Introduction into Standard Model and Precision Physics – Lecture I –

Stefan Dittmaier

MPI München

General overview

 Standard Model (part 1) Lecture I

- Electroweak phenomenology before the GSW model 1
- 2 The principle of local gauge invariance
- 3 The Standard Model of electroweak interaction — matter, Yang–Mills, and Higgs sector

Stefan Dittmaier (MPI München), Introduction into Standard Model and Precision Physics - Lecture I - 2

- Standard Model (part 2) Lecture II
- Quantum Corrections Lecture III
- **Unstable Particles (part 1)** Lecture IV –
- Unstable Particles (part 2) Lecture V -----

Electroweak phenomenology before the GSW model 1

Some phenomenological facts:

- discovery of the weak interaction via radioactive β -decay of nuclei: $n \rightarrow p + e^- + \bar{\nu}_e$, $p \rightarrow n + e^+ + \nu_e$ (not possible for free protons)
- terminology "weak": interaction at low energy has very short range \hookrightarrow long life time of weakly decaying particles:

strong int.:	$ ho ightarrow 2\pi$,	$\tau \sim 10^{-22} {\rm s}$
elmg. int.:	$\pi ightarrow 2\gamma$,	$\tau \sim 10^{-16} {\rm s}$
weak int.:	$\pi^- o \mu^- + ar{ u}_\mu$	$\tau \sim 10^{-8} {\rm s}$
	$\mu^- ightarrow { m e}^- + ar{ u}_{ m e} + u_\mu$,	$\tau \sim 10^{-6} {\rm s}$

• lepton-number conservation: $\mu^- \not\rightarrow e^- + \gamma$ (BR $\leq 10^{-11}$)

 $\Rightarrow L_{\rm e}, L_{\mu}, L_{\tau}$ individually conserved: $L_{\rm e} = +1$ for $e^-, \nu_{\rm e}, \qquad L_{\rm e} = -1$ for $e^+, \bar{\nu}_{\rm e}, \quad$ etc.

(For massive ν 's with different masses, only $L_e + L_\mu + L_\tau$ is conserved.)

parity violation (Wu et al. 1957):

e.g.: $K^+ \rightarrow 2\pi, 3\pi$

final states of different parity

 $^{60}\mathrm{Co} \rightarrow ^{60}\mathrm{Ni}^* + \mathrm{e}^- + \bar{\nu}_{\mathrm{e}}$

 \hookrightarrow polarization inversion does not yield inversion of spectra

The Fermi model

(Fermi 1933, further developed by Feynman, Gell-Mann and others after 1958)

Lagrangian for "current–current interaction" of four fermions:

 $\mathcal{L}_{\text{Fermi}}(x) = -2\sqrt{2}G_{\mu}J_{\rho}^{\dagger}(x)J^{\rho}(x), \qquad G_{\mu} = 1.16639 \times 10^{-5} \,\text{GeV}^{-2}$

with $J_{\rho}(x) = J_{\rho}^{\text{lep}}(x) + J_{\rho}^{\text{had}}(x) =$ charged weak current

• Leptonic part J_{ρ}^{lep} of J_{ρ} :

 $J_{\rho}^{\rm lep} = \overline{\psi_{\nu_{\rm e}}} \gamma_{\rho} \omega_{-} \psi_{\rm e} + \overline{\psi_{\nu_{\mu}}} \gamma_{\rho} \omega_{-} \psi_{\mu} \qquad \omega_{\pm} = \frac{1}{2} (1 \pm \gamma_5) = \text{chirality projectors}$

- ♦ only left-handed fermions $(\omega_-\psi)$, right-handed anti-fermions $(\overline{\psi}\omega_+)$ feel (charged-current) weak interactions \Rightarrow maximal P-violation
- ♦ doublet structure: $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}$,

,
$$\binom{
u_{\mu}}{\mu^{-}}$$
, later completed by $\binom{
u_{\tau}}{\tau^{-}}$

 $(J^{\mathrm{lep},\rho})^{\dagger} J^{\mathrm{lep}}_{\rho}$ induces muon decay:

• Hadronic part J_{ρ}^{had} of J_{ρ} :

Relevant quarks for energies $\lesssim 1 \,\text{GeV}$: u, d, s, c \hookrightarrow meson ($q\bar{q}$) and baryon (qqq) spectra

Question: doublet structure $\begin{pmatrix} u \\ d \end{pmatrix}$, $\begin{pmatrix} c \\ s \end{pmatrix}$?

Problem: e.g. annihilation of $u\bar{s}$ pair would not be allowed, but is observed: $K^+ \rightarrow \mu^+ \nu_\mu$

 $\mathrm{u}\bar{\mathrm{s}}$ pair in quark model

Solution (Cabibbo 1963):

 $\mathrm{u}\text{-}\mathrm{c}\text{-}\text{mixing}$ and $\mathrm{d}\text{-}\mathrm{s}\text{-}\text{mixing}$ in weak interaction

$$\hookrightarrow \text{ doublets } \begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix} \text{ with } \begin{pmatrix} d' \\ s' \end{pmatrix} = U_{C} \begin{pmatrix} d \\ s \end{pmatrix},$$
orthogonal Cabbibo matrix $U_{C} = \begin{pmatrix} \cos \theta_{C} & \sin \theta_{C} \\ -\sin \theta_{C} & \cos \theta_{C} \end{pmatrix},$
empirical result: $\theta_{C} \approx 13^{\circ}$

 $J_{\rho}^{\rm had} = \overline{\psi_{\rm u}} \gamma_{\rho} \omega_{-} \psi_{\rm d'} + \overline{\psi_{\rm c}} \gamma_{\rho} \omega_{-} \psi_{\rm s'}$

Remarks on the Fermi model:

- universal coupling G_{μ} for all transitions $(U_{\rm C}^{\dagger}U_{\rm C}=1$ is part of universality)
- no (pseudo-)scalar or tensor couplings, such as $(\overline{\psi}\psi)(\overline{\psi}\psi), (\overline{\psi}\psi)(\overline{\psi}\gamma_5\psi),$ etc., necessary to describe low-energy experiments ($E \lesssim 1 \, \text{GeV}$)
- Problems:
 - \circ cross sections for $\nu_{\mu} e \rightarrow \nu_{e} \mu$, etc., grow for energy $E \rightarrow \infty$ as E^{2}
 - \hookrightarrow unitarity violation !
 - no consistent evaluation of higher perturbative orders possible
 (no cancellation of UV divergences)
 - \hookrightarrow non-renormalizability !

"Intermediate-vector-boson (IVB) model"

"resolution" of four-fermion interaction by vector-boson exchange Idea: Lagrangian:

$$\begin{split} \mathcal{L}_{\rm IVB} &= \mathcal{L}_{0,\rm ferm} + \mathcal{L}_{0,\rm W} + \mathcal{L}_{\rm int},\\ \mathcal{L}_{0,\rm ferm} &= \overline{\psi_f} (\mathrm{i}\partial - m_f)\psi_f, \qquad \text{(summation over f assumed)}\\ \mathcal{L}_{0,\rm W} &= -\frac{1}{2} (\partial_\mu W^+_\nu - \partial_\nu W^+_\mu) (\partial^\mu W^{-,\nu} - \partial^\nu W^{-,\mu}) + M_{\rm W}^2 W^+_\mu W^{-,\mu},\\ &\text{with } W^\pm_\mu &= \frac{1}{\sqrt{2}} (W^1_\mu \mp \mathrm{i} W^2_\mu), \quad W^i_\mu \text{ real} \end{split}$$

 W^{\pm} are vector bosons with electric charge $\pm e$ and mass M_W .

Propagator:
$$G_{\mu\nu}^{WW}(k) = \frac{-i}{k^2 - M_W^2} \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{M_W^2} \right), \quad k = momentum$$

Interaction Lagrangian: $\mathcal{L}_{int} = \frac{g_W}{\sqrt{2}} \left(J^{\rho} W_{\rho}^+ + J^{\rho\dagger} W_{\rho}^- \right),$

 J^{ρ} = charged weak current as in Fermi model

chon Lagrangian.

Four-fermion interaction in process $\nu_{\mu}e^- \rightarrow \mu^- \nu_e$

Consequences for the high-energy behaviour:

- k^{ρ} terms: $\bar{u}_{\nu_{e}} \not k \omega_{-} u_{e^{-}} = \bar{u}_{\nu_{e}} (\not p_{e} \not p_{\nu_{e}}) \omega_{-} u_{e^{-}} = m_{e} \bar{u}_{\nu_{e}} \omega_{-} u_{e^{-}}$ \hookrightarrow no extra factors of scattering energy E
- propagator $1/(k^2 M_W^2) \sim 1/E^2$ for $|k| \sim E \gg M_W$ \hookrightarrow damping of amplitude in high-energy limit by factor $1/E^2$
- \Rightarrow cross section $\underset{E \to \infty}{\sim}$ const/ E^2 , \Rightarrow No unitarity violation !

Comments on the IVB model:

- Formal similarity with QED interaction: $J^{\rho}W^{+}_{\rho}$ + h.c. $\longleftrightarrow j^{\rho}_{\text{elmg.}}A_{\rho}$
- Intermediate vector bosons can be produced, e.g.

$$\underbrace{\mathrm{u}}^{\mathrm{u}}_{\mathrm{d}} \longrightarrow \underbrace{\mathrm{W}}^{+}_{\mathrm{W}} \rightarrow f \overline{f'}_{\mathrm{M}}$$
 (discovery 1983 at CERN)
in pp collision W^{\pm} unstable

- Problems:
 - unitarity violations in cross sections with longitudinal W bosons, e.g.

non-renormalizability

(no consistent treatment of higher perturbative orders)

 \hookrightarrow Solution by spontaneously broken gauge theories !

2 The principle of local gauge invariance

QED as U(1) gauge theory:

Lagrangian $\mathcal{L}_{0,\text{ferm}} = \overline{\psi_f}(i\partial \!\!\!/ - m_f)\psi_f$ has global phase symmetry: $\psi_f \to \psi'_f = \exp\{-iQ_f e\theta\}\psi_f, \quad \overline{\psi_f} \to \overline{\psi'_f} = \overline{\psi_f} \exp\{+iQ_f e\theta\}$ with space-time-independent group parameter θ

"Gauging the symmetry": demand local symmetry, $\theta \rightarrow \theta(x)$

To maintain local symmetry, extend theory by "minimal substitution":

$$\partial^{\mu} \rightarrow D^{\mu} = \partial^{\mu} + iQ_f e A^{\mu}(x)$$
 = "covariant derivative",
 $A^{\mu}(x)$ = spin-1 gauge field (photon).

Transformation property of photon $A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\theta(x)$ ensures

- $D_{\mu}\psi_f \rightarrow (D_{\mu}\psi_f)' = D'_{\mu}\psi'_f = \exp\{-iQ_f e\theta\}(D_{\mu}\psi_f)$
- gauge invariance of field-strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$

Gauge-invariant Lagrangian of QED:

$$\mathcal{L}_{\text{QED}} = \overline{\psi_f} (i\partial \!\!\!/ - Q_f e A - m_f) \psi_f - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Non-Abelian gauge theory (Yang–Mills theory):

Starting point:

Lagrangian $\mathcal{L}_{\Phi}(\Phi, \partial_{\mu}\Phi)$ of free or self-interacting fields with "internal symmetry":

•
$$\Phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix}$$
 = multiplet of a compact Lie group G:
 $\Phi \to \Phi' = U(\theta)\Phi, \quad U(\theta) = \exp\{-igT^a\theta^a\}$ = unitary,
 $T^a = \text{group generators}, \quad [T^a, T^b] = iC^{abc}T^c, \quad \text{Tr}\{T^aT^b\} = \frac{1}{2}\delta^{ab}$

• \mathcal{L}_{Φ} is invariant under G: $\mathcal{L}_{\Phi}(\Phi, \partial_{\mu}\Phi) = \mathcal{L}_{\Phi}(\Phi', \partial_{\mu}\Phi')$

Example: self-interacting (complex) boson multiplet

 $\mathcal{L}_{\Phi} = (\partial_{\mu} \Phi)^{\dagger} (\partial^{\mu} \Phi) - m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 \qquad (m = \text{common boson mass}, \lambda = \text{coupling strength})$

Gauging the symmetry by minimal substitution:

 $\mathcal{L}_{\Phi}(\Phi, \partial_{\mu}\Phi) \to \mathcal{L}_{\Phi}(\Phi, D_{\mu}\Phi) \quad \text{with} \ D_{\mu} = \partial_{\mu} + \mathrm{i}gT^{a}A^{a}_{\mu}(x),$

g = gauge coupling, T^a = generator of G in Φ representation, $A^a_{\mu}(x)$ = gauge fields

Transformation property of gauge fields:

• $\mathcal{L}_{\Phi}(\Phi, D_{\mu}\Phi)$ local invariant if $D_{\mu}\Phi \rightarrow (D_{\mu}\Phi)' = D'_{\mu}\Phi' = U(\theta)(D_{\mu}\Phi)$

$$\Rightarrow T^{a}A_{\mu}^{\prime a} = UT^{a}A_{\mu}^{a}U^{\dagger} - \frac{i}{g}U(\partial_{\mu}U^{\dagger}), \quad A_{\mu}^{a}A^{a,\mu} = \text{not gauge invariant}$$

infinitesimal form: $\delta A_{\mu}^{a} = gC^{abc}\delta\theta^{b}A_{\mu}^{c} + \partial_{\mu}\delta\theta^{a}$

• covariant definition of field strength: $[D_{\mu}, D_{\nu}] = igT^{a}F^{a}_{\mu\nu}$ $\Rightarrow T^{a}F^{a}_{\mu\nu} \rightarrow T^{a}F'^{a}_{\mu\nu} = UT^{a}F^{a}_{\mu\nu}U^{\dagger}, \quad F^{a}_{\mu\nu}F^{a,\mu\nu} = gauge \text{ invariant}$ explicit form: $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} - gC^{abc}A^{b}_{\mu}A^{c}_{\nu}$

Yang–Mills Lagrangian for gauge and matter fields:

$$\mathcal{L}_{\rm YM} = -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu} + \mathcal{L}_{\Phi}(\Phi, D_{\mu}\Phi)$$

- Lagrangian contains terms of order $(\partial A)A^2$, A^4 in F^2 part \hookrightarrow cubic and quartic gauge-boson self-interactions
- gauge coupling determines gauge-boson–matter and gauge-boson self-interaction → unification of interactions
- mass term $M^2(A^a_\mu A^{a,\mu})$ for gauge bosons forbidden by gauge invariance \hookrightarrow gauge bosons of unbroken Yang–Mills theory are massless

Quantum chromodynamics — gauge theory of strong interactions

• Gauge group: $SU(3)_c$, dim. = 8

structure constants
$$f^{abc}$$
, gauge coupling $g_{
m s}$, $lpha_{
m s}=rac{g_{
m s}^2}{4\pi}$

- Gauge bosons: 8 massless gluons g with fields $A^a_{\mu}(x)$, a = 1, ..., 8
- Matter fermions: quarks q (spin- $\frac{1}{2}$) with flavours q = d, u, s, c, b, t in fundamental representation:

$$\psi_q(x) \equiv q(x) = \begin{pmatrix} q_r(x) \\ q_g(x) \\ q_b(x) \end{pmatrix} = \text{colour triplet}$$
$$T^a = \frac{\lambda^a}{2}, \quad \text{Gell-Mann matrices } \lambda^1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ etc.}$$

• Lagrangian:

2

- The Standard Model of electroweak interaction (Glashow–Salam–Weinberg model) 3 — matter, Yang–Mills, and Higgs sector
- 3.1 The gauge group for electroweak interaction

Why unification of weak and elmg. interaction ?

- similarity: spin-1 fields couple to matter currents formed by spin- $\frac{1}{2}$ fields
- elmg. coupling of charged W^{\pm} bosons

γ, W^+, W^- as gauge bosons of group SU(2) ? – No!

Reason: charge operator Q cannot be SU(2) generator, since Tr $\{Q\} \neq 0$ for fermion doublets: $Q = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ for $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}$, etc.

Possible way out: additional heavy fermions like E^+ as partner to e^- ?

 \hookrightarrow no experimental confirmation !

Minimal solution: $SU(2)_{I} \times U(1)_{Y}$

- SU(2) $_{\rm I} ~~ \rightarrow$ weak isospin group with gauge bosons $\rm W^+, W^-, W^0$
- $U(1)_{\rm Y} \longrightarrow$ weak hypercharge with gauge boson B

 W^0 and B carry identical quantum numbers

 $\hookrightarrow\,$ two neutral gauge bosons $\gamma,\,Z$ as mixed states

Experiment: 1973 discovery of neutral weak currents at CERN \hookrightarrow indirect confirmation of Z exchange

1983 discovery of W^\pm and ${\rm Z}$ bosons at CERN

3.2 Fermion sector and minimal substitution

Multiplet structure:

Distinguish between left-/right-handed parts of fermions: $\psi^{L} = \omega_{-}\psi$, $\psi^{R} = \omega_{+}\psi$

- $\psi^{\rm L}$ couple to ${\rm W}^{\pm} \rightarrow {\rm group} \ \psi^{\rm L}$ into SU(2)_I doublets, weak isospin $T_{\rm I}^a = \frac{\sigma^a}{2}$
- $\psi^{\rm R}$ do not couple to $W^{\pm} \rightarrow \psi^{\rm R}$ are SU(2)_I singlets, weak isospin $T_{\rm I}^a = 0$
- $\psi^{\mathrm{L/R}}$ couple to γ in the same way
 - \hookrightarrow adjust coupling to U(1)_Y (i.e. fix weak hypercharges $Y^{L/R}$ for $\psi^{L/R}$) such that elmg. coupling results: $\mathcal{L}_{int,QED} = -Q_f e \overline{\psi_f} \mathcal{A} \psi_f$

Fermion content of the SM: (ignoring possible right-handed neutrinos)

leptons:

quarks: (Each quark exists

in 3 colours!)

 $T_{\rm I}^3 = Q$

Free Lagrangian of (still massless) fermions:

$$\mathcal{L}_{0,\text{ferm}} = i\overline{\psi_f}\partial \psi_f = i\overline{\Psi_L^L}\partial \Psi_L^L + i\overline{\Psi_Q^L}\partial \Psi_Q^L + i\overline{\psi_l^R}\partial \psi_l^R + i\overline{\psi_u^R}\partial \psi_u^R + i\overline{\psi_d^R}\partial \psi_d^R$$

Minimal substitution:

$$\begin{aligned} \partial_{\mu} &\to D_{\mu} = \partial_{\mu} - ig_{2}T_{1}^{a}W_{\mu}^{a} + ig_{1}\frac{1}{2}YB_{\mu} &= D_{\mu}^{L}\omega_{-} + D_{\mu}^{R}\omega_{+}, \\ D_{\mu}^{L} &= \partial_{\mu} - \frac{ig_{2}}{\sqrt{2}} \begin{pmatrix} 0 & W_{\mu}^{+} \\ W_{\mu}^{-} & 0 \end{pmatrix} - \frac{i}{2} \begin{pmatrix} g_{2}W_{\mu}^{3} - g_{1}Y^{L}B_{\mu} & 0 \\ 0 & -g_{2}W_{\mu}^{3} - g_{1}Y^{L}B_{\mu} \end{pmatrix}, \\ D_{\mu}^{R} &= \partial_{\mu} + ig_{1}\frac{1}{2}Y^{R}B_{\mu} \end{aligned}$$

Photon identification: "Weinberg rotation": $\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}, \quad c_{W} = \cos \theta_{W}, s_{W} = \sin \theta_{W},$ $\theta_{W} =$ weak mixing angle $D_{L} = i_{A} \begin{pmatrix} -g_{2}s_{W} - g_{1}c_{W}Y^{L} & 0 \end{pmatrix} = \begin{pmatrix} Q_{1} & 0 \end{pmatrix}$

$$D^{\mathrm{L}}_{\mu}\Big|_{A_{\mu}} = -\frac{1}{2}A_{\mu}\left(\begin{array}{cc} 52^{\mathrm{LW}} & 51^{\mathrm{LW}} \\ 0 & g_{2}s_{\mathrm{W}} - g_{1}c_{\mathrm{W}}Y^{\mathrm{L}}\end{array}\right) \stackrel{i}{=} \mathrm{i}eA_{\mu}\left(\begin{array}{cc} 0 & Q_{2} \\ 0 & Q_{2}\end{array}\right)$$

- charged difference in doublet $Q_1 Q_2 = 1 \longrightarrow g_2 = \frac{e}{s_W}$
- normalize $Y^{L/R}$ such that $g_1 = \frac{e}{c_{rec}}$

 \hookrightarrow Y fixed by "Gell-Mann–Nishijima relation": $Q = T_{\rm I}^3 + \frac{Y}{2}$

Fermion-gauge-boson interaction:

$$\mathcal{L}_{\text{ferm,YM}} = \frac{e}{\sqrt{2}s_{\text{W}}} \overline{\Psi_{F}^{\text{L}}} \begin{pmatrix} 0 & W^{+} \\ W^{-} & 0 \end{pmatrix} \Psi_{F}^{\text{L}} + \frac{e}{2c_{\text{W}}s_{\text{W}}} \overline{\Psi_{F}^{\text{L}}} \sigma^{3} \mathbb{Z} \Psi_{F}^{\text{L}}$$
$$- e \frac{s_{\text{W}}}{c_{\text{W}}} Q_{f} \overline{\psi_{f}} \mathbb{Z} \psi_{f} - e Q_{f} \overline{\psi_{f}} \mathbb{A} \psi_{f} \qquad (f \text{=all fermions, } F \text{= all doublets})$$

Feynman rules:

3.3 Gauge-boson sector

Yang–Mills Lagrangian for gauge fields:

$$\mathcal{L}_{\rm YM} = -\frac{1}{4} W^a_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

Field-strength tensors:

 $W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g_2 \epsilon^{abc} W^b_\mu W^c_\nu, \qquad B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu$

Lagrangian in terms of "physical" fields:

$$\mathcal{L}_{\rm YM} = -\frac{1}{2} (\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+}) (\partial^{\mu} W^{-,\nu} - \partial^{\nu} W^{-,\mu}) - \frac{1}{4} (\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu}) (\partial^{\mu} Z^{\nu} - \partial^{\nu} Z^{\mu}) - \frac{1}{4} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu})$$

+ (trilinear interaction terms involving AW^+W^- , ZW^+W^-)

+ (quadrilinear interaction terms involving AAW^+W^- , AZW^+W^- , ZZW^+W^- , $W^+W^-W^+W^-$)

Feynman rules for gauge-boson self-interactions:

(fields and momenta incoming)

$$\begin{array}{ccc} W_{\mu}^{+} & & & \\ & & & \\ & & & \\ & & & \\ W_{\nu}^{-} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

with
$$C_{WW\gamma} = 1$$
, $C_{WWZ} = -\frac{c_{W}}{s_{W}}$

$$\begin{aligned} \mathrm{i}e^2 C_{WWVV'} \Big[2g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\sigma\nu} - g_{\mu\sigma}g_{\nu\rho} \Big] \\ \text{with} \quad C_{WW\gamma\gamma} = -1, \qquad C_{WW\gammaZ} = \frac{c_{\mathrm{W}}}{s_{\mathrm{W}}}, \\ C_{WWZZ} = -\frac{c_{\mathrm{W}}^2}{s_{\mathrm{W}}^2}, \quad C_{WWWW} = \frac{1}{s_{\mathrm{W}}^2} \end{aligned}$$

Higgs sector and spontaneous symmetry breaking 3.4

spontaneous breakdown of SU(2)_I×U(1)_Y symmetry \rightarrow U(1)_{elmg} symmetry Idea:

 \hookrightarrow masses for W[±] and Z bosons, but γ remains massless

choice of scalar extension of massless model involves freedom Note:

GSW model:

Minimal scalar sector with complex scalar doublet $\Phi = \begin{pmatrix} \phi^{\top} \\ \phi^{0} \end{pmatrix}$, $Y_{\Phi} = 1$

Scalar self-interaction via Higgs potential:

$$\begin{split} V(\Phi) &= -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2, \quad \mu^2, \lambda > 0, \\ &= \mathsf{SU}(2)_{\mathrm{I}} \times \mathsf{U}(1)_{\mathrm{Y}} \text{ symmetric} \end{split}$$

$$V(\Phi) = \text{minimal for} \quad |\Phi| = \sqrt{\frac{2\mu^2}{\lambda}} \equiv \frac{v}{\sqrt{2}} > 0$$

 $\operatorname{Im}(\phi^0)$

ground state Φ_0 (=vacuum expectation value of Φ) not unique specific choice $\Phi_0 = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix}$ not gauge invariant \Rightarrow spontaneous symmetry breaking elmg. gauge invariance unbroken, since $Q\Phi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Phi_0 = 0$

Field excitations in Φ :

$$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \frac{1}{\sqrt{2}} \left(v + H(x) + i\chi(x) \right) \end{pmatrix}$$

Gauge-invariant Lagrangian of Higgs sector: $(\phi^- = (\phi^+)^{\dagger})$

$$\mathcal{L}_{\rm H} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi) \quad \text{with } D_{\mu} = \partial_{\mu} - \mathrm{i}g_{2}\frac{\sigma^{a}}{2}W_{\mu}^{a} + \mathrm{i}\frac{g_{1}}{2}B_{\mu}$$
$$= (\partial_{\mu}\phi^{+})(\partial^{\mu}\phi^{-}) - \frac{\mathrm{i}ev}{2s_{\rm W}}(W_{\mu}^{+}\partial^{\mu}\phi^{-} - W_{\mu}^{-}\partial^{\mu}\phi^{+}) + \frac{e^{2}v^{2}}{4s_{\rm W}^{2}}W_{\mu}^{+}W^{-,\mu}$$

$$+\frac{1}{2}(\partial\chi)^{2} + \frac{ev}{2c_{W}s_{W}}Z_{\mu}\partial^{\mu}\chi + \frac{e^{2}v^{2}}{4c_{W}^{2}s_{W}^{2}}Z^{2} + \frac{1}{2}(\partial H)^{2} - \mu^{2}H^{2}$$

+ (trilinear SSS, SSV, SVV interactions)

+ (quadrilinear SSSS, SSVV interactions)

Implications:

- gauge-boson masses: $M_{\rm W} = \frac{ev}{2s_{\rm W}}, \quad M_{\rm Z} = \frac{ev}{2c_{\rm W}s_{\rm W}} = \frac{M_{\rm W}}{c_{\rm W}}, \quad M_{\gamma} = 0$
- physical Higgs boson H: $M_{\rm H} = \sqrt{2\mu^2}$ = free parameter
- would-be Goldstone bosons ϕ^{\pm} , χ : unphysical degrees of freedom

3.5 ρ -parameter and custodial SU(2) symmetry

Observation: Higgs potential of SM invariant under larger symmetry $V(\Phi) = f(\Phi^{\dagger}\Phi), \quad \Phi^{\dagger}\Phi = \operatorname{Re}\{\phi^{+}\}^{2} + \operatorname{Im}\{\phi^{+}\}^{2} + \operatorname{Re}\{\phi^{0}\}^{2} + \operatorname{Im}\{\phi^{0}\}^{2}$ = invariant under O(4) = 4-dim. rotations

Relation between O(4) \simeq SU(2) \times SU(2) and SU(2)_I \times U(1)_Y symmetry \hookrightarrow matrix notation:

$$\Pi \equiv (\tilde{\Phi}, \Phi) = \begin{pmatrix} \phi^{0^*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix} \longrightarrow \frac{1}{2} \operatorname{Tr} \{ \Pi^{\dagger} \Pi \} = \Phi^{\dagger} \Phi$$

SU(2)_I×U(1)_Y transformation: $U_{\rm I} = \exp\{ig_2\theta^a T_{\rm I}^a\}, \quad U_{\rm Y} = \exp\{-ig_1\theta^Y T_{\rm Y}\}$ $\Pi \rightarrow \Pi' = U_{\rm I} \Pi U_{\rm Y}^{\dagger}, \quad T_{\rm I}^a = \sigma^a/2, \quad T_{\rm Y} = \sigma^3/2$

covariant derivative:

 $D_{\mu}\Pi = \partial_{\mu}\Pi - ig_2 \mathcal{W}_{\mu}\Pi - ig_1 \Pi B_{\mu} T_{Y}, \qquad \mathcal{W}_{\mu} \equiv W^a_{\mu} T^a_{I}$

transformation of gauge fields:

$$\mathcal{W}_{\mu} \rightarrow \mathcal{W}'_{\mu} = U_{\mathrm{I}} \left(\mathcal{W}_{\mu} + \frac{\mathrm{i}}{g_2} \partial_{\mu} \right) U_{\mathrm{I}}^{\dagger} \qquad B_{\mu} \rightarrow B'_{\mu} = B_{\mu} + \partial_{\mu} \theta^{Y}$$

O(4) symmetry: $\Phi^{\dagger}\Phi$ invariant under SU(2)_I×SU(2)_{I'} transformation

 $\Pi \to \Pi' = U_{\rm I} \Pi U_{{\rm I}'}^{\dagger}, \qquad U_{{\rm I}'} = \exp\{-{\rm i}g_1\theta^b T_{{\rm I}'}^b\}, \quad T_{{\rm I}'}^b = \sigma^b/2$

Situation after spontaneous symmetry breaking:

ground state $\Pi_0 = (\tilde{\Phi}_0, \Phi_0) \propto \mathbf{1}$ still "diagonal" SU(2) symmetric:

 $\Pi_0 \rightarrow \Pi'_0 = U \Pi_0 U^{\dagger} = \Pi_0$, i.e. $[T^a, \Pi_0] = 0$ for SU(2) generators T^a

\hookrightarrow under global transformation U

- W^a_μ transforms as 3-vector: $W^a_\mu \to W'^a_\mu = R^{ab}_U W^b_\mu$ (R_U = rotation matrix)
- B_{μ} transforms as 3rd component of a fictive triplet B_{μ}^{a} with R_{U}
- \hookrightarrow mass terms for gauge bosons

$$\mathcal{L}_{\rm WZ,mass} = \frac{1}{2} \operatorname{Tr} \left\{ (D_{\mu} \Pi_0)^{\dagger} (D^{\mu} \Pi_0) \right\} = \frac{1}{2} \operatorname{Tr} \left\{ \Pi_0^{\dagger} \Pi_0 \underbrace{\left(g_2 W_{\mu}^a T^a + g_1 T^3 B_{\mu} \right)^2}_{\mathbf{V}_{\mu}} \right\}$$

invariant under U \hookrightarrow length of 3-vector

$$\propto g_2^2 (W^1 W^1 + W^2 W^2) + (g_2 W^3 + g_1 B)^2 \propto c_W^2 W^+ W^- + \frac{1}{2} Z^2$$

 \Rightarrow Relation for the ho-parameter: $ho \equiv \frac{M_{\rm W}^2}{M_{\rm Z}^2 c_{\rm W}^2} = 1$

Role of the ρ -parameter in low-energy physics:

effective four-fermion interaction (cf. IVB model) with charged and neutral currents: $\mathcal{L}_{4f,\text{eff}} = -2\sqrt{2}G_{\mu} \left(J_{\text{CC},\mu}^{\dagger} J_{\text{CC}}^{\mu} + \rho J_{\text{NC},\mu}^{0} J_{\text{NC}}^{0,\mu} \right), \quad \rho = \text{ratio of NC to CC interaction}$

Literature

Böhm/Denner/Joos:

"Gauge Theories of the Strong and Electroweak Interaction"

• Cheng/Li:

"Gauge Theory of Elementary Particle Physics"

- Ellis/Stirling/Webber: "QCD and Collider Physics"
- Peskin/Schroeder:

"An Introduction to Quantum Field Theory"

• Weinberg:

"The Quantum Theory of Fields, Vol. 2: Modern Applications"

Introduction into Standard Model and Precision Physics – Lecture III –

Stefan Dittmaier

MPI München

General overview

- Lecture I Standard Model (part 1)
- Lecture II Standard Model (part 2)
- Lecture III Quantum Corrections
- 6 Quantum field theories and higher perturbative orders
- 7 Electroweak Standard Model radiative corrections
- 8 Radiative corrections to muon decay
- Lecture IV Unstable Particles (part 1)
- Lecture V Unstable Particles (part 2)

- 6 Quantum field theories and higher perturbative orders
- 6.1 General procedure

```
Formulate theory:
                              Lagrangian
                                    ∜
                              quantization \rightarrow gauge fixing, Faddeev–Popov ghosts
Perturbative evaluation:
                              Feynman rules
                              Feynman graphs
                              loop integrals \rightarrow technical problem: divergences (UV, IR)
                              regularization \rightarrow divergences mathematically meaningful
                                   \downarrow
                              renormalization \rightarrow eliminates UV divergences
Define input parameters:
Theoretical predictions:
                              calculation of observables (cross sections, decay widths, etc.)
                              \hookrightarrow IR divergences cancel for sufficiently inclusive quantities
                                    (e.g. inclusion of photon bremsstrahlung)
```


6.2 Green functions, transition amplitudes, and observables

"Amputated" Green functions $G_{amp}^{\phi_1...\phi_n}$:

calculated as sum of all connected Feynman diagrams with external n legs ϕ_1, \ldots, ϕ_n with external propagators (and propagator corrections) omitted

 $G_{\mathrm{amp}}^{\phi_1\phi_2\phi_3} = - + + + + + \cdots$

Transition amplitude \mathcal{M}_{fi} for $|i\rangle \rightarrow |f\rangle$:

calculated from amputated Green functions $G_{amp}^{\phi_1...\phi_n}$ by "LSZ reduction":

- put external momenta to their mass shell, $p_i^2=m_i^2$
- contract with wave functions of external particles (Dirac spinors, polarization vectors) Note: fields must be normalized: $R_{\phi_i} = 1$ (= residue of propagator pole), otherwise multiply by $\sqrt{R_{\phi_i}}$ for each external leg

Cross section for transition $|i\rangle \rightarrow |f\rangle$:

$$\sigma = \operatorname{flux} \times \int \mathrm{d}\operatorname{LIPS} |\mathcal{M}_{fi}|^2$$

"Vertex functions" $\Gamma^{\phi_1 \dots \phi_n}$ as irreducible building blocks:

• $\Gamma^{\phi_1\phi_2} \equiv -(G^{\phi_1\phi_2})^{-1} = -$ (inverse propagator) example: scalar 2-point function $\Gamma^{\phi\phi}(p) = i(p^2 - m^2) + i\Sigma(p^2),$ $\Sigma =$ self-energy = sum of 1PI graphs 1PI = 1-particle-irreducible = ----- + ---(graph cannot be disconnected by cutting one line) $G^{\phi\phi}(p) = \frac{1}{p^2 - m^2} + \frac{1}{p^2 - m^2} i\Sigma(p^2) \frac{1}{p^2 - m^2} + \dots$ (Dyson series) $-\bullet = \bullet - \bullet + \bullet - \bullet + \bullet - \bullet + \bullet - \bullet + \dots$ $= \frac{i}{n^2 - m^2 + \Sigma(n^2)} = -\left(\Gamma^{\phi\phi}(p)\right)^{-1} = -\left(-\bigcirc\right)^{-1}$ • $\Gamma^{\phi_1...\phi_n} \equiv G^{\phi_1...\phi_n}_{amp} \Big|_{only 1Pl graphs}$ example: = + + + two permutations $\Gamma^{\phi\phi\phi\phi}$ $\Gamma^{\phi\phi\phi}G^{\phi\phi}\Gamma^{\phi\phi\phi}$ $G^{\phi\phi\phi\phi}_{\rm amp}$

6.3 Loop integrals and regularization

Regularization of divergences

Observation: loop integrals involve divergences

• UV divergences for $q \to \infty$, e.g.:

$$\int d^4q \, \frac{1}{(q^2 - m_0^2)(q^2 - m_1^2)} \sim \int \frac{dq}{q} \text{ for } q \to \infty \quad \to \text{ logarithmic divergence}$$

• IR divergences for
$$q \to q_0$$
, e.g.:

$$\int d^4q \, \frac{1}{q^2(q^2 + 2qp_1)(q^2 + 2qp_2)} \sim \int \frac{dq}{q} \text{ for } q \to 0 \quad \to \text{ logarithmic divergence}$$

"Regularization": extension of theory by free parameter δ such that

- integrals (and thus the theory) become finite, i.e. well defined
- original theory is obtained as limiting case $\delta \rightarrow \delta_0$
 - \hookrightarrow fix input parameters x_i of regularized theory ($\delta \neq \delta_0$) by experiment
 - \Rightarrow observables must have finite limit $\delta \rightarrow \delta_0$ as functions of x_i (independent of regularization scheme)

Convenient regularization schemes:

- Dimensional regularization: switch to $D \neq 4$ space-time dimensions
 - ◊ regularizes UV (and IR) divergences, respects gauge invariance, easy use
 - \diamond prescription: (μ = arbitrary reference mass, drops out in observables)

 $\int d^4 q \rightarrow (2\pi\mu)^{4-D} \int d^D q \quad \text{and } D\text{-dim. momenta, metric, Dirac algebra}$

and analytic continuation to complex D !

 \diamond divergences appear as poles $\frac{1}{4-D}$ in results

$$\hookrightarrow$$
 define $\Delta \equiv \frac{2}{4-D} - \gamma_{\rm E} + \ln(4\pi) = \frac{2}{4-D} + \text{const.}$

- IR regularization by infinitesimal photon mass m_{γ} and (if relevant) by small fermion mass m_f
 - \diamond prescription: photon propagator pole $\frac{1}{a}$

$$\frac{1}{2} \rightarrow \frac{1}{q^2 - m_\gamma^2}$$

 \diamond divergences appear as $\ln(m_\gamma)$ and $\ln(m_f)$ terms

Standard 1-loop integrals:

• 2-point integrals: $B_{0,\mu,\mu\nu,\dots}(p,m_0,m_1) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \, \frac{1,q_\mu,q_\mu q_\nu,\dots}{(q^2 - m_0^2 + i0)[(q+p)^2 - m_1^2 + i0]}$

scalar integral $B_0 = \text{logarithmically UV divergent} = \Delta + \text{finite,}$ vector integral $B_{\mu} = -\frac{1}{2}p_{\mu}\Delta + \text{finite, etc.}$

• 3-point integrals: $C_{0,\mu,\mu\nu,...}(p_1, p_2, m_0, m_1, m_2)$ $(2\pi\mu)^{4-D} \int p_1 = 1 q_1 q_2 q_3$

$$= \frac{(2\pi\mu)}{i\pi^2} \int d^D q \frac{1, q\mu, q\mu q\nu, \dots}{(q^2 - m_0^2 + i0)[(q + p_1)^2 - m_1^2 + i0][(q + p_2)^2 - m_2^2 + i0]}$$

 $C_0, C_\mu = \mathsf{UV}$ finite, $C_{\mu\nu} = \mathsf{logarithmically} \mathsf{UV} \mathsf{divergent} = \frac{1}{4}g_{\mu\nu}\Delta + \mathsf{finite}, \mathsf{etc.}$

• 4-point integrals: *D*... functions, etc.

Features of one-loop integrals:

- sign of infinitesimally small imaginary part i0 in mass terms reflects causality
- general results for 1-loop integrals known

(complicated but straightforward calculation)

- momentum integrals can be carried out after "Feynman parametrization"
 - \hookrightarrow (n-1)-dimensional integrals for *n*-point functions
- $\diamond B$ functions \rightarrow can be expressed in terms of log's
- ♦ *C*, *D*, etc. → involve dilogarithms $\text{Li}_2(x) = -\int_0^x \frac{\mathrm{d}t}{t} \ln(1-t)$
- tensor integrals can be decomposed into Lorentz covariants:

$$B^{\mu} = p^{\mu}B_{1}, \qquad B^{\mu\nu} = g^{\mu\nu}B_{00} + p^{\mu}p^{\nu}B_{11},$$

$$C^{\mu} = p_{1}^{\mu}C_{1} + p_{2}^{\mu}C_{2}, \quad C^{\mu\nu} = p_{1}^{\mu}p_{1}^{\nu}C_{11} + p_{2}^{\mu}p_{2}^{\nu}C_{22} + (p_{1}^{\mu}p_{2}^{\nu} + p_{1}^{\nu}p_{2}^{\mu}) + g^{\mu\nu}C_{00}, \quad \text{etc.}$$

 \hookrightarrow tensor coefficients B_1 , B_{ij} , C_i , etc. can be obtained as linear combinations of scalar integrals B_0 , C_0 , etc. (e.g. by "Passarino–Veltman reduction")

6.4 Renormalization

Propagators and 2-point functions:

Structure of one-loop self-energies (scalar case as example):

$$\Sigma(p^2) = C_1 p^2 \Delta + C_2 \Delta + \Sigma_{\text{finite}}(p^2) = \text{UV divergent}$$

Behaviour of propagator near pole for free propagation:

$$G^{\phi\phi}(p^2) = \frac{i}{p^2 - m^2 + \Sigma(p^2)} \underbrace{\widetilde{p^2 \to m^2}}_{p^2 \to m^2} \frac{1}{1 + \Sigma'(m^2)} \frac{i}{p^2 - m^2 + \Sigma(m^2)}$$

 \hookrightarrow higher-order corrections change location and residue of propagator pole

Interaction vertices:

Example: scalar 4-point interaction $\mathcal{L}_{\phi^4} = \lambda \phi^4/4!$

momentum-dependent one-loop correction:

 $\Lambda(p_1, p_2, p_3) = C_3 \Delta + \Lambda_{\text{finite}}(p_1, p_2, p_3) = \text{UV divergent}$

 \hookrightarrow higher-order corrections change coupling strengths

Structure of UV divergences:

• Renormalizable field theories:

UV divergences in vertex functions have analytical form of elementary vertex structures (directly related to \mathcal{L})

- \hookrightarrow idea: absorb divergences in free parameters
- \Rightarrow Reparametrization of theory (=renormalization)

Different types of renormalizable theories:

- theories with unrelated couplings of non-negative mass dimensions
 - \hookrightarrow renormalizability proven by power counting and "BPHZ procedure"
- gauge theories (couplings unified by gauge invariance)
 - \hookrightarrow renormalizability non-trivial consequence of gauge symmetry "t Hooft '71
- Non-renormalizable field theories:

e.g. theories with couplings of negative mass dimensions (cf. Fermi model)

operators of higher and higher mass dimensions needed to absorb UV divergences

↔ infinitely many free parameters, much less predictive power

Practical procedure for renormalization:

consider original ("bare") parameters and fields as preliminary (denoted with subscripts "0" in the following)

 \hookrightarrow switch to new "renormalized" parameters and fields that obey certain conditions

Propagators and 2-point functions:

- mass renormalization: $m_0^2 = m^2 + \delta m^2$,
 - $m^2 \stackrel{!}{=}$ location of propagator pole = "physical mass" $\rightarrow \delta m^2 = \Sigma(m^2)$
- wave-function ren.: rescale fields $\phi_0 = \sqrt{Z_{\phi}}\phi$, $G^{\phi\phi} = Z_{\phi}^{-1}G^{\phi_0\phi_0}$ fix $Z_{\phi} = 1 + \delta Z_{\phi}$ such that residue of $G^{\phi\phi}$ at $p^2 = m^2$ equals 1 $\hookrightarrow \delta Z_{\phi} = -\Sigma'(m^2)$
- \Rightarrow Renormalized propagator $G^{\phi\phi}$ is UV finite:

$$\begin{split} G^{\phi\phi}(p^2) &= \frac{\mathrm{i}}{p^2 - m^2 + \Sigma_{\mathrm{ren}}(p^2)},\\ \Sigma_{\mathrm{ren}}(p^2) &= \Sigma(p^2) - \Sigma(m^2) + (p^2 - m^2)\Sigma'(m^2) \;=\; \mathrm{ren.\; self\text{-energy}}\\ &= \Sigma_{\mathrm{finite}}(p^2) - \Sigma_{\mathrm{finite}}(m^2) + (p^2 - m^2)\Sigma'_{\mathrm{finite}}(m^2) \;=\; \mathrm{UV\; finite} \end{split}$$

Vertex functions for interactions:

• coupling renormalization: $\lambda_0 = \lambda + \delta \lambda$

fix $\delta\lambda$ such that λ assumes a measured value for special kinematics p_i^{\exp} note: $\Gamma^{\phi\phi\phi\phi} = Z_{\phi}^2 \Gamma^{\phi_0\phi_0\phi_0\phi_0}$

$$\hookrightarrow \delta \lambda = -2\delta Z_{\phi}\lambda - \Lambda(p_1^{\exp}, p_2^{\exp}, p_3^{\exp})$$

 \Rightarrow Renormalized vertex function is UV finite:

$$\Gamma^{\phi\phi\phi\phi}(p_1, p_2, p_3) = i\lambda + i\Lambda_{ren}(p_1, p_2, p_3),$$

$$\Lambda_{\text{ren}}\left(p_1, p_2, p_3\right) = \Lambda_{\text{finite}}\left(p_1, p_2, p_3\right) - \Lambda_{\text{finite}}\left(p_1^{\text{exp}}, p_2^{\text{exp}}, p_3^{\text{exp}}\right) = \text{UV finite}$$

7 Electroweak Standard Model — radiative corrections

7.1 Loop corrections

Recapitulation of elementary SM couplings (vertices)

gauge-boson self-couplings:

gauge-boson-Higgs couplings:

Higgs self-couplings:

fermion couplings:

Faddeev–Popov couplings:

 \Rightarrow Large variety of loop diagrams !

Examples for 2-point functions at one loop:

('t Hooft–Feynman gauge)

Electron self-energy:

$$\Gamma^{e\bar{e}}(p) = i(\not p - m_e) + i\not p\omega_+ \Sigma^e_R(p^2) + i\not p\omega_- \Sigma^e_L(p^2) + im_e \Sigma^e_S(p^2)$$

$$\xrightarrow{H, \chi}_{e} \xrightarrow{\phi}_{\nu_e} \stackrel{e}{e} \xrightarrow{\gamma, Z}_{e} \xrightarrow{W}_{\nu_e} \stackrel{e}{e} \xrightarrow{\psi}_{e} \stackrel{\varphi}{e} \xrightarrow{\psi}_$$

W-boson self-energy:

Examples for 3-point functions at one loop:

$We\nu_e$ vertex correction:

$H\gamma\gamma$ vertex (loop induced):

7.2 Renormalization

Bare input parameters: $e_0, M_{W,0}, M_{Z,0}, M_{H,0}, m_{f,0}, V_{ij,0}$

Renormalization transformation:

• Parameter renormalization:

$$e_{0} = (1 + \delta Z_{e})e,$$

$$M_{W,0}^{2} = M_{W}^{2} + \delta M_{W}^{2}, \quad M_{Z,0}^{2} = M_{Z}^{2} + \delta M_{Z}^{2}, \qquad M_{H,0}^{2} = M_{H}^{2} + \delta M_{H}^{2},$$

$$m_{f,0} = m_{f} + \delta m_{f}, \qquad V_{ij,0} = V_{ij} + \delta V_{ij}, \quad \text{(both } V_{ij,0}, V_{ij} \text{ unitary)}$$
Note: renormalization of c_{W}, s_{W} fixed by on-shell condition $c_{W} = \frac{M_{W}}{M_{Z}}$

$$(s_{W} \text{ is not a free parameter if } M_{W}, M_{Z} \text{ are used as input parameters)}$$

• Field renormalization

$$W_0^{\pm} = \sqrt{Z_W} W^{\pm}, \quad \begin{pmatrix} Z_0 \\ A_0 \end{pmatrix} = \begin{pmatrix} \sqrt{Z_{ZZ}} & \sqrt{Z_{ZA}} \\ \sqrt{Z_{AZ}} & \sqrt{Z_{AA}} \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix}, \quad H_0 = \sqrt{Z_H} H,$$
$$\psi_{f,0}^{\mathrm{L}} = \sqrt{Z_{ff'}^{\mathrm{L}}} \psi_{f'}^{\mathrm{L}}, \qquad \psi_{f,0}^{\mathrm{R}} = \sqrt{Z_{ff'}^{\mathrm{R}}} \psi_{f'}^{\mathrm{R}}$$

Note: matrix renormalization necessary to account for loop-induced mixing

Renormalization conditions:

• Mass renormalization:

on-shell definition: $mass^2$ is location of pole in propagator

 $\hookrightarrow \delta M_{\rm W}^2 = {\rm Re}\{\Sigma_{\rm T}^W(M_{\rm W}^2)\}, \text{ similar expressions for } \delta M_{\rm Z}^2, \delta M_{\rm H}^2, \delta m_f$

- \hookrightarrow subtlety in all-orders definition, but not relevant at one loop (gauge-invariant definition: mass² as real part of pole location)
- other definitions of quark masses often more appropriate (running masses, masses in effective field theories)
- Field renormalization: (bosons and leptons)
 - $\diamond\,$ residues of propagators (diagonal, transverse parts) normalized to 1

$$\hookrightarrow \ \delta Z_W = -\operatorname{Re}\{\Sigma_{\mathrm{T}}^{W'}(M_{\mathrm{W}}^2)\},\$$

similar expressions for $\delta Z_{AA}, \delta Z_{ZZ}, \delta Z_H, \delta Z_{ff}^{L/R}$

- suppression of mixing propagators on particle poles
 - \hookrightarrow fixes non-diagonal constants $\delta Z_{AZ}, \delta Z_{ZA}, \delta Z_{ff'}^{L/R}$ $(f \neq f')$
- Note: problems for unstables particles beyond one loop (field-renormalization constants become complex)

Renormalization conditions:

(continued)

• Charge renormalization: define e in Thomson limit

e
$$k \longrightarrow A_{\mu} \xrightarrow{k \to 0} ie\gamma_{\mu}$$
 for on-shell electrons

 $\Rightarrow e =$ elementary charge of classical electrodynamics

fine-structure constant $\alpha(0) = \frac{e^2}{4\pi} = 1/137.03599976$

Gauge invariance relates δZ_e to photon wave-function renormalization:

$$\delta Z_e = -\frac{1}{2} \delta Z_{AA} - \frac{s_{\rm W}}{2c_{\rm W}} \delta Z_{ZA}$$

• Quark-field and CKM-matrix renormalization \rightarrow fixes $\delta Z_{qq'}^{L/R}, \delta V_{ij}$

rotation to mass eigenstates;

CKM part requires a careful (non-trivial) investigation of mixing self-energies, mass eigenstates, LSZ reduction, etc.

General result: all renormalization constants can be obtained from self-energies.

7.3 IR divergences and photon bremsstrahlung

Consider processes with charged external particles, e.g., ${\rm e^+e^-} \rightarrow \mu^+\mu^-$

photon bremsstrahlung

Virtual corrections: loop diagrams

IR divergences from soft virtual photons
$$(q \rightarrow 0)$$

$$\int \frac{\mathrm{d}^4 q \dots}{(q^2 - m_{\gamma}^2)(2qp_1)(2qp_2)} \rightarrow C \ln(m_{\gamma})$$

• "Real" corrections:

IR divergences from soft real photons
$$(\mathbf{q} \to 0)$$

$$\int \frac{\mathrm{d}^{3}\mathbf{q}\dots}{\sqrt{\mathbf{q}^{2}+m_{\gamma}^{2}}(2qp_{1})(2qp_{2})} \to -C\ln(m_{\gamma})$$

Bloch–Nordsieck theorem:

IR divergences of virtual and real corrections cancel in the sum

- \hookrightarrow virtual and soft-photonic corrections cannot be discussed separately
- \leftrightarrow related to limited experimental resolution of soft photons
- ⇒ Cross-section predictions necessarily depend on treatment of photon emission (energy and angular cuts)

Separation of soft and hard photons:

Why? cancellation of $\ln(m_{\gamma})$ terms delicate in practice, but terms are universal

- soft photons, $m_{\gamma} < E_{\gamma} < \Delta E \ll Q$ = typical scale of the process
 - \hookrightarrow correction is universal factor δ_{soft} to Born cross section relatively simple analytical expression with explicit $C \ln(\Delta E/m_{\gamma})$ terms
- hard photons, $E_{\gamma} > \Delta E$
 - \hookrightarrow Monte Carlo integration of full radiative process, but with $m_\gamma=0$

-
$$C\ln(\Delta E)$$
 terms emerge numerically

 $\ln(\Delta E)$ contributions cancel numerically in sum for small ΔE up to $\mathcal{O}(\Delta E/E)$

Calculation of soft-photon factor:

$$= A(p-q)\frac{\mathrm{i}(\not p - \not q + m_f}{(p-q)^2 - m_f^2}(\mathrm{i}Q_f e)\not \epsilon^*_{\gamma}u_f(p)$$
$$\underset{q \to 0}{\sim} -Q_f e \frac{\varepsilon^*_{\gamma}p}{qp}A(p)u_f(p) = -Q_f e \frac{\varepsilon^*_{\gamma}p}{qp}\mathcal{M}_{\mathrm{Born}}$$

"Eikonal factorization" holds for all charged particles (spin $0, \frac{1}{2}, 1$)

7.4 The universal radiative corrections $\Delta \alpha$ and $\Delta \rho$

Running electromagnetic coupling $\alpha(s)$:

 $\begin{array}{l} \begin{array}{l} \begin{array}{c} \gamma \\ \gamma \\ q \end{array} \end{array} \begin{array}{l} \begin{array}{c} \text{becomes sensitive to unphysical quark masses } m_q \\ \text{for } |s| \text{ in GeV range and below (non-perturbative regime)} \\ \hookrightarrow \end{array} \\ \begin{array}{c} \leftarrow \\ \Rightarrow \end{array} \begin{array}{l} \text{charge-renormalization constant } \delta Z_e \text{ sensitive to } m_q \\ \end{array} \\ \begin{array}{c} \text{Solution:} \end{array} \end{array} \begin{array}{c} \text{fit hadronic part of } \Delta \alpha(s) = -\operatorname{Re} \{ \Sigma_{\mathrm{T,ren}}^{AA}(s)/s \} \text{ and thus of } \delta Z_e \\ \end{array} \\ \begin{array}{c} \text{via dispersion relations to } R(s) = \frac{\sigma(\mathrm{e^+e^-} \rightarrow \mathrm{hadrons})}{\sigma(\mathrm{e^+e^-} \rightarrow \mu^+\mu^-)} \\ \end{array} \\ \begin{array}{c} \text{Jegerlehner et al.} \end{array} \end{array}$

$$\Rightarrow \text{ Running elmg. coupling:} \quad \alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{\text{ferm} \neq \text{top}}(s)}$$

Leading correction to the ρ -parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

 \hookrightarrow large effects from bottom-top loops in W self-energy Veltman '77

8 Radiative corrections to muon decay

Precision calculation of $M_{\rm W}$ via μ decay

 $\hookrightarrow M_W$ as function of $\alpha(0)$, G_{μ} , M_Z and the quantity Δr

$$M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2}\right) = \frac{\pi \alpha(0)}{\sqrt{2}G_{\mu}} (1 + \Delta r)$$

 Δr comprises quantum corrections to μ decay (beyond electromagnetic corrections in Fermi model)

Virtual correction – 1-loop diagrams:

State-of-the-art prediction of $M_{\rm W}$ from muon decay:

Prediction includes:

- full electroweak corrections of $\mathcal{O}(\alpha)$ (1-loop level)
- full electroweak corrections of $\mathcal{O}(\alpha^2)$ (2-loop level) (v.Ritbergen,Stuart '98; Seidensticker,Steinhauser '99; Freitas,Hollik,Walter,Weiglein '00-'02; Awramik,Czakon '02/'03; Onishchenko,Veretin '02)
- various improvements by universal corrections to ρ -parameter

Literature

- Textbooks:
 - ◇ Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
 - ♦ Collins: "Renormalization"
 - ◇ Itzykson/Zuber: "Quantum Field Theory"
 - ◇ Peskin/Schroeder: "An Introduction to Quantum Field Theory"
 - Weinberg: "The Quantum Theory of Fields, Vol. 1: Foundations";
 "The Quantum Theory of Fields, Vol. 2: Modern Applications"
- (Incomplete) list of articles on techniques for radiative corrections:
 - \diamond one-loop integrals:
 - G. 't Hooft and M. Veltman, Nucl. Phys. B 153 (1979) 365;
 - G. Passarino and M. Veltman, Nucl. Phys. B 160 (1979) 151;
 - W. Beenakker and A. Denner, Nucl. Phys. B 338 (1990) 349;
 - A. Denner, U. Nierste and R. Scharf, Nucl. Phys. B 367 (1991) 637;
 - A. Denner and S. Dittmaier, Nucl. Phys. B 734 (2006) 62 and references therein
 - ◇ renormalization of the electroweak SM:
 - K. I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Prog. Theor. Phys. Suppl. 73 (1982) 1;
 - M. Böhm, W. Hollik and H. Spiesberger, Fortsch. Phys. 34 (1986) 687;
 - W. F. Hollik, Fortsch. Phys. 38 (1990) 165;
 - A. Denner, Fortsch. Phys. 41 (1993) 307;
 - A. Denner, S. Dittmaier and G. Weiglein, Nucl. Phys. B 440 (1995) 95
 - ◊ IR structure of photon radiation:
 - D. R. Yennie, S. C. Frautschi and H. Suura, Annals Phys. 13 (1961) 379.

Introduction into Standard Model and Precision Physics – Lecture IV –

Stefan Dittmaier

MPI München

General overview

- Lecture I Standard Model (part 1)
- Lecture II Standard Model (part 2)
- Lecture III Quantum Corrections
- Lecture IV Unstable Particles (part 1)
- 9 Unstable particles in quantum field theory
- **10** Lowest-order descriptions of resonance processes
- Lecture V Unstable Particles (part 2)

9 Unstable particles in quantum field theory

9.1 Introduction

Almost all interesting elementary particles are unstable:

- known: leptons μ , τ and massive gauge bosons Z, W^{\pm} , etc.
- Higgs bosons: $H_{\rm SM}$, $\{h, H, A, H^{\pm}\}_{\rm MSSM}$
- postulated new particles, e.g. in SUSY: $\tilde{l}, \tilde{q}, \tilde{g}, \tilde{\chi}$ (maybe apart from LSP)

Lifetimes τ too short for detection (e.g. $\tau_{W,Z} \sim 10^{-25} s \rightarrow \Delta l = c\tau \sim 10^{-16} m$) \hookrightarrow only decay products detected,

unstable particles appear as resonances in certain observables

Examples:
$$e^+e^- \rightarrow Z \rightarrow f\bar{f}$$
, $e^+e^- \rightarrow WW \rightarrow 4f$, $e^+e^- \rightarrow t\bar{t} \rightarrow 6f$,
 $pp \rightarrow W/Z \rightarrow 2l$, $pp \rightarrow H+2q \rightarrow ZZ+2q \rightarrow 4l+2jets$, etc.

⇒ Consistent treatment of unstable particles needed in perturbative evaluation of quantum field theories

9.2 Mass and width of unstable particles

Dyson series and propagator poles

Propagator near resonance: (scalar example)

$$- \bigcirc = + + - \bigcirc + + - \bigcirc + + \cdots$$

$$= \frac{i}{p^2 - m^2} + \frac{i}{p^2 - m^2} i\Sigma(p^2) \frac{i}{p^2 - m^2} + \cdots = \frac{i}{p^2 - m^2 + \Sigma(p^2)}$$

 $\Sigma(p^2)={\rm renormalized}$ self-energy, $\ m={\rm ren.}\ {\rm mass}$

Stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

- \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$
- Unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$
 - \hookrightarrow propagator pole shifted into complex p^2 plane, definition of mass and width non-trivial

Commonly used mass/width definitions:

• "on-shell mass/width"
$$M_{OS}/\Gamma_{OS}$$
: $M_{OS}^2 - m^2 + \operatorname{Re}\{\Sigma(M_{OS}^2)\} \stackrel{!}{=} 0$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to M_{OS}^2} \frac{1}{(p^2 - M_{OS}^2)(1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}) + i\operatorname{Im}\{\Sigma(M_{OS}^2)\}}$
comparison with form of Breit–Wigner resonance $\frac{R_{OS}}{p^2 - m^2 + im\Gamma}$
yields: $M_{OS}\Gamma_{OS} \equiv \operatorname{Im}\{\Sigma(M_{OS}^2)\} / (1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}), \quad \Sigma'(p^2) \equiv \frac{\partial\Sigma(p^2)}{\partial p^2}$

• "pole mass/width"
$$M/\Gamma$$
: $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$
complex pole position: $\mu^2 \equiv M^2 - iM\Gamma$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow[p^2 \to \mu^2]{} \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} = \frac{R}{p^2 - M^2 + iM\Gamma}$

Note:
$$\mu =$$
 gauge independent for any particle (pole location is property of *S*-matrix)
 $M_{OS} =$ gauge dependent at 2-loop order Sirlin '91; Stuart '91; Gambino, Gras

si '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions:

Subtraction of defining equations yields:

$$M_{\rm OS}^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} = M^2 - iM\Gamma + \Sigma(M^2 - iM\Gamma)$$

Equation can be uniquely solved via recursion in powers of coupling α :

ansatz:
$$M_{OS}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$$

 $M_{OS} \Gamma_{OS} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \text{real}$
counting in α : $M_{OS}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{OS}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$M_{OS}^{2} = M^{2} + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\} + \mathcal{O}(\alpha^{3})$$
$$M_{OS}\Gamma_{OS} = M\Gamma + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\}^{2}$$
$$+ \frac{1}{2} \operatorname{Im}\{\Sigma(M^{2})\}^{2} \operatorname{Im}\{\Sigma''(M^{2})\} + \mathcal{O}(\alpha^{4})$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\} + \text{gauge-dependent 2-loop corrections}$

Important examples: W and Z bosons

In good approximation: $W \to f\bar{f}', \quad Z \to f\bar{f}$ with masses fermions f, f'so that: $\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \theta(p^2), \quad \mathrm{V} = \mathrm{W}, \mathrm{Z}$ $\hookrightarrow M_{\mathrm{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3) \qquad M_{\mathrm{OS}}\Gamma_{\mathrm{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{\rm W} \approx 80 \,{\rm GeV}$, $\Gamma_{\rm W} \approx 2.1 \,{\rm GeV}$ $\hookrightarrow M_{\rm W,OS} - M_{\rm W,pole} \approx 28 \,{\rm MeV}$ Z boson: $M_{\rm Z} \approx 91 \,{\rm GeV}$, $\Gamma_{\rm Z} \approx 2.5 \,{\rm GeV}$ $\hookrightarrow M_{\rm Z,OS} - M_{\rm Z,pole} \approx 34 \,{\rm MeV}$ Exp. accuracy: $\Delta M_{\rm W,exp} = 29 \,{\rm MeV}$, $\Delta M_{\rm Z,exp} = 2.1 \,{\rm MeV}$

 \hookrightarrow Difference in definitions phenomenologically important !

A closer look into resonance shapes:

• "on-shell mass/width" $M_{\rm OS}/\Gamma_{\rm OS}$: $M_{\rm OS}^2 - m^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} \stackrel{!}{=} 0$

$$G^{\phi\phi}(p) = \frac{1}{p^2 - M_{\rm OS}^2 + \Sigma(p^2) - \operatorname{Re}\{\Sigma(M_{\rm OS}^2)\}}$$

$$\overbrace{p^2 \to M_{\rm OS}^2}^{p^2 \to M_{\rm OS}^2} \frac{1}{(p^2 - M_{\rm OS}^2)[1 + \operatorname{Re}\{\Sigma'(M_{\rm OS}^2)\}] + \operatorname{i}\operatorname{Im}\{\Sigma(p^2)\} + \mathcal{O}[(p^2 - M_{\rm OS}^2)^2]}$$

$$= \frac{R_{\rm OS}}{p^2 - M_{\rm OS}^2 + \operatorname{i}M_{\rm OS}\Gamma_{\rm OS}(p^2) + \mathcal{O}[(p^2 - M_{\rm OS}^2)^2]}$$

with the "running on-shell width" $\Gamma_{OS}(p^2) = \frac{Im\{\Sigma(p^2)\}}{M_{OS}[1 + Re\{\Sigma'(M_{OS}^2)\}]}$

• "pole mass/width" M/Γ : $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$

$$G^{\phi\phi}(p) = \frac{1}{p^2 - \mu^2 + \Sigma(p^2) - \Sigma(\mu^2)}$$

$$\widetilde{p^2 \to \mu^2} \quad \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} + \mathcal{O}[(p^2 - \mu^2)^2] = \frac{R}{(p^2 - \mu^2) + \mathcal{O}[(p^2 - \mu^2)^2]}$$

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{\rm V,OS}(p^2) = \Gamma_{\rm V,OS} \times \frac{p^2}{M_{\rm V,OS}^2} \theta(p^2), \qquad {\rm V} = {\rm W}, {\rm Z}$$

Fit of W/Z resonance shapes to experimental data:

• ansatz
$$\left|\frac{R'}{p^2 - m'^2 + i\gamma'p^2/m'}\right|^2$$
 yields: $m' = M_{V,OS}$, $\gamma' = \Gamma_{V,OS}$
• ansatz $\left|\frac{R}{p^2 - m^2 + i\gamma m}\right|^2$ yields: $m = M_{V,pole}$, $\gamma = \Gamma_{V,pole}$

Note: the two forms are equivalent: $R = \frac{R'}{1 + i\gamma'/m'}, \quad m^2 = \frac{{m'}^2}{1 + {\gamma'}^2/{m'}^2}, \quad m\gamma = \frac{m'\gamma'}{1 + {\gamma'}^2/{m'}^2}$

 \hookrightarrow consistent with relation between "on-shell" and "pole" definitions !

Complex mass and decay widths 9.3

Free propagator with finite width:

$$G(x-y) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \,\mathrm{e}^{-\mathrm{i}p(x-y)} \frac{\mathrm{i}}{p^2 - M^2 + \mathrm{i}M\Gamma}, \qquad \tilde{E}_p = \sqrt{\mathbf{p}^2 + M^2 - \mathrm{i}M\Gamma}$$
$$= \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \int \frac{\mathrm{d}p_0}{2\pi} \,\mathrm{e}^{-\mathrm{i}p_0(x_0-y_0)} \frac{\mathrm{i}}{2\tilde{E}_p} \left(\frac{1}{p_0 - \tilde{E}_p} - \frac{1}{p_0 + \tilde{E}_p}\right)$$

Contour integration in p_0 plane yields

$$\begin{aligned} G(x-y) &= \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \frac{1}{2\tilde{E}_{p}} \left[\theta(x_{0}-y_{0}) \mathrm{e}^{-\mathrm{i}(x_{0}-y_{0})\tilde{E}_{p}} + \theta(y_{0}-x_{0}) \mathrm{e}^{\mathrm{i}(x_{0}-y_{0})\tilde{E}_{p}} \right] \\ \mathsf{For} \, \mathbf{\Gamma} \ll M : \quad \tilde{E}_{p} \approx E_{p} - \mathrm{i}\mathbf{\Gamma}M/(2E_{p}), \quad E_{p} &= \sqrt{\mathbf{p}^{2} + M^{2}} \\ G(x-y) &= \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \frac{1}{2E_{p}} \left[\,\theta(x_{0}-y_{0}) \mathrm{e}^{-\mathrm{i}(x_{0}-y_{0})E_{p}} \, \mathrm{e}^{-(x_{0}-y_{0})\mathbf{\Gamma}m/(2E_{p})} \right. \\ &+ \theta(y_{0}-x_{0}) \mathrm{e}^{\mathrm{i}(x_{0}-y_{0})E_{p}} \, \mathrm{e}^{-(y_{0}-x_{0})\mathbf{\Gamma}m/(2E_{p})} \right] \end{aligned}$$

Exponential decay in particle and antiparticle propagation $x_0 - y_0 \gtrsim 0$: $|G|^2 \propto e^{\mp (x_0 - y_0)\Gamma_p}$ with $\Gamma_p = \Gamma M / E_p = \Gamma / \gamma$ = width of particle with momentum p

Parma School of Theoretical Physics, SNFT06, September 2006

Conventional definition of decay widths via amplitudes:

Partial decay widths for $\phi \rightarrow f$:

$$\Gamma_{\phi \to f, \text{conv}} = \frac{1}{2m} \int d\Phi_{\phi \to f} \left| \mathcal{M}_{\phi \to f} \right|^2$$

Comments:

- flux factor
- Lorentz-invariant phase space for final state $|f\rangle = |\phi_1(k_1), \dots, \phi_n(k_n)\rangle$: Γ^n c 141 C

$$\int d\Phi_{\phi \to f} = \left[\prod_{l=1} \int \frac{d^{-}\kappa_{l}}{(2\pi)^{4}} (2\pi)\delta(k_{l}^{2} - m_{l}^{2})\theta(k_{l}^{0}) \right] (2\pi)^{4}\delta(p - \sum_{m=1}^{n} k_{m})$$

• Transition matrix element $\mathcal{M}_{\phi \to f}$ calculated from diagrams $\phi - \bigoplus$

 $\mathcal{M}_{\phi \to f}$ involves external unstable particle ϕ Note: \hookrightarrow problems expected in higher orders !

- Mass definition of ϕ relevant
 - \hookrightarrow usual choice at 1–2 loops: $m = M_{OS}$

Total decay width: Γ

$$\Gamma_{\rm conv} = \sum_{f} \Gamma_{\phi \to f, \rm conv}$$

 \hookrightarrow Relation between Γ_{conv} and "on-shell" / pole definitions ? Answer by unitarity...

9.4 Unstable particles and unitarity in (perturbative) QFT

Causality implies Cutkowsky cut rules for diagrams:

 \Rightarrow unitarity of S-matrix: $SS^{\dagger} = 1$

9.4 Unstable particles and unitarity in (perturbative) QFT

Causality implies Cutkowsky cut rules for diagrams:

Note: "derivation" quite sloppy (ignores problems in defining $\mathcal{M}_{\phi \to f}$ in higher orders !)

Subtleties with S-matrix elements and unitarity

S-matrix elements:

Definition for $|i\rangle \to |f\rangle$: $\langle f|S|i\rangle = \lim_{\substack{t_0 \to -\infty \\ t_1 \to +\infty}} \langle f, t_1|S|i, t_0\rangle$

But: for unstable states $|f\rangle$: $\lim_{t_1 \to +\infty} \langle f, t_1 | = 0$

 → S-matrix elements for external unstable particles do not exist, application of LSZ reduction not justified !

Unitarity:

Cut equations not consistent for external or internal unstable particles !

But: important result of Veltman '63

Toy field theory with stable and unstable scalar fields \hookrightarrow theory is unitary, causal, and renormalizable on space of stable external states

Comments on Veltman's result:

- cut equations: no cuts of internal propagators for unstable particles
- statement rests on consideration of "complete" (resummed) propagators
 → does not provide a practical method for standard perturbation theory

9.5 Resonances – factorization into production and decay subprocesses

Transition rate near a resonance: $|i\rangle \rightarrow |X, \phi(p)\rangle \rightarrow |X, f\rangle$

$$\int \mathrm{d}\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \, \underbrace{}_{p^2 \to m^2} \, \int \mathrm{d}\Phi_{i\to Xf} \left| \mathcal{M}_{i\to X\phi \to Xf} \right|^2$$

Phase-space factorization:

$$\int d\Phi_{i\to Xf} = \int \frac{dp^2}{2\pi} \int d\Phi_{i\to X\phi(p)} \int d\Phi_{\phi(p)\to f}$$

Decomposition of resonance diagrams:

$$\mathcal{M}_{i \to X\phi \to Xf} = \sum_{\lambda} \mathcal{M}_{i \to X\phi}^{(\lambda)} \frac{1}{p^2 - m^2 + \mathrm{i}m\Gamma} \mathcal{M}_{\phi \to f}^{(\lambda)}, \quad \lambda = \text{polarization index of } \phi$$

 \hookrightarrow total rate proportional to

(hat on $\hat{\Phi}$, $\hat{\mathcal{M}}$ means $p^2 {=} m^2$ used)

 ϕ

p

 ϕ_1

$$\int d\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \underbrace{\sum_{p^2 \to m^2} \sum_{\lambda,\lambda'} \int d\hat{\Phi}_{i\to X\phi(p)} \, \hat{\mathcal{M}}_{i\to X\phi}^{(\lambda)} (\hat{\mathcal{M}}_{i\to X\phi}^{(\lambda')})^*}_{X \to \int \frac{dp^2}{2\pi} \frac{1}{|p^2 - m^2 + im\Gamma|^2} \underbrace{\int d\hat{\Phi}_{\phi(p)\to f} \, \hat{\mathcal{M}}_{\phi\to f}^{(\lambda)} (\hat{\mathcal{M}}_{\phi\to f}^{(\lambda')})^*}_{=D_{\lambda\lambda'}} =D_{\lambda\lambda'} \quad \text{("decay correlation")}$$

Manipulations for total rate:

- Rotational invariance in ϕ rest frame implies for full integral $\int d\Phi_{\phi(p)\to f} D_{\lambda\lambda'} = \delta_{\lambda\lambda'} \bar{D}$, with spin average $\bar{D} = 2m\Gamma_{\phi\to f,\text{conv}}$
- "Narrow-width approximation" (NWA) for resonance factor:

$$\frac{1}{|p^2 - m^2 + im\Gamma|^2} = \frac{1}{(p^2 - m^2)^2 + m^2\Gamma^2} \widetilde{\Gamma \to 0} \frac{\pi}{m\Gamma} \delta(p^2 - m^2)$$

Resulting NWA for total rate and total cross section:

$$\int d\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \xrightarrow[p^2 \to m^2]{} \sum_{\lambda} \int d\hat{\Phi}_{i\to X\phi(p)} \left| \hat{\mathcal{M}}_{i\to X\phi}^{(\lambda)} \right|^2 \underbrace{\frac{\Gamma_{\phi \to f, \text{conv}}}{\Gamma}}_{=\text{BR}_{\phi \to f}} \text{("branching ratio")}$$

 $\Rightarrow \sigma_{i \to Xf}^{\text{NWA}} = \sigma_{i \to X\phi} \text{ BR}_{\phi \to f} \quad \text{with} \quad \sum_{f} \text{BR}_{\phi \to f} = 1 \quad \text{if } \Gamma = \Gamma_{\text{conv}}$

Note: NWA insufficient to describe

- invariant-mass distributions of decay products (needed for resonance shape)
- angular distributions of decay products (needed for spin determination)
- "off-shell effects" resulting from regions with $|p^2 m^2| \gg m\Gamma$ (in particular because of neglect of non-resonant diagrams)

9.6 The issue of gauge invariance

Gauge invariance implies...

- Slavnov–Taylor or Ward identites
 - = algebraic relations of or between Greens functions
 - \hookrightarrow guarantee cancellation of unitarity-violating terms, crucial for proof of unitarity of *S*-matrix
- compensation of gauge-fixing artefacts
 - = gauge-parameter independence of S-matrix

although Greens function (e.g. self-energies) are gauge dependent

Both statements hold order by order in standard perturbation theory !

- But: Resonances require Dyson summation of resonant propagators
 - \hookrightarrow perturbative orders mixed
 - \hookrightarrow gauge invariance jeopardized !
- Note: Gauge-invariance-violating terms are formally of higher order, but can be dramatically enhanced

Important Ward identities for processes with EW gauge bosons:

Elmg. U(1) gauge invariance implies

$$k^{\mu}$$
 $\overbrace{\gamma_{\mu}}^{k}$ $\overbrace{F_{n}}^{F_{1}} = 0$ for any on-shell fields F_{l}

 \hookrightarrow Identity becomes crucial for collinear light fermions:

for fermion momenta
$$p_1 \sim c p_2$$
:
 $p_1 \quad k = p_1 - p_2$
 $p_2 \quad = \bar{u}_2(p_2)\gamma^{\mu}u_1(p_1) \propto k^{\mu}$

A typical situation: quasi-real space-like photons

$$e \xrightarrow{\gamma \quad k} e \\ \gamma \quad k \\ \ddots \quad k \\ \ddots \quad k \\ \ddots \quad k \\ \gamma \quad k \\ \sim \frac{1}{k^2} \ k^{\mu} \ T^{\gamma}_{\mu} \quad \text{for } k^2 \rightarrow \mathcal{O}(m_e^2) \ll E^2$$

Identity $k^{\mu} T^{\gamma}_{\mu} = 0$ needed to cancel $1/k^2$, otherwise gauge-invariance-breaking terms enhanced by E^2/m_e^2 (~ 10^{10} for LEP2)

Electroweak SU(2) gauge invariance implies

 $F_l =$ on-shell fields $\chi, \phi^{\pm} =$ would-be Goldstone fields

A typical situation: high-energetic quasi-real longitudinal vector bosons

 \hookrightarrow fermion current attached to ${
m V}(k)$ again $\propto k^{\mu}$

$$\begin{array}{c} & k \\ & \ddots & \\ & \ddots & \\ & \ddots & V \end{array} \sim \frac{1}{k^2 - M_V^2} \ k^\mu \ T^V_\mu \quad \text{for } \ k^0 \gg M_V \end{array}$$

Identity $k^{\mu}T^{V}_{\mu} = c_{V}M_{V}T^{S}$ needed to cancel factor k^{0} , otherwise gauge-invariance/unitarity-breaking terms enhanced by k^{0}/M_{V}

10 Lowest-order descriptions of resonance processes

10.1 Motivation

The final aim: a method to describe resonance processes in lowest order that

- is mathematically consistent, but simple to apply
- valid in resonant and non-resonant regions of phase space
- supports arbitrary differential distributions
- respects gauge invariance (at least controls breaking effects)
- respects unitarity (at least controls breaking effects)
- can be generalized to higher orders
- → Aim is highly demanding,
 different solutions proposed (with different strengths and weaknesses)

Discussed in the following:

naive "solutions" (propagator modifications, fudge factors, etc.), "complex-mass scheme", "fermion-loop scheme", pole expansions

Not discussed:

proposals of effective field theories

Beenakker et al. '00,'03; Beneke et al. '03,'04; Hoang, Reisser '04

Counting of orders in resonance processes:

- self-energy = loop effect: $\Sigma(p^2) = \mathcal{O}(\alpha)$
- width = higher-order effect: $m\Gamma = m^2 \mathcal{O}(\alpha)$
- \hookrightarrow Propagator in resonance region and in the continuum:

$$\frac{m\Gamma}{p^2 - m^2 + \Sigma(p^2)} \sim \frac{m\Gamma}{p^2 - m^2 + \mathrm{i}m\Gamma} = \begin{cases} \mathcal{O}(1) & \text{for } |p^2 - m^2| \sim m\Gamma \\ \mathcal{O}(\alpha) & \text{for } |p^2 - m^2| \gg m\Gamma \end{cases}$$

Implications: [resonant part counted as $\mathcal{O}(1)$]

- higher-order corrections to resonant parts are of $\mathcal{O}(\alpha)$
 - \hookrightarrow (virtual+real) corrections to scattering matrix elements and to total width Γ in resonant denominator
- off-shell effects are generically of $\mathcal{O}(\Gamma/m) = \mathcal{O}(\alpha)$ or in presence of phase-space cuts:

$$\int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, |\mathcal{M}_{\mathrm{res}}|^2 \propto \int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, \frac{1}{(p^2 - m^2)^2 + m^2 \Gamma^2} \sim \frac{\pi}{m\Gamma}$$
$$\int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, |\mathcal{M}_{\mathrm{non-res}}|^2 \propto \mathcal{O}(\Delta) \qquad \Rightarrow \sigma_{\mathrm{non-res}}/\sigma_{\mathrm{res}} \sim \frac{\Delta\Gamma}{m^2} \quad \text{for } \Delta \gg \Gamma$$

10.2 Naive approaches

Naive propagator substitutions in full tree-level amplitudes:

 $\frac{1}{k^2 - m^2} \rightarrow \frac{1}{k^2 - m^2 + \mathrm{i}m\Gamma(k^2)}$ for resonant or all propagators

- constant width $\Gamma(k^2) = \text{const.} \rightarrow U(1)$ respected (if all propagators dressed), SU(2) "mildly" violated
- step width $\Gamma(k^2) \propto \theta(k^2) \longrightarrow U(1)$ and SU(2) violated
- running width $\Gamma(k^2) \propto \theta(k^2) \times k^2 \rightarrow U(1)$ and SU(2) violated \hookrightarrow results can be totally wrong !

Fudge factor approaches:

Multiply full amplitudes without widths with factors $\frac{p^2 - m^2}{p^2 - m^2 + \mathrm{i}m\Gamma}$ for each potentially resonant propagator

 \hookrightarrow procedure preserves gauge invariance, but introduces spurious factors of $\mathcal{O}(\Gamma/m)$

Note: none of these schemes preserves unitarity

$e^-e^+ \rightarrow e^- \bar{\nu}_e u \bar{d}$ result of Kurihara, Perret-Gallix, Shimizu '95 An example:

đ

Example continued:

Partial amplitude from above "photon diagrams":

$$\mathcal{M}_{\gamma} = Q_{\mathrm{e}} e \, ar{u}_{\mathrm{e}}(k_{\mathrm{e}}) \gamma^{\mu} u_{\mathrm{e}}(p_{\mathrm{e}}) \; rac{1}{k_{\gamma}^2} \; T^{\gamma}_{\mu}$$

Elmg. Ward identity:

$$0 \stackrel{!}{=} k_{\gamma}^{\mu} T_{\mu}^{\gamma} \propto (p_{+}^{2} - p_{-}^{2}) Q_{\mathrm{W}} P_{\mathrm{w}}(p_{+}^{2}) P_{\mathrm{w}}(p_{-}^{2}) + Q_{\mathrm{e}} P_{\mathrm{w}}(p_{+}^{2}) - (Q_{\mathrm{d}} - Q_{\mathrm{u}}) P_{\mathrm{w}}(p_{-}^{2})$$

With $Q_{\rm W} = Q_{\rm e} = Q_{\rm d} - Q_{\rm u}$ and $P_{\rm w}(p^2) = [p^2 - M_{\rm W}^2 + iM_{\rm W}\Gamma_{\rm W}(p^2)]^{-1}$ one obtains: $\Gamma_{\rm W}(p_+^2) \stackrel{!}{=} \Gamma_{\rm W}(p_-^2)$

→ Elmg. gauge invariance demands
 common width on *s*- and *t*-channel propagators in "naive fixed width scheme"

• replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 - iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 - iM_Z\Gamma_Z$

10.3 Complex-mass scheme at tree level

Application to gauge-boson resonances:

and define (complex) weak mixing angle via $c_{
m W}^2 = 1 - s_{
m W}^2 = rac{\mu_{
m W}^2}{\mu_{
m Z}^2}$

 $\hookrightarrow\,$ preserves all algebraic relations among parameters and amplitudes

• virtue: gauge-invariant result !

(Slavnov-Taylor identities and gauge-parameter independence)

mass² = location of propagator pole in complex p^2 plane

 \hookrightarrow consistent use of complex masses everywhere !

 \hookrightarrow unitarity cancellations respected !

• drawbacks:

Basic idea:

- \diamond spurios terms of $\mathcal{O}(\frac{\Gamma}{m}) = \mathcal{O}(\alpha)$ (from off-shell propagators and complex mixing angle)
 - $\hookrightarrow\,$ but these terms are beyond tree-level accuracy !
- cut equations not valid anymore (reformulation not yet worked out)
 - \hookrightarrow unitarity not yet understood, but possible unitarity violation is of $\mathcal{O}(\frac{\Gamma}{m})$

Examples:

results from RACOONWW (Denner et al. '99-'01) and LUSIFER (Dittmaier, Roth '02)

• σ [fb] for $e^+e^- \rightarrow u \bar{d} \mu^- \bar{\nu}_{\mu}$

\sqrt{s}	$189{ m GeV}$	$500{ m GeV}$	$2{ m TeV}$	$10\mathrm{TeV}$
constant width	703.5(3)	237.4(1)	13.99(2)	0.624(3)
running width	703.4(3)	238.9(1)	34.39(3)	498.8(1)
complex mass	703.1(3)	237.3(1)	13.98(2)	0.624(3)

• σ [fb] for $e^+e^- \rightarrow u\bar{d}\mu^-\bar{\nu}_{\mu} + \gamma$ (separation cuts for "visible" γ : $E_{\gamma}, \theta_{\gamma f} > cut$)

$\sqrt{s} =$	$189{ m GeV}$	$500{ m GeV}$	$2{ m TeV}$	$10{\rm TeV}$
constant width	224.0(4)	83.4(3)	6.98(5)	0.457(6)
running width	224.6(4)	84.2(3)	19.2(1)	368(6)
complex mass	223.9(4)	83.3(3)	6.98(5)	0.460(6)

• σ [fb] for $e^+e^- \rightarrow \nu_e \bar{\nu}_e \mu^- \bar{\nu}_\mu u \bar{d}$ (phase-space cuts applied)

\sqrt{s}	$500{ m GeV}$	$800{ m GeV}$	$2{ m TeV}$	$10{ m TeV}$
constant width	1.633(1)	4.105(4)	11.74(2)	26.38(6)
running width	1.640(1)	4.132(4)	12.88(1)	12965(12)
complex mass	1.633(1)	4.104(3)	11.73(1)	26.39(6)

10.4 Fermion-loop scheme Argyres et al. '95; Beenakker et al. '96; Passarino '99; Accomando et al. '99

Procedure: Dyson summation of all closed fermion-loop graphs

Benefits of the scheme:

- introduction of widths via resummed self-energies for particles that decay into fermions only, e.g. W and Z bosons
- Ward identites (WI) maintained, because full set of diagrams of the form $\sum_f N_f^{\text{colour}}$ is considered
- gauge-parameter independence, because gauge parameters do not enter loops, and WI are valid for "trees"
- natural inclusion of running-coupling effects possible
- no spurious terms included (selection of diagrams!)
- scheme has natural generalization to remaining "bosonic loops"
 - ← background-field quantization Denner, Dittmaier '96

Drawbacks / limitations:

- width in one-loop self-energy is tree-level quantity
 - $\,\hookrightarrow\,$ scheme does not include fermion-loop corrections to width
- no applicability to unstable particles that decay into bosons (top, Higgs)

Example: $e^-e^+ \rightarrow 4f$

Structural diagrams:

Building blocks:

• resummed propagators:

• corrected vertices:

Specific example: $\sigma[fb]$ for $e^-e^+ \rightarrow \mu^- \bar{\nu}_\mu u \bar{d}$ at high energies

WTO (Passarino '96)

\sqrt{s}	$200\mathrm{GeV}$	$500{ m GeV}$	$1\mathrm{TeV}$	$2{ m TeV}$	$5\mathrm{TeV}$	$10\mathrm{TeV}$
running width	672.96(3)	225.45(3)	62.17(1)	33.06(1)	123.759(8)	481.18(5)
constant width	673.08(4)	224.05(3)	56.90(1)	13.19(1)	2.212(6)	0.591(4)
imaginary-part FLS	673.1(1)	224.5(7)	56.8(1)	13.18(4)	2.24(3)	0.597(6)
full FLS	683.7(1)	227.9(2)	58.0(1)	13.57(4)	2.34(3)	0.632(6)

A (not exhaustive) selection of literature

- Unstable particles in quantum field theory
 - ♦ mass and width of unstable particles:
 - A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127; Phys. Lett. B 267 (1991) 240;
 - R. G. Stuart, Phys. Lett. B 262 (1991) 113; Phys. Rev. Lett. 70 (1993) 3193;
 - M. Passera and A. Sirlin, Phys. Rev. Lett. 77 (1996) 4146 [hep-ph/9607253];
 - P. Gambino and P. A. Grassi, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254];
 - P. A. Grassi, B. A. Kniehl and A. Sirlin, Phys. Rev. D 65 (2002) 085001 [hep-ph/0109228].
 - \diamond unitarity and causality:
 - M. J. G. Veltman, Physica 29 (1963) 186.
- Schemes for treating unstable particles in lowest-order amplitudes (see also references therein)
 - ◊ complex-mass scheme:
 - A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472].
 - ♦ fermion-loop scheme:
 - E. N. Argyres et al., Phys. Lett. B 358(1995) 339 [hep-ph/9507216];
 - W. Beenakker et al., Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260];
 - G. Passarino, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482];
 - E. Accomando, A. Ballestrero and E. Maina, Phys. Lett. B 479 (2000) 209 [hep-ph/9911489].
 - ♦ more discussions of gauge-invariance violation:
 - Y. Kurihara, D. Perret-Gallix and Y. Shimizu, Phys. Lett. B 349 (1995) 367 [hep-ph/9412215];
 - S. Dittmaier and M. Roth, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070].

Introduction into Standard Model and Precision Physics – Lecture V –

Stefan Dittmaier

MPI München

General overview

- Lecture I Standard Model (part 1)
- Lecture II Standard Model (part 2)
- Lecture III Quantum Corrections
- Lecture IV Unstable Particles (part 1)
- Lecture V Unstable Particles (part 2)
- **11** The pole scheme for radiative corrections to resonance processes
- 12 Single-W production at hadron colliders
- **13** $e^+e^- \rightarrow WW \rightarrow 4f$: double-pole approximation vs. complex-mass scheme

11 The pole scheme for radiative corrections to resonance processes

11.1 General strategy for a single resonance

Stuart '91; H.Veltman '92; Aeppli, v.Oldenborgh, Wyler '94

The idea: expansion about resonance pole

$$\mathcal{M} = \frac{R(p^2)}{p^2 - m^2} + N(p^2) = \frac{R(m^2)}{p^2 - m^2} + \frac{R(p^2) - R(m^2)}{p^2 - m^2} + N(p^2)$$

$$\hookrightarrow \underbrace{\frac{R(m^2)}{p^2 - m^2 + im\Gamma}}_{\text{resonant}} + \underbrace{\frac{R(p^2) - R(m^2)}{p^2 - m^2}}_{\text{non-resonant}} + N(p^2)$$

Benefits / drawbacks / subtleties:

- procedure is gauge invariant, because residue $R(m^2)$ is gauge invariant
- scheme is applicable to higher orders
- $R(p^2)$ in general not analytic at $p^2 = m^2$
 - $\hookrightarrow \ \ \text{``non-factorizable corrections''} \quad (i.e. \ \text{not of the form const.} \times \text{Breit-Wigner}) \\$
- $R(m^2)$ is "ambiguous", because it depends on other phase-space variables $\hookrightarrow R(m^2)$ depends on choice of phase-space parametrization
- reliability questionable in presence of small scales, e.g. γ radiation with $E_{\gamma} \sim \Gamma$, vicinity of thresholds: $E - E_{\text{threshold}} \sim \Gamma$

The pole expansion including higher orders:

Starting point: complete matrix element $\mathcal{M} = \underbrace{\frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)}}_{=\mathcal{M}'} + N(p^2)$

Isolation of pole structure:

recall:
$$p^2 - m^2 + \Sigma(p^2) = p^2 - M^2 + \Sigma(p^2) - \Sigma(M^2)$$

= $(p^2 - M^2)[1 + \Sigma'(M^2)] + \mathcal{O}((p^2 - M^2)^2)$

$$\Rightarrow \mathcal{M}' = \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} + \left[\frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)} - \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} \right]$$
$$\equiv \frac{w}{p^2 - M^2} + n(p^2)$$

Comments:

- complex pole mass M as well as w and $\Sigma(M^2)$ are gauge invariant
- evaluation of $W(M^2)$ for complex $p^2 = M^2$ not straightforward !

But:
$$w \text{ and } n(p^2) \text{ can be perturbatively obtained}$$

from quantities with real momenta Aeppli et al. '94

Perturbative evaluation of w and $n(p^2)$:

Alternative expansion of resonant diagrams about real mass m^2 :

$$\mathcal{M}' = \frac{W(p^2)}{p^2 - m^2} \sum_{n=0}^{\infty} \left(\frac{-\Sigma(p^2)}{p^2 - m^2}\right)^n = \bar{N}(p^2) + \frac{W_{-1}}{p^2 - m^2} + \sum_{n=2}^{\infty} \frac{W_{-n}}{(p^2 - m^2)^n}$$

 \hookrightarrow perturbative expansion for coefficients:

$$W_{-1} = W(m^2) + \frac{d}{dp^2} \Big[-W(p^2)\Sigma(p^2) \Big]_{p^2 = m^2} + \frac{1}{2} \frac{d^2}{d(p^2)^2} \Big[W(p^2)\Sigma^2(p^2) \Big]_{p^2 = m^2} + \dots$$

$$\bar{N}(p^2) = \frac{W(p^2) - W(m^2)}{p^2 - m^2} - \frac{W(p^2)\Sigma(p^2) - W(m^2)\Sigma(m^2) - (p^2 - m^2)\frac{d}{dp^2} \Big[W(p^2)\Sigma(p^2) \Big]_{p^2 = m^2}}{(p^2 - m^2)^2} + \dots$$

One can show to all orders:

(see next slides)

$$w = W_{-1}, \qquad n(p^2) = \bar{N}(p^2)$$

 \hookrightarrow residue and non-resonant remainder can be obtained from perturbative calculation with real $p^2 = m^2$

Proof that $w = W^{-1}$:

$$W_{-1} = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^n}{\mathrm{d}s^n} W(s) \left(-\Sigma(s) \right)^n \right]_{s=m^2}$$

Expand [...] with $s = M^2 + (m^2 - M^2)$ about $s = M^2$:

$$W_{-1} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{\mathrm{d}^{n+k}}{\mathrm{d}s^{n+k}} W(s) \left(-\Sigma(s)\right)^n \right]_{s=M^2} \underbrace{(m^2 - M^2)}_{=\Sigma(M^2)}^k \\ = \sum_{n,k=0}^{\infty} \frac{1}{(n+k)!} \binom{n+k}{n} \left[\frac{\mathrm{d}^{n+k}}{\mathrm{d}s^{n+k}} W(s) \left(-\Sigma(s)\right)^n \left(\Sigma(M^2)\right)^k \right]_{s=M^2} \\ = \sum_{r=0}^{\infty} \frac{1}{r!} \frac{\mathrm{d}^r}{\mathrm{d}s^r} \left[W(s) \underbrace{(\Sigma(M^2) - \Sigma(s))^r}_{=[-\Sigma'(M^2)]^r(s-M^2)^r + \dots} \right]_{s=M^2}, \quad r = n+k$$

Only the terms $\propto [-\Sigma'(M^2)]^r$ survive after setting $(s - M^2)$:

$$\Rightarrow W_{-1} = \sum_{r=0}^{\infty} W(M^2) [-\Sigma'(M^2)]^r = \frac{W(M^2)}{1 + \Sigma'(M^2)} = w$$

Proof that $n(p^2) = \overline{N}(p^2)$:

Formal manipulations with Taylor series:

$$\begin{split} \bar{N}(s) &= \frac{W(s) - W(m^2)}{s - m^2} - \frac{W(s)\Sigma(s) - W(m^2)\Sigma(m^2) - (s - m^2)\frac{d}{ds} \left[W(s)\Sigma(s)\right]_{s=m^2}}{(s - m^2)^2} + \dots \\ &= \sum_{n=0}^{\infty} (s - m^2)^{-n-1} \left(W(s) \left(-\Sigma(s)\right)^n - \sum_{k=0}^n \frac{1}{k!} \left[\frac{d^k}{ds^k} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2} (s - m^2)^k\right) \\ &= \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} \frac{1}{k!} \left[\frac{d^k}{ds^k} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2} (s - m^2)^{k-n-1}, \qquad k = n + \ell \\ &= \sum_{\ell=1}^{\infty} (s - m^2)^{\ell-1} \sum_{n=0}^{\infty} \frac{1}{(n+\ell)!} \left[\frac{d^{n+\ell}}{ds^{n+\ell}} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2}, \qquad n = r - \ell \\ &= \sum_{\ell=1}^{\infty} (s - m^2)^{\ell-1} \left\{\sum_{r=0}^{\infty} -\sum_{r=0}^{\ell-1}\right\} \frac{1}{r!} \left[\frac{d^r}{ds^r} \frac{W(s)}{[-\Sigma(s)]^\ell} \left(-\Sigma(s)\right)^r\right]_{s=m^2} \\ &= -\frac{W(M^2)}{s - M^2} \frac{1}{1 + \Sigma'(M^2)} + \frac{W(s)}{s - m^2 + \Sigma(s)} \qquad (\text{see next page}) \\ &= n(s) \end{split}$$

Proof that $n(p^2) = \overline{N}(p^2)$: (continued)

First term in curly brackets:

$$\sum_{\ell=1}^{\infty} (s-m^2)^{\ell-1} \sum_{\substack{r=0\\r=0}}^{\infty} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell}} \left(-\Sigma(s) \right)^r \right]_{s=m^2}$$

known from proof that $w = W_{-1}$

$$= \sum_{\ell=1}^{\infty} (s-m^2)^{\ell-1} \frac{W(M^2)}{[-\Sigma(M^2)]^{\ell}} \frac{1}{1+\Sigma'(M^2)}$$

$$= \frac{1}{-\Sigma(M^2)} \frac{W(M^2)}{1+\Sigma'(M^2)} \sum_{\ell'=0}^{\infty} \frac{(s-m^2)^{\ell'}}{[-\Sigma(M^2)]^{\ell'}} = -\frac{W(M^2)}{s-M^2} \frac{1}{1+\Sigma'(M^2)}$$

Second term in curly brackets:

$$\begin{aligned} &-\sum_{\ell=1}^{\infty} \sum_{r=0}^{\ell-1} (s-m^2)^{\ell-1} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell}} \left(-\Sigma(s) \right)^r \right]_{s=m^2}, \qquad \ell = \ell' + r \\ &= -\sum_{\ell'=1}^{\infty} \sum_{r=0}^{\infty} (s-m^2)^{\ell'+r-1} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell'}} \right]_{s=m^2} \\ &= -\sum_{\ell'=1}^{\infty} (s-m^2)^{\ell'-1} \frac{W(s)}{[-\Sigma(s)]^{\ell'}} = \frac{W(s)}{s-m^2 + \Sigma(s)} \end{aligned}$$

Perturbative ordering in pole scheme:

First step: calculate M^2 from $M^2 = m^2 - \Sigma^{(1)+...+(n+1)}(M^2)$ \hookrightarrow yields Γ in M^2 up to *n*-loop order

Expansion of matrix element:

 $(A^{(n)} \equiv n \text{-loop contribution to } A)$

$$\begin{split} \mathcal{M} &= \frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)} + N(p^2) \\ &= \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} + n(p^2) + N(p^2) \\ &= \frac{W^{(0)}(m^2)}{p^2 - M^2} \\ &+ \frac{W^{(1)}(m^2)}{p^2 - M^2} - \frac{W^{(0)}(m^2)\Sigma^{(1)'}(m^2)}{p^2 - M^2} - \frac{W^{(0)'}(m^2)\Sigma^{(1)}(m^2)}{p^2 - M^2} \\ &+ \frac{W^{(0)}(p^2) - W^{(0)}(m^2)}{p^2 - m^2} + N^{(0)}(p^2) \\ &+ \frac{W^{(0)}(p^2) - W^{(0)}(m^2)}{p^2 - m^2} + N^{(0)}(p^2) \\ &+ non-factorizable corrections \end{split}$$

+ higher orders

Modified (improved!) version of the pole expansion:

Inclusion of lowest order without pole expansion:

$$\mathcal{M} = \mathcal{M}^{(0)} \begin{cases} \mathsf{LO:} \\ \mathsf{complete leading order} \\ + \frac{W^{(1)}(m^2)}{p^2 - M^2} - \frac{W^{(0)}(m^2)\Sigma^{(1)'}(m^2)}{p^2 - M^2} \\ + \mathsf{non-factorizable corrections} \\ + \mathsf{higher orders} \end{cases} \mathsf{NLO:} \\ \mathsf{correction to residue} \\ \mathsf{and} \\ \mathsf{non-fact. corrections} \\ \end{cases}$$

Comments:

- inclusion of $\mathcal{M}^{(0)}$ is usually easier than its expansion
- wave-function correction $\Sigma^{(1)\prime}(m^2) = 0$ in on-shell renormalization scheme
- naive estimate of relative theoretical uncertainty (TU) in NLO:

TU ~ $\begin{cases} \frac{\alpha}{\pi} \times \frac{\Gamma}{m} \times \text{const.} & \text{in resonance region } |p^2 - m^2| \lesssim m\Gamma \\ \frac{\alpha}{\pi} \times \text{const.} & \text{off resonance } |p^2 - m^2| \gg m\Gamma \end{cases}$

Factorizable corrections:

$$\mathcal{M}_{\text{fact.}}^{(1)} = \frac{W^{(1)}(m^2) - W^{(0)}(m^2)\Sigma^{(1)\prime}(m^2)}{p^2 - M^2}$$

$$= \sum_{\lambda} \frac{\mathcal{M}_{\text{production}}^{(1)}(\lambda)\mathcal{M}_{\text{decay}}^{(0)}(\lambda) + \mathcal{M}_{\text{production}}^{(0)}(\lambda)\mathcal{M}_{\text{decay}}^{(1)}(\lambda)}{p^2 - M^2}$$

$$\xrightarrow{\stackrel{\cdot X}{\stackrel{\cdot}{\overset{\cdot}{}}} \phi_1}{\stackrel{\cdot}{\overset{\cdot}{}} \phi_n} \qquad \xrightarrow{\stackrel{\cdot X}{\overset{\cdot}{}} \phi_1}{\stackrel{\cdot}{\overset{\cdot}{}} \phi_n}$$

Subtlety in kinematics:

gauge invariance of $\mathcal{M}^{(n)}_{\rm production/decay}$ requires $p^2=m^2$

 \hookrightarrow "on-shell projection" of momenta needed !

Example:

off-shell phase space: $(p_1 + p_2 - k)^2 = p^2 \neq m^2$ \hookrightarrow define \hat{k} (e.g. from angle of k) such that $(p_1 + p_2 - \hat{k})^2 = m^2$

Non-factorizable corrections:

Melnikov, Yakovlev '96; Beenakker, Berends, Chapovsky '97; Denner, Dittmaier, Roth '97,'98

Origin:

on-shell limit ($p^2 \rightarrow m^2$) and IR regularization (e.g. $m_{\gamma} \rightarrow 0$) do not commute

in diagrams with exchange of γ/g between external and/or resonant lines:

"manifestly non-factorizable"

- diagram has no explicit propagator factor $(p^2 - m^2)^{-1}$
- resonant IR-divergent contribution in loop integral from region $q \rightarrow 0$

"not manifestly non-factorizable" diagrams

- diagram has explicit propagator factor $(p^2 m^2)^{-1}$ and contributes also to factorizable corrections $W^{(1)}(m^2)$
- non-factorizable part:

$$W^{(1)}_{\text{non-fact.}}(p^2) \equiv \left[W^{(1)}(p^2) - W^{(1)}(m^2) \right]_{p^2 \to m^2}$$

 \hookrightarrow receives only contributions from $q \to 0$

Evaluation of NLO non-factorizable corrections:

Only leading behaviour of loop integrands for soft-photon momentum $q \rightarrow 0$ relevant

- \hookrightarrow "Extended soft-photon (or gluon) approximation":
 - neglect q in numerator of diagrams \rightarrow scalar loop integrals only
 - q only kept in propagators that become singular for $q \rightarrow 0$
 - resonance propagators are dressed with complex mass: $[(p+q)^2 M^2]^{-1}$
 - take limits $p^2, M^2 \rightarrow m^2$ in final result whenever possible

Result factorizes from Born amplitude: $\mathcal{M}_{non-fact.}^{virt} = \delta_{non-fact.}^{virt} \mathcal{M}^{(0)}$

Features of $\delta_{non-fact.}^{virt}$:

- gauge independent by definition
- contains contributions like $\alpha \ln \left(\frac{p^2 M^2}{m_{\gamma}M}\right)$ from non-commutativity of on-shell and soft-photon limits
- free of collinear singularities from external particles
- various cancellations after addition of corresponding real-photon contributions:
 - $\diamond\,$ no resonant contribution from photon exchange between initial and final states
 - $^{\diamond}\,$ non-local cancellation of whole effect after integration over p^2

11.2 Real corrections to resonance processes

Calculation of real NLO corrections:

- NLO: 1-particle bremsstrahlung in LO (tree-level diagrams)
- $\,\hookrightarrow\,$ LO prescriptions for resonances applicable
- But: real $|\mathcal{M}_{i \to f+\gamma/g}|^2$ is related to $2 \operatorname{Re} \{\mathcal{M}_{i \to f}^{(0)*} \mathcal{M}_{i \to f}^{(1)}\}$ in soft and collinear limits, \hookrightarrow matching between resonance descriptions in virtual and real corrections !

Pole expansions for real corrections:

Split diagrams with radiating resonances (2 resonant propagators) as follows:

$$\frac{1}{[(p+k)^2 - M^2](p^2 - M^2)} = \frac{1}{2pk} \left[\frac{1}{p^2 - M^2} - \frac{1}{(p+k)^2 - M^2} \right]$$

$$\frac{1}{[(p+k)^2 - M^2](p^2 - M^2)} = \frac{1}{2pk} \left[\frac{1}{p^2 - M^2} - \frac{1}{(p+k)^2 - M^2} \right]$$

 $E_\gamma \gg \Gamma_{\rm W}$ (hard photon): photon can be assigned to production or decay, resonances are well separated in phase space

- \hookrightarrow pole-scheme decomposition contains two leading on-shell contributions
- $E_{\gamma} = \mathcal{O}(\Gamma_{W})$ ("semi-soft photon"): two resonances overlap in phase space
 - \hookrightarrow definition of leading-pole approximation potentially problematic

(definition depends on specific observable; keep p^2 or $(p-k)^2$ fixed ?)

Enhancement of real-photon emission due to collinear singularities

Collinear photon emission off light particles:

→ leads to mass-singular universal corrections
 which can be described via "structure functions" in leading-log approximation:

$$\Gamma_{ff}(x, M^2) = \delta(1-x) + \frac{Q_f^2 \alpha}{2\pi} \ln\left(\frac{M^2}{m_f^2}\right) \left(\frac{1+x^2}{1-x}\right)_+ + \dots$$

$$\rightarrow \text{ e.g. } \sigma_{e^+e^- \to X}^{ISR}(p_+, p_-) \approx \int_0^1 dx_1 \Gamma_{ee}(x_1, M^2) \int_0^1 dx_2 \Gamma_{ee}(x_2, M^2) \sigma_{e^+e^- \to X}^{Born}(x_1 p_+, x_2 p_-)$$

Comments:

- M = QED factorization scale = typical scale of process (set by full calculation)
- structure fucntions Γ_{ff} , etc., known up to $\mathcal{O}(\alpha^5) \oplus \mathsf{IR}$ exponentiation
- unitarity / KLN theorem demands $\int_0^1 dx \Gamma_{ff}(x, M^2) = 1$ \hookrightarrow mass singularities cancel for FSR if $f + n\gamma$ is treated inclusively for collinear γ s
- ISR / FSR can lead to large effects, e.g. distortion of resonances

Distortion of resonance shapes by real radiation:

Initial state fixed:

Typical situations:

$$e^+e^- \rightarrow Z \rightarrow f\bar{f},$$

 $\mu^+\mu^- \rightarrow Z, H, ? \rightarrow f\bar{f}$

 $\hookrightarrow\,$ scan over s-channel resonance in $\sigma(s)$ by changing CM energy \sqrt{s}

Initial-state radiation (ISR):

Z can become resonant for $s=(p_++p_-)^2 > (p_++p_--k_\gamma)^2 \sim M_Z^2$

 $\,\hookrightarrow\,$ radiative tail for $s>M_{\rm Z}^2$ due to "radiative return"

Final-state radiation (FSR):

 $s=k_{\rm Z}^2\sim M_{\rm Z}^2$ for FSR

 \hookrightarrow only rescaling of resonance

An example:

cross section for $\mu^-\mu^+ \rightarrow b\bar{b}$ in lowest order and including photonic and QCD corrections, with and without invariant-mass cut $\sqrt{s} - M(b\bar{b}) < 10 \,\text{GeV}$

Distortion of resonance shapes by real radiation:

Resonance reconstructed from decay products:

Typical situations: $e^+e^- \rightarrow WW/ZZ \rightarrow 4f$, $pp \rightarrow Z \rightarrow f\bar{f} + X$

 \hookrightarrow resonance in invariant-mass distribution $\frac{\mathrm{d}\sigma}{\mathrm{d}M}$ of reconstructed invariant mass M

Final-state radiation (FSR):

resonance for $M^2 = (k_1 + k_2)^2 < (k_1 + k_2 + k_\gamma)^2 \sim M_Z^2$ \hookrightarrow radiative tail for $M < M_Z$

An example:

Z in
$$e^+e^- \rightarrow ZZ \rightarrow 4l$$

reconstructed via $M_{ee} = (p_{l_1} + p_{l_2})^2$
lowest order, $\mathcal{O}(\alpha)$ FSR,
and higher-order FSR beyond $\mathcal{O}(\alpha)$

(continued)

12 Single-W production at hadron colliders

Drell–Yan-like W and Z production:

Physics goals:

- $M_Z \rightarrow$ detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\text{eff}}^{\text{lept}} \rightarrow \text{ comparison with results of LEP1 and SLC}$
- $\bar{\nu}_l, l^+$ $M_W \rightarrow$ improvement to $\Delta M_W \sim 15 \,\mathrm{MeV}$
 - decay widths $\Gamma_{\rm Z}$ and $\Gamma_{\rm W}$ from M_{ll} or $M_{{\rm T},l\nu_l}$ resonance tails
 - search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
 - information on PDFs

Partonic cross section and W-boson resonance:

Born amplitude:

$$\mathcal{M}_{0} = \frac{e^{2}}{2s_{W}^{2}} \left[\bar{v}_{d} \gamma^{\mu} \frac{1}{2} (1 - \gamma_{5}) u_{u} \right] \frac{1}{s - M_{W}^{2} + i M_{W} \Gamma_{W}} \left[\bar{u}_{\nu_{l}} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) v_{l} \right]$$

Electroweak corrections:

Dittmaier, Krämer '02; Baur, Wackeroth '04 Arbuzov et al. '05; Carloni Calame et al. '06

virtual corrections:

W self-energy

Wud and $Wl\nu_l$ vertex corrections

box diagrams

inclusion in factorized form: $|\mathcal{M}_0 + \mathcal{M}_1|^2 = (1 + 2 \operatorname{Re}\{\delta^{\operatorname{virt}}\})|\mathcal{M}_0|^2 + \dots$ with $\delta^{\text{virt}} = \delta_{\text{self}}(\hat{s}) + \delta_{Wdu}(\hat{s}) + \delta_{W\nu_l}(\hat{s}) + \delta_{\text{box}}(\hat{s}, \hat{t})$

- $\hookrightarrow \delta^{\text{virt}}$ gauge independent in limit $\Gamma_{\text{W}} \to 0$, non-analytic terms in δ^{virt} described via $\ln(\hat{s} - M_W^2) \rightarrow \ln(\hat{s} - M_W^2 + iM_W\Gamma_W)$
- real photon corrections:

full amplitude calculation for $u\bar{d} \rightarrow \nu_l l^+ \gamma$ with complex W mass

 \hookrightarrow gauge invariant with correct IR (soft and collinear) limits

Electroweak corrections in Pole Approximation (PA):

 \hookrightarrow decomposition into factorizable and non-factorizable contributions:

$$\begin{split} \delta_{\mathrm{PA}}^{\mathrm{virt}} &= \delta_{\mathrm{fact}}^{\mathrm{virt}} + \delta_{\mathrm{nonfact}}^{\mathrm{virt}}(\hat{s}, \hat{t}) \\ \delta_{\mathrm{fact}}^{\mathrm{virt}} &= \delta_{Wdu}(M_{\mathrm{W}}^2)|_{\Gamma_{\mathrm{W}}=0} + \delta_{W\nu_l l}(M_{\mathrm{W}}^2)|_{\Gamma_{\mathrm{W}}=0} \\ \delta_{\mathrm{nonfact}}^{\mathrm{virt}}(\hat{s}, \hat{t}) &= \delta^{\mathrm{virt}}|_{\hat{s} \to M_{\mathrm{W}}^2, \Gamma_{\mathrm{W}} \to 0} - \delta_{\mathrm{fact}}^{\mathrm{virt}} \\ &= -\frac{\alpha}{2\pi} \Big\{ -2 + Q_d \operatorname{Li}_2 \Big(1 + \frac{M_{\mathrm{W}}^2}{\hat{t}_{\mathrm{res}}} \Big) - Q_u \operatorname{Li}_2 \Big(1 + \frac{M_{\mathrm{W}}^2}{\hat{u}_{\mathrm{res}}} \Big) \\ &+ 2 \ln \Big(\frac{M_{\mathrm{W}}^2 - \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}} - \hat{s}}{m_{\gamma}M_{\mathrm{W}}} \Big) \Big[1 + Q_d \ln \Big(-\frac{M_{\mathrm{W}}^2}{\hat{t}_{\mathrm{res}}} \Big) - Q_u \ln \Big(-\frac{M_{\mathrm{W}}^2}{\hat{u}_{\mathrm{res}}} \Big) \Big] \Big\} \end{split}$$

PA versus full $\mathcal{O}(\alpha)$ correction:

$\sqrt{\hat{s}}/{ m GeV}$	40	80	120	200	500	1000	2000
$\hat{\sigma}_0/\mathrm{pb}$	2.646	7991.4	8.906	1.388	0.165	0.0396	0.00979
$\delta/\%$	0.7	2.42	-12.9	-3.3	12	19	23
$\delta_{ m PA}/\%$	0.0	2.40	-12.3	-0.7	18	31	43

error estimate:
$$|\delta_{\rm A}^{\rm virt} - \delta^{\rm virt}| \sim \frac{\alpha}{\pi} \max\left\{\frac{\Gamma_{\rm W}}{M_{\rm W}}, \ln\left(\frac{\hat{s}}{M_{\rm W}^2}\right), \ln^2\left(\frac{\hat{s}}{M_{\rm W}^2}\right)\right\} \times \text{const.}$$

Hadronic pp cross section and Jacobian peak:

Note: ν_l not detectable \rightarrow e.g. study "transverse W mass":

$$M_{\mathrm{T},\nu_l l}^2 = (E_{\mathrm{T},\mathrm{miss}} + E_{\mathrm{T},l})^2 - (\mathbf{p}_{\mathrm{T},\mathrm{miss}} + \mathbf{p}_{\mathrm{T},l})^2$$

- pole approximation (PA) for W resonance sufficient near Jacobian peak, but not for large $M_{T,\nu_l l}$
- EW corrections sensitively depend on treatment of photon radiation
 - $\,\hookrightarrow\,$ issue of inclusiveness / KLN violation causes large effects

13 $e^+e^- \rightarrow WW \rightarrow 4f$: double-pole approximation vs. complex-mass scheme

13.1 Double-pole approximation (DPA)

Structure of Monte Carlo generators with EW corrections used at LEP2: *RacoonWW* (Denner, Dittmaier,Roth,Wackeroth) and *KoralW* \oplus *YFSWW* (Jadach,Płaczek,Skrzypek,Ward) include

• full lowest-order matrix elements for $e^+e^- \rightarrow 4f(+\gamma)$

signal diagrams

non-universal electroweak corrections DPA

leading term in expansion about W resonances

- \hookrightarrow contributions:
 - corrections to $ee \to WW$
 - corrections to $W \to f\bar{f}'$
- Böhm et al. '88; Fleischer, Jegerlehner, Zralek '89
- Bardin, S. Riemann, T. Riemann '86 Jegerlehner '86; Denner, Sack '90
- non-factorizable photonic corrections $_{\rm B}^{\rm N}$

Melnikov, Yakovlev '96 Beenakker, Berends, Chapovsky '97 Denner, Dittmaier, Roth '97

• improvements by leading higher-order corrections

Virtual corrections in DPA:

• Factorizable corrections:

$$\mathcal{M}_{\text{virt,fact,DPA}}^{\text{e^+e^-} \rightarrow \text{WW} \rightarrow 4f} = \frac{R(M_{\text{W}}^2, M_{\text{W}}^2)}{(k_+^2 - M_{\text{W}}^2 + \mathrm{i}M_{\text{W}}\Gamma_{\text{W}})(k_-^2 - M_{\text{W}}^2 + \mathrm{i}M_{\text{W}}\Gamma_{\text{W}})}$$

with the gauge-independent residue

$$R(M_{W}^{2}, M_{W}^{2}) = \sum_{W\text{-pols}} \left(\delta \mathcal{M}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \mathcal{M}_{Born}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \mathcal{M}_{Born}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} + \mathcal{M}_{Born}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \delta \mathcal{M}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \mathcal{M}_{Born}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} + \mathcal{M}_{Born}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \mathcal{M}_{Born}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \delta \mathcal{M}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} \right)$$

containing the corrections to on-shell production and decay

• Non-factorizable corrections:

$$\mathcal{M}_{\text{virt,nonfact,DPA}}^{e^+e^- \to WW \to 4f} = \left. \delta \mathcal{M}^{e^+e^- \to 4f} \right|_{\text{doubly-resonant part}} - \mathcal{M}_{\text{virt,fact,DPA}}^{e^+e^- \to WW \to 4f}$$
$$= \left. \mathcal{M}_{\text{Born,DPA}}^{e^+e^- \to WW \to 4f} \right. \delta_{\text{virt,nonfact,DPA}}$$

Features of $\delta_{virt,nonfact,DPA}$ analogous to single-resonance case:

- gauge independent, no mass singularities
- ♦ compensates IR singularities of W bosons in $\mathcal{M}_{virt, fact, DPA}^{e^+e^- \rightarrow WW \rightarrow 4f}$
- ◇ no factorization of Breit–Wigner-type resonances (complicated dependence on off-shellness k_{\pm}^2 of W bosons)

Manifestly non-factorizable diagrams:

Diagrams contributing to factorizable and non-factorizable RCs:

Combination of contributions:

(as implemented in RacoonWW)

$$\int d\sigma = \frac{1}{2s} \left\{ \int d\Phi_{4f} \left[|\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 + 2\operatorname{Re} \left((\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f})^* \delta \mathcal{M}_{virt,fact,DPA}^{e^+e^- \to WW \to 4f} + |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \delta_{virt,nonfact,DPA} \right) \right\}$$

+
$$\int d\Phi_{4f\gamma} = |\mathcal{M}_{Born}^{e^+e^- \to 4f\gamma}|^2$$

Note: virtual corrections in DPA \oplus real from full amplitudes

Combination of contributions:

(as implemented in RacoonWW)

$$\int d\sigma = \frac{1}{2s} \left\{ \int d\Phi_{4f} \left[|\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 + 2\operatorname{Re} \left((\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f})^* \, \delta \mathcal{M}_{virt,fact,DPA}^{e^+e^- \to WW \to 4f} + |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \, \delta_{virt,nonfact,DPA} \right) \right\} \text{ non-singular}$$

$$+ |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \, \delta_{sub,1}^{4f}$$

$$+ |\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 \otimes \delta_{sub,2}^{4f} = \frac{|\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 - |\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 \, \delta_{sub}^{4f\gamma}}{\operatorname{non-singular}} \right]$$

Note: virtual corrections in DPA \oplus real from full amplitudes \hookrightarrow redistribution of singular contributions to avoid mismatch in cancellations

From LEP2 to the ILC:

Experimental vs. theoretical uncertainties for some observables:

Observable	$\Delta_{\exp}(\text{LEP2})$	$\Delta_{\exp}(ILC)$	$\Delta_{ m th}(m DPA/IBA)$
$\sigma_{ m WW}$	$\sim 1\%$	$\lesssim 0.5\%$	2%for $\sqrt{s} < 170 \text{GeV}$ (IBA range)0.7%for 170 $\text{GeV} < \sqrt{s} < 180 \text{GeV}$ 0.5%for 180 $\text{GeV} < \sqrt{s} < 500 \text{GeV}$
$M_{\rm W}({\rm threshold})$	$\sim 200{\rm MeV}$	$\sim 7{ m MeV}$? but $> 50 \mathrm{MeV}$
$M_{\rm W}({\rm reconstr.})$	$\sim 30{\rm MeV}$	$\sim 10{\rm MeV}$	$5{-}10{ m MeV}$
TGC	some %	$\sim 0.1\%$	$\lesssim 1\%$ at LEP2 ? at $\sqrt{s} \gg 200{ m GeV}$

Exceptional case: threshold region and below ($\sqrt{s} < 170 \,\text{GeV}$)

error estimate of DPA not reliable

- → description at LEP2 via IBA = "Improved Born Approximation" (off-shell Born calculation dressed with universal corrections such as ISR)
- ⇒ DPA/IBA approach sufficiently accurate at LEP2 but precision beyond DPA needed at ILC
 - \hookrightarrow recent treatment beyond DPA in complex-mass scheme

13.1 The complex-mass scheme at one loop and application to ${
m e^+e^-}
ightarrow 4f$

The complex-mass scheme at one loop Denner, Dittmaier, Roth, Wieders '05

 $mass^2 = location of propagator pole in complex p^2 plane$

 \hookrightarrow complex mass renormalization:

$$\underbrace{M_{\mathrm{W},0}^2}_{\text{bare mass}} = \mu_{\mathrm{W}}^2 + \underbrace{\delta \mu_{\mathrm{W}}^2}_{\text{ren. constant}}, \quad \text{etc}$$

 \hookrightarrow Feynman rules with complex masses and counterterms

Virtues and drawbacks:

- perturbative calculations as usual
- no double counting of contributions (bare Lagrangian unchanged !)
- spurios terms are of $\mathcal{O}(\alpha^2)$, but spoil unitarity
- complex gauge-boson masses also in loop integrals

Convenient choice:

complex field renormalization

$$\underbrace{W_0^{\pm}}_{0} = \left(1 + \frac{1}{2}\underbrace{\delta \mathcal{Z}_W}_{W}\right)W^{\pm}, \quad \text{etc}$$

bare field

ren. constant

- complex $\delta \mathcal{Z}_W$ applies to W^+ and $W^- \Rightarrow (W^{\pm})^{\dagger} \neq W^{\pm}$
- δZ_W drops out in S-matrix elements without external W bosons

Complex renormalization for W bosons explicitly:

On-shell renormalization conditions for renormalized (transverse) self-energy

$$\hat{\Sigma}_{T}^{W}(\mu_{W}^{2}) = 0, \quad \hat{\Sigma}_{T}^{\prime W}(\mu_{W}^{2}) = 0$$

 $\,\hookrightarrow\,\,\mu_{\rm W}^2$ is location of propagator pole, and residue = 1

Solution of renormalization conditions:

 $\delta \mu_{\mathrm{W}}^2 = \Sigma_{\mathrm{T}}^W(\mu_{\mathrm{W}}^2), \quad \delta \mathcal{Z}_W = -\Sigma_{\mathrm{T}}^{\prime W}(\mu_{\mathrm{W}}^2)$

Note: evaluation of $\Sigma^W_{\rm T}(p^2)$ at complex p^2 can be avoided

$$\Sigma_{\mathrm{T}}^{W}(\mu_{\mathrm{W}}^{2}) = \Sigma_{\mathrm{T}}^{W}(M_{\mathrm{W}}^{2}) + (\mu_{\mathrm{W}}^{2} - M_{\mathrm{W}}^{2})\Sigma_{\mathrm{T}}^{\prime W}(M_{\mathrm{W}}^{2}) + \underbrace{\mathcal{O}(\alpha^{3})}_{\text{beyond one loop}}$$

 \Rightarrow Renormalized W self-energy:

$$\hat{\Sigma}_{T}^{W}(p^{2}) = \Sigma_{T}^{W}(p^{2}) - \delta M_{W}^{2} + (p^{2} - M_{W}^{2})\delta Z_{W}$$

with $\delta M_{W}^{2} = \Sigma_{T}^{W}(M_{W}^{2}), \quad \delta Z_{W} = -\Sigma_{T}^{W}(M_{W}^{2})$

Differences to the usual on-shell scheme:

- no real parts taken from $\Sigma^W_{\rm T}$
- $\Sigma^W_{\rm T}$ evaluated with complex masses and couplings

Full $\mathcal{O}(\alpha)$ corrections to (charged-current) $e^+e^- \rightarrow 4f$ Features of the calculation:

- # 1-loop diagrams \sim 1200, loops up to 6-point integrals
- W resonances treated in the complex-mass scheme
- all loop integrals with complex W/Z masses
- new tensor reduction methods for stability in exceptional phase-space points
- real-photonic corrections taken from RACOONWW
- 11 lowest-order diagrams: ("CC11 class")

Generic diagrams for loop insertions (4-, 5-, 6-point functions)

 $\mathcal{O}(1200)$ one-loop diagrams per channel:

• 40 hexagons

+ graphs with reversed fermion-number flow in final state

- 112 pentagons
- 227 boxes ('t Hooft–Feynman gauge)
- many vertex corrections and self-energy diagrams

σ [fb] $e^+e^- \rightarrow \nu_\tau \tau^+ \mu^- \bar{\nu}_\mu$ $e^+e^- \rightarrow \nu_\tau \tau^+ \mu^- \bar{\nu}_\mu$ δ [%] 200-10150-15100 -20IBA DPA 50ee4f -250 180 190200 210 180 150160170150160170190200 210 \sqrt{s} [GeV] \sqrt{s} [GeV]

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section – LEP2 energies

- $|ee4f DPA| \sim 0.5\%$ for $170 \, GeV \lesssim \sqrt{s} \lesssim 210 \, GeV$
- $|ee4f IBA| \sim 2\%$ for $\sqrt{s} \lesssim 170 \, GeV$
- $\hookrightarrow\,$ agreement with error estimates of DPA and IBA

Remaining theoretical uncertainty from higher-order EW effects $\sim~{\rm a}~{\rm few}~0.1\%$

Denner, Dittmaier, Roth, Wieders '05

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section – ILC energies

Denner, Dittmaier, Roth, Wieders '05

• $|\text{ee4f} - \text{DPA}| \sim 0.7\%$ for $200 \,\text{GeV} \lesssim \sqrt{s} \lesssim 500 \,\text{GeV}$

 $\,\hookrightarrow\,$ agreement with error estimate of DPA

• $|ee4f - DPA| \sim 1-2\%$ for $500 \,\text{GeV} \lesssim \sqrt{s} \lesssim 1-2 \,\text{TeV}$

A (not exhaustive) selection of literature

- Radiative corrections to resonance processes (see also references therein)
 - ♦ expansion about resonance poles ("pole scheme"):
 - R. G. Stuart, Phys. Lett. B 262 (1991) 113;
 - A. Aeppli, G. J. van Oldenborgh and D. Wyler, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212];
 - H. G. J. Veltman, Z. Phys. C 62 (1994) 35.
 - ♦ electroweak corrections to Drell–Yan-like W production:
 - U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417];
 - S. Dittmaier and M. Krämer, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062];
 - U. Baur and D. Wackeroth, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191].
 - $\circ e^+e^- \rightarrow WW \rightarrow 4f$ in DPA:
 - W. Beenakker, F. A. Berends and A. P. Chapovsky, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481];
 - S. Jadach et al., Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436];
 - A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307].
 - $^{\diamond} e^+e^- \rightarrow 4f$ and complex-mass scheme at one loop:
 - A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Phys. Lett. B 612 (2005) 223 [hep-ph/0502063] and Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042].

