T) : for s=—p* = . (263)

It is perhaps worth mentioning that the re-summation in Eq.(257)
will remain valid also when QED is embedded into the Standard



Model, but only as long as we limit ourselves to the inclusion of
fermion loops. There are problems, however, with boson loops that

are not gauge-invariant by themselves.
We also present the V™ (Q% m,m) once more in an integral
form:

1 m2 1
VI (Q%m,m) = 2 (g +1In 7) [1 — (@ +2m?) /01 b gray| (26
_ 2 m2 : dx ! In S (Q27 x)
2(@ +2 / X(Q27x) m?
) 1
_/cmm +2(Q* +3m?) /(m T, )—a

in order to emphasize that there remains a pole and a scale-dependent

factor:
1 m2

4 ln— 265
>t (265)

which has an infrared origin and which will be compensated for in
any realistic calculation by the contribution of the real soft photons
emission and also by the box diagrams, which are ultraviolet finite
by themselves.

7.4 The MS renormalization scheme.

The main motivation of this subsection will consist in carrying out
the one-loop renormalization programme by prescribing precisely
what the counter-terms are, after which the parameters of the La-
grangian are determined from some set of experiments.

We will make contact with the MS renormalization scheme
where we start by computing the ultraviolet singularities of the
one-loop diagrams for defining the counter-terms. These will in-
clude self-energy diagrams as well as vertices, since boxes in QED
are free from ultraviolet poles. The residues of the pole at n = 4
are listed in the following where we adopt the general strategy of
the M S scheme, where not only the pole but also the various fac-
tors containing 7y and Inm, i.e. &, are renormalized away. Thus,



in MS the singular parts are subtracted and the parameters are
defined at an arbitrary scale. This scheme has its natural habitat
in QCD where, because of confinement, there is no special mass
scale in the renormalization procedure.

Actually our main emphasis in this section will rather be on the
fact that, in principle, any value could be assigned to the constant
C' in Eq.(225) since physical observables will not depend on any
particular choice of C', assuming that gauge invariance is preserved,
or, in other words, that no ad hoc procedure spoils the underlying
cancellations in the theory.

S0, the residues of the pole at n = 4 are

e II,,, the photon self-energy:
PP[IL,, ] = (2m)" i o2 (Pupy — P*6) = (266)
e Y. the electron self-energy:
2
1
PP [2] = — (2m)"i 5 (if+4m) —. (267)
o A\, the eTe ™y vertex:
PP[A,] = - (27)"i (i) 50 - 268
ul = m)ilie) To g <

The structure of the divergences fixes the renormalization constants
up to a choice of C' that we fix according to the M S renormaliza-

tion scheme.
First, we deal with the photon propagator. From Eq.(240):

2
oy
P[] = - (27)"i 15—~ (269)
The renormalization in this case amounts to the requirement that
1 1
57, = (270)

C19x2 &



We now consider the dressed electron propagator, Eq.(242), with
by ] B e’

PP =
(2m) " 16 72

| =

[3m + (ip +m)] —. (271)

The denominator of S becomes, for ip — —m

{(27T)4i5}_1 = i+ m+ eSS,

: 1 I . 1
0S = 0Zy (ip+m)+om+ 167T2mg—|— = (ipp +m) =
which we require to be —ip + m. This gives
3 1 I 1
Sm = — S = —— - 27
SR TPl YT T 16a2 (272)

From the ete ™ vertex, Eq.(245), which we require to be — (2%)4 L 1ey,,
we obtain another counter-term:
11 11
16722  24m? &
As a result, the M S renormalized QED Lagrangian becomes

1
670 = ~507,~ 67 ~ (273)

1 e? 1 1 e? 1 9
P o= (12| F F, - [1- == (9,4 274
EQED 4 ( 127T2 g) py— py 2 ( 127T2 5) (aﬂ N) ( 7 )
e? 1\ — e? 1\ — e 1 _
B . A S R N PN i .
( 1672 5) v m( 47 5) vy e ( 1672 5) S

In this way, all one-loop Green functions of QED in the & =1
gauge have been made finite and the renormalized parameters are
subsequently fixed by comparing with some set of experimental
data points, noticeably the electron mass and the fine structure

constant.

For instance we start from the Lagrangian Eq.(274) and compute
the residue of the pole at p*> = 0 in ezDW. The electric charge
is defined through the coefficient of the pole at zero momentum
transfer of the scattering between two charged particles. From the
definition of the fine structure constant, e? = 4w, we obtain

4o
e? = o (275)
a m
1+ —In—
3w P




Then e*D,,, for arbitrary p* is considered, where according to

Eq.(270) and Eq.(237)

9 9 11 m2\ 1 X (pQ, x)
L (p") + 4702, = 5 + 5 (1—2]9—2 J deln =SS (276)
The physically relevant object is the effective electric charge, Eq.(257),

for which we need
II (p*) — Lypm (277)
3
In this way, it becomes clear why the physical building blocks are
identical to those in the OMS scheme. The main reason is that in

computing Feynman integrals we always have the combination

1 scale?
—— 11
g u?

and in any observable—where ultraviolet infinities cancel—evaluated

(278)

at a given scale the renormalization condition replaces the p-dependence
with a physical scale. In the effective electric charge this replace-
ment is 4 — m. In short, while IT (p?) is p-dependent in the MS
scheme the whole scale dependence disappears in IT'" (p?).

The same will remain true for the renormalized vertex, Eq.(260).
Indeed, from the definition of the QED vertex, Eq.(100) we see that
the ultraviolet pole is Q*-independent; thus, in its renormalization
the p- (ultraviolet) dependence will drop out.

7.5 Parameter renormalization and the S-matrix: the GMS framework

To continue our discussion of the renormalization procedures within
QED we turn to parameter renormalization, Eq.(211), with wave-
function renormalization factors for external on-shell particles. This
procedure, as we have already stressed, will be enough for dealing

with finite S-matrix elements.
The starting point will be the following Lagrangian:

moo_ lpop _%(aﬂAﬂ)Q_a(@erw—e?(smw

QED R

—ie Ay — i0Z.e® Ay, (279)



In this subsection the finite parts of all diagrams will always be
included. For the electron propagator we have

. ]
= 26m — : 280
(2m)ti ok m ot om (2m)"i (280)
We can rewrite it as a Taylor expansion around 7 = —m
{(27T)4 iS}_l = ip+m+e*dm —68,
1
iS = [ (im) + (ip +m) Sy + O ((ip +m)?)] .
(2m)" i
S will show a pole at ipp = —m, where m is the physical electron
mass. Thus, mass renormalization should be as follows:
1 .
e2dm = (27T)4i Y (im), (281)

and the electron propagator S becomes
1 1 . .
S = W{(l = W[EWF +O (i +m)]) (i +m)]
The proper renormalization of the electron wave function requires

us to consider the introduction of Dirac spinors and a limit for
on-shell electrons. It gives

(282)

1 1
uSu = (271)42' uz 12 WZ_UQ u, for p? — —m?*. (283)
As before, we have defined a Z factor as
by
Z=1- (284)

Consider now any amplitude M with an external electron line,
then the corresponding S-matrix element becomes

ip+m

AR .
Z (ip +m) + O ((ip +m)”)

M= 770 M = a[lJrl %EWF]M.
2 (2m) i

(285)
Substituting the corresponding expressions for the B functions, we
obtain

Y wr e? 1 m?
= ——+In——-44+3_|. 286
em)i 167 ( ER T (286)



There are several possible realizations for the infrared part, accord-
ing to the adopted regularization, but here we just use dimensional

regularization:

2 m?
EIRZE—FQIHF.

Eqs.(286) and (287), with 07,

(287)

It 1s instructive to compare X
derived in Eq.(251).

For the eTe™y vertex we use again the definition, Eq.(90). The
V5 part does not contribute to renormalization and for V; we could
use some general result but, given the inherent simplicity of QED,
we simply refer to Eq.(101). For Q% = 0 we obtain

WE?

-3
. le
MY = @0 Vi (Qfmom).
-3 1 m?
AO) = 2m) i 2 (2o 449y . 9
(0) (2m) Zl6ﬂ2 ( g+ HM2 + IR) (288)

Now vertex corrections and fermion wave-function factors are com-
bined and we are naturally led to consider everything in the limit
of zero momentum transfer where the residue of the pole in the
scattering of two charged particles defines the fine structure con-
stant. We have again verified, by explicit calculation, the Ward
identity

A(0) —ieD,, = 0. (289)

Therefore, only the photon self-energy contributes to the electric
charge renormalization when we impose the renormalization con-
dition at zero momentum transfer. Note that both contributions,
vertex and fermion wave-function factor, are separately infrared-
divergent. The dressed photon propagator, which happens to be
infrared finite, becomes

. (290)

1 ) 62
9 w9 I 2

where IT (p?) is defined by Eq.(237). For our choice of the renor-
malization condition it follows that

47 (0) = ¢ [1 - 4%11 (0)] . (201)



Substituting back in the photon propagator we find the well-known
phenomenon of the evolution of coupling constants in field theory.
We actually find more, the 1 dependence cancels and we find ex-
actly the same result as in any renormalization scheme:
1 ) v a (0 ren -
eQDW = (27T)4i ;—247Toz (pQ) .« (pQ) =a(0) |1 - %H (pQ) :
(292)

where IT"" (p?) is given by Eq.(258).
This is exactly Eq.(257). Clearly, all divergences and scales drop
out in the difference since—this is really the crucial point—they

do not depend on p?.

Recall now Eq.(238). In QED, as in any other renormalizable
theory, the infinities cancel after renormalization in any physical
observable. Therefore, we can re-formulate the theory by setting
everywhere 1/ to zero and by promoting the bare parameters to
M S parameters. In other words: defining an MS parameter is
equivalent to adopting the heuristic rule (valid at one-loop)

1
B +1lnp?* = In /”612\4—5’ (293)

in the relation expressing the bare parameters in terms of the renor-
malized ones. Thus,

612”_5 (/f) =4 7o (0) [1 — %1 %]_1 ~ 4dma(0) [1—1—%11’1%}.
(204)

Obviously, « (p*) and 6?4_ are different objects and only the former
has a physical interpretation, while the latter is nothing more than
a convenient way of expressing the bare parameters of a renormal-
izable theory, since it is universal; that is, process independent, and
takes into account the universal large effects from fermion loops.

e Note that we could start from a QED Lagrangian without
counter-terms and relate the bare parameters directly to the
experimental data. Indeed, nowhere from Eq.(290) to Eq.(292)
is the notion of counter-term actually needed. Certainly, the



bare parameters have no physical meaning but, on the other
hand, relations between measurable physical quantities, where
the parameters drop out, are finite and it is therefore possible
to perform tests of the theory in terms of such relations by
eliminating the bare parameters.

By virtue of the renormalizability of the theory, all divergences
drop out in the final answer. What is left, for practical convenience,
is the introduction of intermediate parameters like 6?4_5 (1?). The
only meaningful quantity will be the running coupling constant,

Eqs.(257) and (292).

7.6 Gauge dependence and renormalization

[t is, of course, important to verify the gauge independence of the
S-matrix and for that we reconsider some of the building blocks in
a general ¢ QED-like gauge where the only modification occurs
for the photon propagator

1 v
5 [ (€0 ). (295)

At one-loop the photon self-energy remains unchanged, since the
diagram of Fig. 3 is manifestly gauge-invariant, while the fermion
self-energy receives an additional contribution

L=30+ (¢ -1) AT, (296)

The extra piece is given by

62

16 72

Making use of the relations among the B;;-functions and the b;;-
functions we arrive at
2
AT = — (2m)"i e (i + m) [Bo (p: 0,m) + (=i + m) i gy (psm)].
(298)
From Eq.(298) it is immediately seen that the additional contribu-
tion vanishes on-mass-shell, therefore the mass counter-term will

AT = — (27)*i

[(Bo— Bi)ip+mBy—2 (p*bar + bao) ip].  (297)




be independent of {,. The same is not true for the wave-function
renormalization factor or, which is equivalent, for Z,. Indeed, we

find that

A = — (271) 16 5 [Bo ( mQ;O,m) — 2m?%b, (—mQ;m)]. (299)
The term in brackets is easily evaluated and gives
1 1
By (—mQ; O,m) —2m*h (—mQ; m) == + 7 (300)
where we have used the relation by (—=m?; m) = — By, (—m?*; 0, m).

Thus, the gauge-dependent addition to the wave-function renor-
malization factor, or Z, is neither infrared finite nor gauge inde-
pendent. For the vertex corrections we find that

o3

16 2

A Q%) =AW (Q%) + (2m)*i

with an extra factor

(E-1ar@). (60

AA (QQ) = —nbyy (—mQ; m) + m? [by (— ) +2b ( m? m) ]. (302)
After using again the properties of the bi ; functions we end up with
AA(QQ):—B ( m? Om)+2mb1( m? m) (303)

In this way we can prove that the usual Ward identity
A(0) —ieX,, =0 (304)

is satisfied for arbitrary ¢, and that, in turn, the Z, factor is gauge
independent.

Therefore, one obtains that the physical parameters e and m
m QED are renormalized in a gauge-independent way.

8 The Standard Model vector-boson self-energies.

For the 0, part of the vector—vector transitions all the results can
be cast in the following form:

2.2 2

g-s . g
Syy = (27T) = HW(FQ)PQa Syz = (27T)4Z A 9.2 Ezz(pQ)a
16m=c;



4 . 9259 2
527 - (27T) t 167T2C9 EZA(p )7
2 2

. g . 4
SWW - (27T)4Z 167T2 EWW (p2)7 SHH - (27T)4Z 167T2 EHH (p2)7 (305)

where we have transformed from the (A, Z) basis to the (3,Q)
basis, defined by:

S, (07) = SL%) — 2555, (0°) + sl () P,

S, 0% = S, — sl () p*. (306)
Within the SM and in the & = 1 gauge we also have the following
identities, expressing the results for total transitions:

2
I, (p°) = = —12By (p*s M. M) + 7B, (p*; M. M) + 4;cf@§Bf (p*;mp,my)

3
2 13
S(?) = |5 = 108 (0% M. M) + - Bo (4% M, )
—2M*By (p*; M, M) + p” ZfICfIQfIBf (p*smy,my) . (307)

The most important observation here is that E3Q(O) 1S not zero

and so it will be the Z—y transition that is most important for
the electric charge renormalization. Next we split the self-energies
into a p-proportional part and the rest, according to the following
definition:

S, (") =IL,(") P+ 20, (%), Spw ) =1, () p*+ 30 (p°). (308)

The various components are given by:

2 25
I, (p°) = 3 9B21 (]92; M, M) + ZBO (]92; M, M) — By (]92; M07MH) (309)
1 1
_Bl (p27 MoaMH) - ZBO (p27 MoaMH) + 5%;0fo (p27mfamf) ’
S (p°) = —2M*By (p*s M, M) + % (M? = M?) By (p* M,, M,) (310)

1
+3 (5M7 — M?) By (p*s M,, M,,) —

f
2
Ly (1) = 5= 9B (p%M,, M) = 9B (p*: M, M) + | By (% M, M)
I

— By (p*s M, M,) — By (p*; M. M,,) — B (p*; M, M,)



+53[8Ba1 (p* M,, M) — 2By (p*; M,, M) + 8By (p*; M,, M)
_8B21 (p2707M) - 8B1 (p2707M) + 2BO (p2707M)]

+ j;dchf (pQ;mf/,mf), (311)
() = g (M? — M?) By (p*; M,, M) + i (13M? — 21M?) By (p*; M,, M)
1 1
+5 (M* — M?) By (p*s M, M,,) + 1 (5M° — M?) By (p* M, M,,)
+si{2 (M? — M?) 2By (p*: M,, M) + By (p*: M,, M)] (312)

—2M?*[2B, (pQ;O,M) + By (pQ;O,M)]} + Zf:cfm?»Bl (pQ;mf/,mf) :

It is worth presenting here the fermionic component of the Higgs
boson self-energy,
2 p2 + 4m§: BO

EHH(pQ) = Zf:CfM—%[AO (mf) - f (pQ;mf7mf)]‘ (313)

Note that the fermionic component of the Higgs-vector boson tran-
sition vanishes identically as it should, since it is proportional to

[By (pQ;mf,mf) + 2B, (pQ;mf,mf)]pﬂ. (314)

In the above expressions we have not yet included tadpoles for
the W-W and for Z-Z transitions. To understand that no real
problem is hidden in tadpoles we will say that in all physical observ-
ables we encounter combinations like & (p*) — ¥, (¢*), where
tadpoles drop out, or like EWW(MVQV) — ZZZ(ME) where again tad-
poles drop out and where the combination is gauge-parameter in-
dependent. If we do not add tadpoles, then the combination is still

gauge independent but the two pieces are not separately indepen-
dent.

9 Fermion wave-function renormalization

The fermionic self-energies are the building blocks used for the
evaluation of wave-function renormalization factors. After writing
the parameterization

S(ip) = (2m)" i [ag + azys + (a3 — a4 7s) i (315)
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Figure 12: Treatment of external fermion line in an S-matrix element.

2, we obtain the wave-

—1m

and using derivatives, a} = da;/0p*|2_
function factors shown in Table 1, with

1 1
W, = 503~ m?ay + ma',, W, = 504 (316)
In the SM we always have as = 0. In going from a Green function
to the corresponding S-matrix element the wave-function renor-

malization factors enter multiplicatively.

9.1 Wave-function renormalization factors in the { =1 gauge.

In what follows we present the explicit expressions for the quantities
Wl and Wi, in the £ = 1 gauge. The superscript (1) will be
dropped since no confusion is created. It is convenient to split W,

into a QED and a non-QED part, W,, = W™ + W; that is,

Table 1: Wave-function renormalization factors for fermionic lines

1+ Wy + Ways incoming particle

14+ Wy — Wivs outgoing particle

14+ Wy, + W,vs | outgoing anti-particle

1+ Wy — W3vs | incoming anti-particle

to separate out photonic (em) and purely weak (w) components.



We derive for the electromagnetic part:

e _ 955
Yo 1672

1
{B1 (m.0)=2m} By, (. 0)=4m} By, (my,0)+3 |, (317)

and for the remaining (weak) factors:

wy = L L3 B g M) = 20 By (. M) (318)
+cl_30;"2) By (my. M,) = 2m By, (my. M,)]
g 1)U M) 2By o, M)
—Qmj\;ﬁ By, (mp, M) — 3—35;*2)7713:30;) (my, M) + 21730;’2) + %}’
W, = 62”1;{“2%”’[231 (my, M) + 1] + By (mp, M) + % - Qm—j\;‘QBl (my, M),
with p* = —m?.

10 The Standard Model V ff vertices

One of the essential ingredients of any calculation of radiative cor-
rections in the SM is given by the three-point vertex functions.
With different external and internal lines they will enter into the
calculation of decay rates like

Z,H = ff, W = ud(ud), (319)

and of processes that share a special relevance for the renormaliza-
tion procedure, namely

e T — e, (at Q*=0), O [l — €T V). (320)
Finally, there are distributions for various processes:
ete” s ete , ff,WW™ vy, Z~, ZZ, HZ. (321)

In this section we examine a particular class of vertices defined by
having the structure V(S) — ff, i.e. vector (scalar) into fermion



pairs. We do it first in the 't Hooft-Feynman ¢ = 1 gauge, and
extend the results to arbitrary ¢ including the unitary gauge.

Every diagram is expressible as the sum of an appropriate num-
ber of Lorentz structures @ scalar form factors bearing some sub-
and superscripts.

10.1 Vff vertices in the 't Hooft—-Feynman gauge and in the massless limit

For the & = 1 gauge and in the limit where we ignore fermion
masses, all diagrams can be classified according to their internal
lines in a unique way and only two types will occur, the F|V F,
abelian type and the V] F'V, non-abelian type, where different F
or V internal fields are only required in W-decay. If the top quark
occurs in the final state, then H-lines or ¢-lines will be present and

we will also have FFHF', etc. structures.
The most general vector boson-fermion-antifermion coupling,

V(Q) = f(=p1) f(—p2). (322)
can be reduced to a combination of six form factors (for vector-like
structures):

. 3

. 1g
v, (QQ) — (271)4 ZW[FV% +F v+ FLouQy

+F,Qu+ FosQu + Fuvs (p1— pQ)N], (323)

with @ +p1 +p2 =0 and piy = (p1 —p2)u. Py = (P1 — P2)yu -
For the neutral current sector there are 14 diagrams of this kind
and only 10 for v f f, while we have 18 of them for charged currents

and 15 for the H f f vertex.

In this subsection we are mostly interested in the limit of small
fermion masses where only F, and I, contribute. They can be
computed starting from the scalar three-point functions. Another
way of representing the vertex corrections, always in the massless
fermion limit, is

”

. 1g
VH@)=(%fq@ﬂ%%+ﬂwﬂ+%%

F, = F —-F,, F =F, (324)

Q



We consider first the neutral current (hereafter NC) case, i.e. v, Z —

ff. Two vertices survive in the massless limit: in our terminology
they are of the F'VF or VFV type, and are shown in Fig. 13.

Figure 13: FV F and VFV vertices

The result depends on the V/A ratios for the vertices and these
two different structures can be written as

dn
ViY@ = - i dlqu%‘ (A1 4+ A2%s) 4
X (A3 +Ays) (4 + 1+ P2) Yo (A + A3s) (325)
V(@) = =i e O ) () 3 O ds) B (326)

where v,,,53 1s the corresponding three-vector boson vertex and
dy=¢+mi, di=(g+p)'+mi, d=(—-Q) +mi. (327

FV F Configuration. For the first diagram we can obtain the final
result by using

2
pi = —mi,  py=-mi, (p4p) =@
mp = my, me = m, ms = my, where m =0,M,,
mp = My, MQZM, mz=myg, (328)

where f’ is the isospin partner of the f-fermion. We obtain for the
abelian (a) case

F =kfF, F = =kg,F (329)

V,Ba a’ A,Ba Ba’

where B = (A, Z) and where x is a coefficient coming from the
internal vertices. Furthermore, we have introduced

fr=(T+X) A +200 0, g, = (AT+A) M +200A;. (330)



[gnoring again terms proportional to the fermion masses we find
F (QQ) = 4(1 +n — 4) 024—|—2Q2 (011 —|—023) . (331)

11
The pole part of Cyy is easily computed and gives r Therefore,
3

we have

F (Q%) =4 (024 — %) +2Q% (Ch1 + Cag) - (332)

Within the SM we have six possible diagrams of 'V F' abelian-

type; the corresponding constants are listed in Table 2.

The higher-order C-functions, which appear in Eq.(332), can
be reduced to purely scalar functions by using the results of the
previous sections. However, this reduction simplifies considerably
for massless fermions and in what follows we indicate the results.
First, we introduce a subtracted By-function:

2
brs (Q*) = By (Q%;0,0) — By (0;0,M) = —1In (%) +1+im0 (-Q%).
(333)
In terms of this function and of the scalar Cj,
C, (Q%) = Cy (0,0,Q%0,.0), (334)
we obtain the complete list of integrals C;; (0,0, Q% 0, M, 0):
1
Cn = - (1 + TQ) C (@) — @bff (Q2) )
1+ 212 1
023 = —27“2 (1 + 7”2) CM(QQ) - QQ bff (QQ) - wﬂ
Co = iA (M) + % + %rQ (1+%)QC,(Q%) + i (14 2r*) byr (Q%) (335)
where we have introduced r? = —M?/(Q?.
VEV Configuration. For the second type of diagram we have
Fv,Wn = KfVFWn’ FA,Wn = K/gAFWn7 (336)

with the following assignment of variables:

2
p% — _mifa p% — _mifa (pl +p2) — Q27
mp = M3 = M, meo = mf/.



Table 2: Constants of 'V 7 abelian-vertices

Az | Ag | ma | AL | A2 Iy 9. P
f 33
v 1 0 0 110 1 0 Q353
f (2) 1 S¢
vRP L) 0 M, |y | ay oy 2vjay 192
]
f 1
vIP L0 M1 2 2 Qs
Zf? 0 1 0 1@2 83
v a v a _ _v
! ! g d 2% ¢y
> 2 2 11
Zff | vp | ap | My | vy | ay ch )vf—l—Qvfa?f Ujf )af-|-2vj%af gg
zZfF M |11 2 2 11
Vst afr . . e
Y / / 16 ¢4

In this case, we easily find the important combinations as f,, =
A7+ A3 and g, = 2A1 A9, so that we may write

F, (@) = —4(34n—4) Coy—2Q* (Co+ C11 + Cay)
1
= —12 (024 — 6) —2Q* (Cy + Cyy + Ca3) . (337)

1
Within the SM we have A5 = 1 while k = 1 (59, Cp) (—]}3)) for

the (v, Z) f f vertices. For the VFV configuration and in the limit
of massless fermions we introduce another subtracted By-function:

b (Q°) = By (Q% M, M) — By (0;0,M) . (338)
In terms of this function and of
Cln (@) = Cy (0,0,Q% M0, M), (339)
we obtain all C;; (0,0, Q% M, 0, M)-functions
1

Cu = (1" =1)C,, (Q7) = 5507 (Q7).



1 — 2r? 1

Chs = 1? (1 — 27“2) C,.,(Q%) — oL by (QQ) NETozh
Cyy = iA (M) + % + %r‘*@?CMM(Q?) + i (1—2r)0; (Q%) . (340)

CC Configuration. Also very important is the charged current
(CC) case, a vertex with an external W boson line. We will give
the explicit expression for the W*du couplings, where u and d
denote arbitrary partners in the isodoublet. First, we have two
abelian diagrams in the massless limit. They can be cast in the

Figure 14: CC F'V F vertices.

following form:
R =F = s Wa(@). (341

where the common function of (? is

1 1
w(Q) =5 QuQusi F,, (Q°) + g (et ) (vataa) F, (Q?). (342)
A reduction of higher-order form factors is again achieved with the
help of Eq.(332). The remaining four non-abelian diagrams that
survive the massless limit are again written as

F=F = % v (@) (343)

where the function W, (Q?) is

e (@) = (vy+ay—va—aa) F, (Q°) +2(Qu— Qqa)s;F, (Q7). (344)

The non-abelian form factors are expressible through the auxiliary
function

11
Vi (@) = 3Cu—5+5Q(Co+ i+ C), (345)



where all C;; functions have arguments {0, 0, Q% M,, 0, M,}. The
result for the form factors is

P @)=V, (@), F(@)=V,.,(@) (346)

[t can be easily proven that V ; is symmetrlc in its two indices, i.e.

VWB = VBW. In this case, the reduction is given by

Cu = (2 —1)Cu (Q7) - 52 [Bo (9% M,, M) — By (0:0,M,)].
Coy = 12 (1—202) Cup (Q7) + é (2 + 72 — 1) By (Q% M, M)
—r2By (050, M) + (1 — r}) By (0;0, M) — Sl
Cor = 3Q"r7Cw (@) + 3+ - (1= 22— ) By (@% M. M)
+i [r2 By (050, M) + r; By (0; 0, My)], (347)
where we have introduced the universal function,
Cor (@) = Co (0.0, Q% M0 0) . 12, = ﬂg;. (348)

The auxiliary function becomes

V(@) = L2+ e ) Q) = (12 ) By (Q M. 00)

+i(Q+T)BO<OOM> i(2+r§)Bo(0;o,Mb). (349)

So far, we have discussed only the massless approximation. To go
further with our derivation we need to consider the m;-dependence.

10.2 The m;-dependent part in { =1

For massless fermions the Z f f couplings receive a correction fac-
tor,
F, = —@f UfF (@) +

ey (0} +341) 7, (@)

1
T5e (vpr+ap) F, (Q )-—calf F, (@), (350)



where I (%) and E (Q?) are defined by Eq.(332) and Eq.(337),

respectively. Similarly, we obtain

—@f Fo @)+ g (3Uf +a5) F,, (Q)
1
tag, (v tap) E v (Q7) = —C oIf'F,, (@) (351)

When we consider the Zbb vertex there will be two additional
diagrams involving internal ¢-lines. Collecting all terms we end up
with the following expressions where my has been ignored every-
where, but not m:

F) = Vb(@?)wvb (@), Fy=4,(Q°)+W,(Q%). (352)
1 (QY) = —@b—va (@2)+81—02vb (v +362) F, (Q?).
4,Q) = S abF (@2)+81—Cgab (302 +a2) F, (Q?).

W, (QY) = “TUED (Q7) +

809

LR () + R (@) - R (@)

2¢y Wa Cop

It can be seen that four different combination of C;;-functions are
needed in this case. They are defined by

4

F (Q2) - Mz —LCy+4C — 2 +2Q* (Cy1 + Ca3),
1 1 1 Q7
FIE/QG) (QQ) = §mt CO + §wt Coy — Z + % (012 + 023)] ) (353)

with w; = m? /M VQV and where all functions have arguments {0, 0, Q% my, M w1
and

Fv(vl) (Q%) = —(12 4 wy)Cas + 2 = 2Q*(Cy + Ci1 + Ca3),
1 1
FWQ) (Q ) = —5 wy (MV?/ CO + 5024) , (354)

where all functions have arguments {0, 0, Q% M,,..m;, M, }.
For the «vbb vertex we obtain

V(@) = Qi siF, (@2)%@{2—2(@2%2) F (%), (355)

0



A4, (Q%) = %Qbi_gvbabFZa (@),

W, (@) = so {@u [TED (@) + F (@) + {F (@) + 2 (@)}

As a result, the vector and axial-vector current vertices are given
and we may turn to the scalar current.

11 One-loop renormalization of the electric charge

To begin the actual discussion on renormalization of the SM we
consider the one-loop renormalization of the electric charge. We
will use the fine structure constant ., defined through the residue of
the pole at zero momentum transfer of charged particles scattering,
for example, electron-muon scattering. First, we introduce the
problem by discussing some of its aspects in the t"Hooft-Feynman
gauge and subsequently we will prove the gauge invariance of the
result.

11.1 Electric charge renormalization: the £ =1 gauge

An unpleasant feature that shows up in the SM is that the Z—
transition does not vanish at p* = 0, i.e. E3Q(O) = (), due to bosonic

loops. Accordingly, we should add the corresponding contribution
to the one-loop renormalization of the electric charge:

4o = 9253 (1+0a), da =0y, + 0y + 0y + Omix, (356)

where 0, is the wave-function factor for the external fermions, oy
derives from the v f f vertices at zero momentum transfer and o,
and 0y from the photon self-energy and from the v—Z transitions
again evaluated at zero momentum transfer.

There is nothing wrong with the one-loop procedure illustrated
in Fig. 15, but we prefer to present an alternative derivation that
will become useful whenever we improve upon the pure one-loop
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Figure 15: The electron scattering in the Coulomb field.

calculation. Let us consider the Z—y transition in the [?¢ gauge.
For p? = 0 we obtain
Yie(0)
M? Te
Consider now the Lagrangian written in terms of the non-diagonal
fields B} and B0 The mass term originates from the interaction

with the Higgs ﬁeld through the term
1 1 ,
Ly = =g (W )WiW, = () (98] +g B, (358)

where (v) denotes the Higgs vacuum expectation value. The
whole procedure amounts to defining a diagonalization in the neu-
tral sector at p* = 0 and, after the inclusion of one-loop corrections,
respecting gauge parameter independence. This is best accom-
plished by a re-definition of the SU(2) coupling constant ¢:

g=7 (1-T7), (359)

where I' is a constant yet to be specified. As we did before, the
weak mixing angle is introduced in terms of ¢':

g =-—7, (360)

together with the physical fields

Z . Cyp —5p B3
(=002 (&) oo
The bare W mass is now defined by the following equation: g*(v?) =

2M?. Thus, for the Lagrangian we obtain

1 M2
Ly=—-MWiW; - Z Z,+g*M*T (2 WIW: + 2,2, + ‘Z—Z ZNAN) .

2
(362)

:—%(£2+3)A(M)+1( )521 52——52——- (357)



The new terms of order g will contribute to the self-energies, re-
sulting in a shift

S’ = To(p?) = Sy (pP) + 16 7 MT,

Seoww (17) = Sopw (07) = Sapw (07) + 3272 M°T. (363)
The choice of I' is almost immediate: we observe that
S (0)lez = ~2 22 (A1) (364)
and choose
I = 87T2A (M), (365)

which is &é-independent by construction. For arbitrary & we still do

not have im(()) = 0:

1 —

1, ., 1 5
S0 =5 (-1 a0+ (14

Z .

2 2
) € g -1 (366)
However, if we choose the £ = 1 gauge, then—here and only here—
we have X, ,(0) = 0. The shift g — g will introduce new terms
also in other sectors of the Lagrangian. For our present purposes
the relevant ones come from the fermionic part which, written for

an arbitrary isodoublet, becomes

i P i
=7V (92B)) + gBsita) 740 + 19332 dyuy-d + 19432 wy,y-u. (367)

We put
Sp

g; = _Oéi_g, 1= 273747 (368)
Co
and obtain the solution

agzl—QQu:—l—QQd, OégZ—QQd, OégZ—QQU. (369)

From Ly we derive new vertices which will be called special ver-
tices:

_ i
{AZyrr = —(27T)4l593{89509}1}3)MM+,
_ o1
Wud = —(27T)422\/§g3rfyﬂ'y+. (370)

In our convention a spectal vertex will always be denoted by an
open box. (Fig. 16) The introduction of special vertices will prove



to be crucial in showing the ultraviolet finiteness of many results.
Later on we will introduce also special trilinear vertices, for exam-

ple, Y(Z)WtW .

f d

v, Z >3WZVM
(i

Figure 16: Special vertices.

Once all relevant one-loop terms are computed then the renor-
malization condition at zero momentum transfer gives

dra = ¢*si (14 6a), dov = Oy + 0y + 0. (371)

Each correction will be split into an e.m. part and a genuinely weak
part, §; = ¢™+0. There is a QED Ward identity (Fig. 17) which

can be written as follows:
5 4 5 =0, (372)

and we are left with the purely weak sector. For definiteness we
study the scattering of two charged particles, ff" — ff’. The
corresponding wave function factor for the whole process is

o =2 (W Wil (373)

In the limit where we ignore all fermion masses but m,; the result
is rather simple. The wave-function renormalization factors to be
associated with external fermion lines read as follows:

i
s

g’
12872

wrhswil = 5

{0;:2) ; 2urayr} (—A (M,) + l) + wévl)], (374)
with ww given by Eq.(??). The non-em. vertex corrections,
evaluated at p? = 0, can be cast in the form

76

Q7 @ p Qr /g 2 7(3)
S EY O+ SR 0) = SED (0 - 87 r].
(375)

-3
w _
Fo0) = 1672 %0




We can write

L op) ()2 2 p0) o) 1 . 1
1 P O 0 F 0) ) (0) 167 @r], (376)
where the Fc(ll) (0) functions are defined by Eqs.(?7), (?7) and (?7?)

to be the abelian W and Z clusters and the non-abelian W cluster.

sv= &
Y 1672

7-1/2 7-1/2

p2 =0 p2 =0
Z—1/2 Z—1/2

Figure 17: U(1) Ward identity.

We repeat here, for completeness, the definition of cluster of
vertices, although already given elsewhere in the book. A neutral
current vertex is termed abelian if it contains one vector boson
internal line with no trilinear vector couplings, and non-abelian
otherwise. A cluster is obtained by replacing vector boson internal
lines with ¢-lines in all possible ways that are allowed by Feyn-
man rules. Collecting Eqs.(373), (374) and (376) we can prove
The validity of the U(1) Ward identity contained in Eq.(372)
(Fig. 17) is naturally extended in the full SM to include the
non e.m. parts, i.e.

o + 0y =0. (377)

This theorem allows us to write the complete 7y f f interaction as

.3
_ L 1g°Sg _
‘r/]ff (p?) _ (271)42 o 712 UW[FV(}?Q) 1+ GA(p2)75]ua

F) = R705 = F(0), GUp) = GL() — Gi(0), (378)

where the superscript “vert’ indicates that wave-function renormal-
ization factors are excluded.

To summarize, we find that in the £ = 1 gauge the non-self-
energy corrections are ultraviolet finite, there is no parity violation
in the e.m. current at low energy and the renormalized neutrino
charge is zero.



11.2 Electric charge renormalization: the R, gauge

Having performed the electric charge renormalization in the renor-
malizable ¢ = 1 gauge we must enquire about the gauge indepen-
dence of the procedure. Let us consider the vbb interaction in the
R¢ gauge and let us fix p, = 0, in order to see how gauge parameter
independence is achieved, even in the presence of a heavy fermion.
The first ingredient that we need is given by

Ay = (2m)" {167T [V, (0) + V7 (0) 4+ V7 (0)] + 2igsoQu (W + Whas) |
= (2n)* Wu{ o o Qf4 ( 152) + vaab%) F_(0) (379)
+9' Qs E, (0) + P2 F (0] + 2igsoQu, (W) + TWins) .

which represents the sum in the R gauge of vertex diagrams

(abelian and non-abelian, W and Z Clusters) and of wave-function

factors (Fig. 18).
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Figure 18: A, correction, including vertex diagrams and wave-function factors.

Using the low-energy limits of the scalar functions F; (0), and
wave-function renormalization factors for b-quarks in the R gauge,

we find v, (V + Avy;) and, moreover, ¥V = A = A, with

igls 1—¢&2 1 66>
A= (2m)ti 9327931"[( 46 —1)A(M)—|—Z£21n§2 (g2+5—g S g)]
(380)

If we decompose A, into () and L components, according to the
equation

A=Ay + A+ s (381)

then only A, is non-zero and gauge parameter dependent, as can
most easily be seen by using B-fields instead of the physical ones.



This particular combination of one-loop corrections is zero in the
pure QED sector, while here it differs from zero even in the £ =1
gauge when we compute it prior to the field re-diagonalization. In
general we find a &-dependent expression which, however, is quite
simple if compared with Fj, (0) or W' ? separately.

In the vertex corrections that we have shown the fermion wave-
function factors are not yet included. We observe that the vector
and the axial-vector parts are different and, moreover, they also
depend on §,, M, and m,. All these dependences cancel when we
include the appropriate corrections for the external fermions, and
in turn this is related to the fact that the only gauge parameter
dependence of vector boson transitions in the neutral sector—the
missing ingredients—comes from W and charged ¢ loops.
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Figure 19: The transition 7T}, that accounts for the Z—+ mixing and for the photon wave-function
factor.

In order to complete the one-loop v f f interaction we also need
the Z—y transition. The reason for this is simple: in the ¢ gauge

the transition 3362(0) is not zero. Therefore, we must consider

. 3 ~
4. 1g Y,0) /7 1 1
T,=(2m)"i 392 ngfHW(O) + sg ]\6242 (—5 — 253@1: — 575) :
(382)

The transition 7,, which accounts for the Z—y mixing and for
the photon wave-function factor, splits naturally into two parts

(Fig. 19),

;0

_ig
T, = (2m)"i o (5T v + T0 v+ ) - (383)
where the Tj, ; form factors are
3 1
T, = FA(M)+3. (384)



& -1 T o1y Ly o & 2]

s A+ 5= e (€456 ).
As before, only T}, is gauge parameter dependent. From the special
vertex we also obtain

T, =

. 3
4. 19
S, = (2m) 132

72

so A (M) 774 (385)

It can now be proved that the complete—one-loop—interaction
~vf f is given in terms of transitions by

1 —

-3
4. 19 1
Ay 4T+ 5= (2m) 1672 s6Qs ) I1,,(0) — 2 ESQ(O)] Y- (386)

With this result we have been able to prove the following theorem:

The low-energy axial-vector coupling of the photon 1s zero
in the arbitrary Re gauge. This is evident from FEq.(386).
The renormalization of the electric charge, e = gsy, in the
SM is gauge parameter independent. Indeed, using IL,,(0) and

Z3Q(O), we obtain that in the sum the &-dependent terms cancel
and the final result s

3T (0) + 113 Sg(0) = =5 A (M) -

: (387)



