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QCD at the LHC

• Hadron machine: QCD everywhere;

• Previous experience up to 2 TeV;

• Increase in complexity: more open channels, more jets;

• Need better tools for calculations and simulations.



Outline

• Basics of QCD calculations;

• Fixed order calculations, “parton generators”

• Exclusive final states: shower Monte Carlo

• MC@NLO: the new frontier



Basics

R =
σ(e+e−→hadrons)

σ(e+e−→µ+µ−)
= 3×

∑
i

q2
i +O(αS)

angular distributions of jets and muons equal at high energy.

How do radiative corrections enter?

O(αS) corrections from square of real emission and interference of virtual

correction with Born term. Both InfraRed divergent; IR singularity cancels

in the total.



Anatomy of IR singularity

In the soft limit (small gluon energy):

M = u(k)N , N = εµγµv(k′)

M1 = u(k)(−i)γαi
/k + /l

(k + l)2
N .

M1 = u(k)
γα/k + /kγα

(k + l)2
N = u(k)

2kα

2k · l
N =

kα

k · l
M.

Including antiquark emission:

Mqqg = M1 +M2 =

(
kα

k · l
−

k′α
k′ · l

)
M, |M|2qqg = 2

k · k′

(k · l)(k′ · l)
|M|2.

Plus phase space and color factors:

σqqg = CF
αS

2π
σBorn

qq

∫
d cos θ

dl0

l0
4

(1− cos θ)(1 + cos θ)
.



We know that the O(αS) correction to the e+e−→hadrons cross section is

equal to αS/π times the Born term. Thus, the virtual correction must also

be singular, and cancel (up to finite terms) the singularity of the real one.

= −CF
αS

2π
σBorn

qq

∫
d cos θ

dl0

l0
4

(1− cos2 θ)
.



Summary

• qq̄g cross section divergent

• qq̄ cross section divergent (virtual corrections must cancel real part)

• Only “calorimetric” quantities become calculable

Only inclusive final states
are calculable at fixed order

Implementation: Parton Level Generators,

either with IR cutoff (slicing method) or by direct cancellation:

subtraction method

• Origin: Ellis, Ross and Terrano (1981), O(α2
S) corrections to 3-jet

production in e+e−.

• First implementation as PLG in Kunszt, P.N. (1990).

• First implementation in hadron collisions:

Mele, Ridolfi, P.N. in h1h2→ZZ + X (1991).

• General methods proposed by Catani Seymour, Frixione.



PLG example

In e+e−→hadrons, for unoriented events.

use Dallitz variables xq/q̄ = 2Eq/q̄/ECM;

• generate one 2-body (xq/q̄ = 1) event with weight 1.

• generate one 2-body (xq/q̄ = 1) event with weight αS/π.

• Generate N random pairs xk, x̄k (k = 1, . . . , N),

uniform in the triangle x, x̄ > 0, x + x̄ > 1.

• For each k generate an event, with xq = xk, xq̄ = x̄k and weight

w =
1

2N

αSCF

2π

x2
k + x̄2

k

(1− xk)(1− x̄k)

and a 2-body event (xq/q̄ = 1) with weight −w.

• For each generated event, build up observables, and histogram them

with the event weight.

IR singularities cancel in the region xq→1 or xq̄→1 in Collinear and Soft

insensitive observables.



xq→1 xq̄→1; counterterm xq = 1 xq̄ = 1. Cancellation operational for IR

insensitive observables (insensitive to the emission of an extra soft gluon),

like the calorimetric quantities.

Example of not IR safe variable: multiplicity.

only xq→1; antiquark and gluon become collinear (total energy → Eq).

Counterterm: xq = 1 xq̄ = 1. Cancellation for Collinear insensitive

observables, like calorimetric quantities.

IR safe but not Collinear safe:
∑

i
~k2

i , equal to 4E2(x2
q + x2

q̄ + x2
g) in our case

(4E2 × 2 for counterterm).



Event → Counterterm: projection
Straightforward in our example. In general complex and not unique.

Example: Heavy Flavour Production (Mangano, Ridolfi, P.N.).

Projection:

• Longitudinal boost B1, to frame where yq = yq̄;

• Transverse boost B2 to frame where pqq̄
T = 0;

• Longitudinal boost B−1
1 .

Notice: projection does nothing to collinear or soft events (B2 = 1).

This guarantees the cancellation for Soft/Collinear insensitive observables.



In practical calculations, too small bins

in sensitive regions can produce

negative results. Very difficult to

understand how big bins to use...

This problem is always present with FO calculations. Also at tree level:

cannot trust prediction with soft or near collinear final state partons.



Exclusive Final State:
Shower Monte Carlo

• Alternative approach to FO calculations (but limited precision).

• Most popular tool for HEP

• Heavily used by experimentalists



Ingredients

• Sophisticated theoretical input:

infinite set of dominant QCD Feynman graphs.

• Modeling of hadronization phenomena.

• PDG encyclopedia:

all known (and unknown!) particle branching ratios and decays.



History

PQCD:

• First SMC’s: Fox+Wolfram, Odorico, (1980) for e+e− → hadrons

• Soft gluon interference Marchesini+Webber (1983)

• Backward evolution for initial state radiation Sjöstrand (1985)

Hadronization

• Independent fragmentation Field+Feynman, (1977)

• String model Artru+Mennessier (1974), Bowler (1981),

Andersson+Gustafson+Söderberg (1983),

Andersson+Gustafson+Ingelman+Sjöstrand (1983), Sjöstrand (1984)

• Cluster model Field+Wolfram (1983), Webber (1984)



Models

• COJETS Odorico (1984)

• ISAJET Page+Protopopescu (1986)

• FIELDAJET Field (1986)

• JETSET Sjöstrand (1986)

• PYTHIA Bengtsson+Sjöstrand (1987), Sjöstrand (1994)

• ARIADNE Lönnblad (1991)

• HERWIG Marchesini+Webber (1988),

Marchesini+Webber+Abbiendi+Knowles+Seymour+Stanco (1992)



Basics

Dominant QCD emissions: collinear singularities

When l ‖ k: (l+k)2 → 0. Cross section equals

Born×
αS

2π

dt

t
Pqq(z) dz

dΦ

2π

where t ∝ (l+k)2, z is the energy (or longitu-

dinal momentum, or light cone momentum)

fraction of the quark, and

Pqq(z) = CF
1 + z2

1− z

is the Altarelli-Parisi splitting function.

Diverges as t → 0. (Ignore for now the infrared divergence at z = 1).



Present in all splitting processes

Same structure for all processes (after

azimuthal average). Only differences in the

form of Pij(z)

Pgg = CA (z/(1− z) + (1− z)/z + z(1− z))

Pgq = TF

(
z2 + (1− z)2

)
.

Notice: dt/t singularity, not dt/t2. All splitting

processes violate angular momentum in collinear

limit.



Kinematics:

θ = θ1 + θ2 , zθ1 = (1− z)θ2 =⇒ θ1 = (1− z)θ , θ2 = zθ

virtuality: t = z(1− z)E2(1− cos θ) = 1
2
z(1− z)E2 θ2

p2
T : t = (Ezθ1)2 = E2 z2(1− z)2 θ2

angle: t = E2 θ2

Which t makes a difference only if soft (z→0, 1) region is singular.



Multiple emission

Dominant configurations for

multiple emissions: strongly ordered

region

Q2 > t > t′ > t′′ . . .

so that logarithmic integral builds

into a
1

n!
logn Q

λ

(leading log approximation)



Divergences cancellation

Virtual graphs must cancel the collinear divergence in the total cross

section, by the Kinoshita-Lee-Nauenberg theorem. So

Virtual term = −Born×
∫

αS

2π

dt

t
Pqq(z) dz

dΦ

2π
+ non-singular terms.

The cancellation takes place at all finite orders.

Can compute inclusive quantities at finite orders.

But how does the exclusive final state looks like?

Finite order unphysical for exclusive quantities.

Cancellation is among different final states!



Exclusive final state

Need to sum up all virtual corrections for a given final state! Recipe:

• Consider all tree graphs from the initial parton to all final states

• Include a factor
dt

t
dz

αS(t)

2π
Pij(z)

at each splitting vertex; use renormalized coupling at scale t.

• Order the splittings in t: later splittings have smaller t.

• Include the factor ∆i(t1)/∆i(t2) on each internal line going from a

splitting at the scale t1 to a splitting at t2, with (t0: IR cutoff)

∆i(t) = exp

−∑
j

∫ t

t0

dt′

t′

∫
dz

αS(t′)

2π
Pij(z)


Easy to check that O(αS) expansion of ∆ yields correct virtual term.



How do we prove our recipe?

Original papers on MC derive these results from AP equations.



Simplest example (in QED)

Here the virtual corrections amount to

α2 =⇒ α2(t1)

Our recipe wants

α(t)× α(t1)×
∆(t)

∆(t1)

so
∆(t)

∆(t1)
=

α(t1)

α(t)
=

log Λ
t

log Λ
t1

and indeed using

α(t) =
1

b0 log Λ
t

, b0 =
4nf

12π

we get

∆(t) = exp

[
−nf

∫ t

t0

dt′

t′
α(t′)

2π

(
z2 + (1− z)2

)
dz

]
=

log Λ
t

log Λ
t0



Notation

Introduce the notation:

|k1, m1; ...; kl, ml〉 ;

ki and mi are the momenta and quantum numbers of the particles;

normalization:

〈k1, m1; ...; kl, ml|k′1, m′
1; ...; k′l′ , m

′
l′〉 = δl,l′

l∏
i=1

δ3(ki − k′i)δmi,m
′
i
.

A shower is defined as

S =
∞∑

l=1

∑
m1...ml

∫
d3k1 . . . d3kl C(k1, m1; . . . ; kl, ml) 〈k1, m1; ...; kl, ml|

given the cell

dΨ = |k′1, m′
1; ...; k′l′ , m

′
l′〉 d3k′1 . . . d3k′l′

the product

S · dΨ

is the probability to generate a state in the cell dΨ.



A final state observable g(k1, m1; . . . ; kl, ml) is

G =
∞∑

l=1

∑
m1...ml

∫
d3k1 . . . d3kl g(k1, m1; . . . ; kl, ml) |k1, m1; k2, m2; ...; kl, ml〉

Its average is S · G.

One can describe the final state using the shower variables themselves:

t, z, φ at each vertex

(the whole final state can be reconstructed from them).

For ease of notation φ will be ignored.



Monte Carlo equation

The whole shower is defined recursively by the equation

S(t, E) = ∆(t) 〈I|+
∫ t

t0

∆(t)

∆(t′)

dt′

t′
αS(t′)

2π
P (z) S(t′, Ez) S(t′, E(1− z)) dz

or graphically

The integral over all final state configurations must give 1 by KLN; so

1 = ∆(t) +

∫ t

t0

∆(t)

∆(t′)

dt′

t′
αS(t′)

2π
P (z) dz ⇒

d∆−1(t)

d log t
= ∆−1(t)

αS(t)

2π

∫
P (z) dz



Simple probabilistic interpretation:

∆(t)/∆(t′) is the probability for having no branching from t to t′.

The probability to have a branching in the interval t′, t′ + dt′ is

P (t′)dt′ =
∆(t)

∆(t′ + dt′)
−

∆(t)

∆(t′)
= dt′

d

dt′
∆(t)

∆(t′)
=

∆(t)

∆(t′)

dt′

t′
αS(t′)

2π

∫
P (z) dz

∆(t)/∆(t′) has uniform distribution!

Shower algorithm:

• Generate a random number 0 < r < 1;

• Solve the equation ∆(t)/∆(t′) = r for t′;

• If t′ < t0 stop there (unresolvable emission);

• generate a z distributed according to P (z);

• restart for each branch, at an initial value t′.



Elementary example

Simulate a source with a probability p for emission per unit time.

Probability distributions for first emission:

P (t) dt = lim
n→∞

(
1− p

t

n

)n

p dt = e−pt p dt = −de−pt

so
∫

P (t)dt is distributed uniformly between 0 and 1.

Monte Carlo implementation for emissions between t = t0 and t = tf

• generate a random number 0 < r < 1

• solve the equation e−p(t−t0) = r for t

• if t > tf stop.

• continue starting from t



Evolution equation for fragmentation functions

inclusive cross section for the production of a parton of energy Ez

starting from a parton of energy E and “virtuality” t.

D(x, t) = S(t, E) ·
∑

|k1 . . . kl〉
l∑

i=1

δ(Ei/E − x)

from the shower equation

S(t, E) = ∆(t) 〈I|+
∫ t

t0

∆(t)

∆(t′)

dt′

t′
αS(t′)

2π
P (z) S(t′, Ez) S(t′, E(1− z)) dz

we get (assuming z→1− z symmetry)

D(x, t) = ∆(t)δ(1− x) +

∫ t

t0

∆(t)

∆(t′)

dt′

t′
αS(t′)

2π
2P (z)D(t′, x/z)

dz

z



Applying

∆(t)t
∂

∂t

1

∆(t)

we obtain

−D(x, t) t
∂ log∆(t)

∂t
+ t

∂D(x, t)

∂t
=

∫
αS(t)

2π
2P (z)D(t′, x/z)

dz

z

or

t
∂D(x, t)

∂t
=

∫
αS(t)

2π

[
2P (z)

1

z
D(t′, x/z)− 2P (z)θ(z − 1/2)D(t′, x)

]
︸ ︷︷ ︸

P̂ (z)

dz

which corresponds to the regularized splitting vertex of the AP equation

(check that
∫ 1
1/2 P̂gg(z)dz = 0 for pure glue)



Soft divergences

z→1 (z→0) region problematic: for z→1: Pqq, Pgg ∝
1

1− z
Choice of shower variables makes a difference

virtuality: t = E2 z(1− z) θ2

pT : t = E2 z2(1− z)2 θ2

angle: t = E2 θ2

∫
dt

t

∫ 1−t/E2

t/E2

dz

1− z
⇔

∫
dt

t

∫ 1−
√

t/E

√
t/E

dz

1− z

for example: factor of 2 difference in double log!



Soft Emission

Soft emission factor:

kµ

k · l
−

k̄µ

k̄ · l

vanishes for θγ � θ.

Alternatively: energy unbalance

δE ∝
(k + l)2

k0
=

2k · l
k0

∝ θ2
γ l0

time for emission: δt = 1/δE = λ/θ2
γ .

In order for the photon to resolve the emitter we must have b ∝ θδt > λ/θγ,

but θδt ∝ (λ/θγ)× (θ/θγ) so this is possible only if θγ < θ.

In summary: soft emission from splitted pair is incoherent for the emission

angle below the splitting angle, coherent in the other case.



Angular ordering

is the correct choice (Mueller 1981)

dθ

θ

αS(p2
T )

2π
P (z) dz

θ1 > θ2 > θ3 . . .

p2
T = E2 z2 (1− z)2 θ2

Collinear and soft divergence for emission off an off-shell line!

(in fact coherent emission from remaining final state particles)

Important reduction in soft parton multiplicity

(because of the angular constraint)

Notice: αS(p2
T ) also needed for correct treatment of soft region.



HERWIG’s equation

S(tI , E) = ∆(tI) 〈I|+
∫ tI

t0

∆(tI , t)F (z, t)S(tz2) S(t(1− z)2) dt dz

where

t = E2θ2 , ∆(t1, t2) =
∆(t1)

∆(t2)
, F (z, t) =

αS(tz2(1− z)2)

2π

1

t
P (z)

and

∆(t) = exp

[
−

∫ t

0

dt′

t′

∫ 1

0
dz

αS(t′z2(1− z)2)

2π
P (z)

]
Lower cutoff: implicit θ(tz2(1− z)2 − t0) sets lower limits for z,1− z, t.

Notice: ∆(t) ∝ (αS(t)/αS(t0))c log t/Λ2
(faster than any power)

instead of typical log power behaviour of anomalous dimensions.

Commonly called Sudakov form factors:

crucial in perturbative preconfinement of colour.
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Soft emission and Hadronization

Hadronization according to color

connections of final state particles.

In some approximation (large Nc

limit) colour flow is described by

single colour lines for quarks and

double lines for gluons.

Large amount of soft radiation

guarantees that colour connected

pairs have small mass.

So, perturbation theory justifies a

rearrangement of colour

connections which is compatible

with colour confinement:

(preconfinement).



Angular ordering and “String effect”

Hadronization may be described by the

decay of a coloured string among colour

connected pairs.

Angular ordered soft radiation produces a

similar effect.



SMC versus NLO

Observables integrated over the singular region are reasonably described by

both calculations.

Observables sensitive to the singular region are reasonably described by

the SMC near the singular region. NLO fails there.

At large ptt̄
T NLO is more reliable.



Limitations

Lack of NLO effects. Example: bottom production.

Cumbersome procedures to generate realistic events. Used since the 80’s.



Improvements

Several: angular correlations, small-x resummation, etc.

Improve hardest emission description

Problem: hardest emission not necessarily the first one. . .

• Exact n body matrix elements (Catani+Krauss+Kuhn+Webber)

• Matrix elements corrections (Corcella+Seymour).

• MC@NLO: hardest emission exact at NLO (Frixione+Webber, 2003).

MC implements an approximation to NLO corrections.

Add difference between exact expression and MC approximation

(If the MC is good the difference is not singular).

Applications: Drell-Yan, W pairs, Higgs, Heavy flavour (with P.N.)

In FW approach, negative weighted events may occur.

In the following, I also discuss ideas to (possibly) avoid these problems



Strategy:

• Single out the hardest emission (largest pT ) in the shower.

Formulate the shower in such a way

that hardest emission is generated first.

• Correct the hardest emission, so that it is accurate at the NLO level.

This is all what you need to get calorimetric quantities correct at the NLO

level. The shower developement is still accurate only at the Leading

Logaritmic level.



Recipe for hardest emission

• Generate hardest emission using the Sudakov factor

∆R(tI , pT) = e−
R tI
0 dt

R
dzF (t,z)θ(z(1−z)

√
t−pT)

• Along the line from the initial tI down to the t of the hardest event,

generated an angular ordered, pT limited shower. This means that the

Sudakov form factor and the splitting vertices are modified by a

θ(pT − z(1− z)
√

t). This shower stops when you reach the angular

variable of the hardest emission (truncated shower).

• Along the lines following the hardest emission, continue with an

angular ordered, pT limited shower, down to t0.



A picture:

Important: no collinear log in truncated shower unless emissions are soft!

Because of ordering and pT veto

θ < θi , E θizi(1− zi) < (ziE) θ z(1− z) <
zi Eθ

4
=⇒ θ < θi <

θ

4(1− zi)

already have z > 3/4, must have z→1 to have large θi range.



NLO correction

Typically implemented as

dσ = B(p1 . . . pm)dΦm + V (p1 . . . pm)dΦm

+ [R(p1 . . . pm+1)dΦm+1 − C(p1 . . . pm+1)dΦm+1P] (1)

where P defines a (soft-collinear insensitive) projection of the m + 1

body final state to an m body final state



MC (approximate) NLO corrections

Primary event is generated according to its Born cross section.

MC hardest emission:

dσ = B(p1 . . . pm)dΦm

∆R(0) + ∆R(pT)
∑

i=1,m

Fi(z, t) dz dt
dφ

2π


with ∆R(pT) =

∏
i=1,m ∆i

R(pT).

O(αS) expansion:

dσ = B(p1 . . . pm)dΦm

1−
∫ ∑

i=1,m

Fi(z, t) dz dt

 +
∑

i=1,m

Fi(z, t) dz dt



= B(p1 . . . pm)dΦm +

 ∑
i=1,m

Fi(z, t)−
∑

i=1,m

Fi(z, t)Pi

 dΦm dz dt

where P applied to p1 . . . pm with pi splitting yields again p1 . . . pm.



MC@NLO

In the FW approach:

• Rewrite the NLO correction using the projection of the MC

• Add to the events generated with the standard MC, also events

initiated by the Born term with one emission, weighted with the

difference between the exact NLO and its MC approximation.

The difference may be negative; thus events with negative weights appear.

It is however not singular, if the MC describes exactly the collinear and

soft region. One can thus unweight positive and negative weighted events

separately, ending up with events weighted with 1 or -1.



MC@NLO

pair pT wrong at small pT at NLO,

wrong at large pT in MC,

right in both regions in MC@NLO.





Alternative MC@NLO

Generate first the hardest event using the exact NLO formula.

Write NLO exact formula as

dσ = B(v1 . . . vl)dΦv + V (v1 . . . vl)dΦv

+ [R(v1 . . . vl, θ, z, φ)dΦvdΦe − C(v1 . . . vl, θ, z, φ)dΦvdΦeP]

= [V (v1 . . . vl) + (R(v1 . . . vl, θ, z, φ)− C(v1 . . . vl, θ, z, φ))PdΦe] dΦv

+ B(v1 . . . vl)dΦv

[
1 +

(
R(v1 . . . vl, θ, z, φ)

B(v1 . . . vl)
−

R(v1 . . . vl, θ, z, φ)

B(v1 . . . vl)
P
)

dΦe

]
Turn it into a shower formula

dσ = B′(v1 . . . vl)dΦv

[
∆(NLO)

R (0) + ∆(NLO)
R (pT)

R(v1 . . . vl, θ, z, φ)

B(v1 . . . vl)
dΦe

]
B′ = B(v1 . . . vl) + V (v1 . . . vl) +

∫
(R(v1 . . . vl, θ, z, φ)− C(v1 . . . vl, θ, z, φ)) dΦe

where we have defined

∆(NLO)
R (pT) = e

−
R

dΦe
R(v1...vl,θ,z,φ)

B(v1...vl)
θ(kT (v1...vl,θ,z,φ)−pT)



After the hardest event,

• Compute the initial showering angle for each leg

• Shower each leg with the pT veto

• Perform soft-truncated vetoed shower from nearby pairs of partons.



Advantages

• Generation of hard event independent upon the detailed MC

implementation

• If the MC treats the soft-collinear region in an approximate way, no

left-over divergences.

• No negative weights

• May be generalized to higher order (e.g. single out two hardest

emissions, truncated showers from combination of two or three

partons, etc.)

Practical implementation: work in progress Frixione, Gieseke, Webber, P.N.



Conclusions

• Interesting new developments in shower algorithms

• Promising field: many things to study

• Challenging theoretical problems



Single out largest pT in the shower

Largest pT emission always along the hardest line

(actually z > 3/4, easy to prove. . . )

Solve HERWIG’s equation by iteration along hardest line,

single out largest pT

S(tI) = ∆(tI)I +
∞∑

l,k=0

.

• Thick lines: ∆(tI , t1), ∆(z2
1t1, t2), . . . ,∆(z2

l tl, t), ∆(z2t, t̃1), . . . ,∆(z̃2
k t̃k)

• Blue blobs: S((1− z̄)2t̄),

• Red blobs: 2F (z̄, t̄) θ(z̄− 1/2) θ(pT−
√

t̄z̄(1− z̄)) where pT =
√

tz(1− z).

• All intermediate z̄t̄ are integrated.

No longer MC equation in present form!



Split Sudakov form factors:

∆(tiz
2
i , ti+1) = e

−
R tiz

2
i

ti+1
dt′

R
dz′F (t′,z′)

=

e
−

R tiz
2
i

ti+1
dt′

R 1
1/2

dz′2F (t′,z′) θ(pT−z′(1−z′)
√

t′)
× e

−
R tiz

2
i

ti+1
dt′

R
dz′F (t′,z′)θ(z′(1−z′)

√
t′−pT)

First factor matches the z, pT limited splitting vertex (good for MC!).

Second factor:

e
−

R ti
ti+1

dt′
R

dz′F (t′,z′)θ(z′(1−z′)
√

t′−pT)
× e

R ti
tiz

2
i

dt′
R

dz′F (t′,z′)θ(z′(1−z′)
√

t′−pT)

≈ e
−

R ti
ti+1

dt′
R

dz′F (t′,z′)θ(z′(1−z′)
√

t′−pT)

Second factor in first line negligible; (zi > 1/2, no collinear log!)

Product of all remnants:

∆R(tI , pT) = e−
R tI
0 dt′

R
dz′F (t′,z′)θ(z′(1−z′)

√
t′−pT)

probability for not emitting a particle

with transverse momentum larger than pT

Can be used to generate the largest pT event first.



S(tI) = ∆(tI)I + θ(t < tI)dt θ(z > 1/2)dz ∆R(tI , pT)2F (z, t) S((1− z)2t)

×
∞∑

l=0

×
∞∑

k=0

.

Double lines: ∆V (ti, ti+1) = e
−

R tiz
2
i

ti+1
dt′

R 1
1/2

dz′2F (t′,z′) θ(pT−z′(1−z′)
√

t′)

Shower equation:

S(tI) = ∆(tI)I + θ(t < tI)dt θ(z > 1/2)dz ∆R(tI , pT)2F (z, t) S((1− z)2t)

×SV T (tI , t, pT) SV (z2t, pT)

where V stands for vetoed and T for truncated.



Vetoed shower

The following procedure

• generate t′ using ∆(t, t′) = r

• generate z according to F (z, t)

• if z2(1− z)2 t > pT disregard the splitting, and continue starting from

the scale t′

is the same as using ∆R(t, pT) as Sudakov form factor.

So, no complications arise because of the vetoed Sudakov.



proof:

Equation for a vetoed shower:

SV (tI) = ∆(tI) I +

∫ tI

0
∆(tI , t)F (z, t) θ(g(z, t)) SV (z2t) SV ( (1− z)2 t ) dt dz

+

∫ tI

0
∆(tI , t)F (z, t) [1− θ(g(z, t))] SV (t) dt dz .

Rewrite it as∫ tI

0
[δ(t− tI)−∆(tI , t)h(t)] SV (t) dt

= ∆(tI) I +

∫ tI

0
∆(tI , t)F (z, t) θ(g(z, t)) SV (z2t) SV ( (1− z)2 t ) dt dz ,

with

h(t) =

∫
dz F (z, t) [1− θ(g(z, t))] .

We thus have

SV (tI) = ∆′(tI) I +

∫ tI

0
∆′(tI , t)F (z, t) θ(g(z, t)) SV (z2t) SV ( (1− z)2 t ) dt dz



with ∫ tI

0
[δ(t− tI)−∆(tI , t)h(t)]∆′(t) = ∆(tI) .

Using ∆(tI , t) = ∆(tI)/∆(t), and defining r(t) = ∆′(t)/∆(t) we find

r(tI)−
∫ tI

0
h(t) r(t) dt = 1 ⇒ r(t) = e

R tI
0 h(t)

or

∆′(tI) = e−
R tI
0 F (z,t) θ(g(z,t)) dz dt .

consistent with unitarity


