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1 Electroweak phenomenology before the GSW model
Some phenomenological facts:

» discovery of the weak interaction via radioactive (3-decay of nuclei:
n—p-+e -+ Vg, p—n-+ et + Ve (not possible for free protons)

e terminology “weak”. interaction at low energy has very short range
— long life time of weakly decaying particles:

strong int.:  p — 2, T ~ 107 %%s
elmg. int.: 7T — 27, T ~ 107165
weakint. 7T — uT + 7, T~ 107 %s

poo— e + Ve + Uy, 7~ 10 Ss
e l[epton-number conservation: u~—/e~ +v (BR S 1071)
= L, L,,, L, individually conserved:
L, = +1fore, v, L.=—1fore", v, etc.
(For massive v’s with different masses, only L.+ L, + L is conserved.)

e parity violation (Wu et al. 1957):
e.g. KT —2r 3n 0Co — ONi* + e + 1

_ \,—/_ _ — polarization inversion does not
final states of different parity yield inversion of spectra
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The Fermi model
(Fermi 1933, further developed by Feynman, Gell-Mann and others after 1958)

Lagrangian for “current—current interaction” of four fermions:
Lrermi(7) = —2V2G, J}(2)J7 (), G, =1.16639 x 107° GeV

with  J,(z) = J})ep(x) + ngad(a:) = charged weak current

* Leptonic part J)** of J,:

Jéep = Y. Ypw_ e + w—,,/ﬂpw_wu Wi = %(1 + ~5) = chirality projectors

o only left-handed fermions (w_1), right-handed anti-fermions (yw. )
feel (charged-current) weak interactions = maximal P-violation

o doublet structure: (eyf ) (:‘i ) later completed by (TVZ )

o (J'P)T.JeP induces muon decay:
B o< E e~
Ve
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* Hadronic part J}*“ of J,:

Relevant quarks for energies S1GeV: u,d,s,c
— meson (¢q) and baryon (gqq) spectra

Question: doublet structure (3) (Z) ?

Problem: e.g. annihilation of us pair would not be allowed,
but is observed: K — ptu,
~—

us pair in quark model

Solution (Cabibbo 1963):
u-c-mixing and d-s-mixing in weak interaction

/
— doublets (%) (C,> with (d,) = Uc (d>
d S S S

cosfc  sinfc )

orthogonal Cabbibo matrix U¢ = ( sinfe  cosl
_ C C

empirical result: 6o ~ 13°

Jgad — %’pr—wd’ - E’pr—ws’
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Remarks on the Fermi model:

* universal coupling &, for all transitions
(UéUC = 1 is part of universality)
* no (pseudo-)scalar or tensor couplings, such as (1) (Y1), (V) (Pys),
etc., necessary to describe low-energy experiments (£ < 1 GeV)
* Problems:
° cross sections for v,,e — v.u, etc., grow for energy £ — oc as E?
< unitarity violation !

© no consistent evaluation of higher perturbative orders possible
(no cancellation of UV divergences)

— non-renormalizability !
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“Intermediate-vector-boson (IVB) model”
ldea: “resolution” of four-fermion interaction by vector-boson exchange

Lagrangian:

LIVB — [’O,ferm + £O,W + Einta

[,o,ferm = ?,b_f(lﬁ — mf)wf, (summation over f assumed)
1
Low = —5(8MWj — 8VWJ)(8’“‘W_’” — "W ™H) + M%VWJW_’”,
1 .
. + 1 TA72 )
with W5 = — (W, FiW7), W/ real

V2

W= are vector bosons with electric charge +e and mass My .

. WW —1 k k’/ —
Propagator: G (k)= 2 MZ (gW — ]\Zv2v) ,  k =momentum
Interaction Lagrangian: Ling = % (JPW T + JPTW;) ,

JP = charged weak current as in Fermi model
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Four-fermion interaction in process v, e~ — pu~ v

Fermi model: IVB model:
Vi . Y —> B
W
e Ve e Ve
- 1 koko
—i2v/2G . gpo s g (gpo - p—)
29V k2 — M, M3,
X [ﬂu_fypw_uyu} (U, ¥ WU | X [ﬂu_ypw_u,/u] (U, YV wW_Ug— |
2
= identification for |k| < Mw: 2v2G, = 2%
2M2,

Consequences for the high-energy behaviour:

°* kPterms: Uy fw_u,— = Uy, (Pe — Pro )W—Ug— = Melly,W—Ug—
— no extra factors of scattering energy F£

* propagator 1/(k* — Mg,) ~ 1/E? for |k| ~ E> My
— damping of amplitude in high-energy limit by factor 1/E?

= Cross section ——~— const/E?, = No unitarity violation !
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Comments on the IVB model:

* Formal similiarity with QED interaction:  J*WJF +hc. «— ji A,
* Intermediate vector bosons can be produced, e.g.

\uél/ — W7 - f f: (discovery 1983 at CERN)
In pp collision W= unstable

* Problems:
o unitarity violations in cross sections with longitudinal W bosons, e.g.

W
W
Ve
8
W W

© non-renormalizability
(no consistent treatment of higher perturbative orders)

— Solution by spontaneously broken gauge theories !
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2 The principle of local gauge invariance
QED as U(1) gauge theory:

Lagrangian Lo form = ¥ (i@ — m ;)4 has global phase symmetry:
Vr — Py = exp{—iQyred}by, y — ) =y exp{+iQred}

with space-time-independent group parameter 6

“Gauging the symmetry”: demand local symmetry, 6 — 6(x)
To maintain local symmetry, extend theory by “minimal substitution”:
" — D" = 90" +iQreA"(x) = “covariant derivative”,
A*(x) = spin-1 gauge field (photon).

Transformation property of photon A, (z) — A, (z) = Au(z) + 0,0(x) ensures
* Dupy — (Dptpy)’ = Dby = exp{—iQred}(Dputpy)
* gauge invariance of field-strength tensor F,, = 0, A, — 0., A,

Gauge-invariant Lagrangian of QED:

1

Lqep = V(i — Qe A — mys)hy — ZFMVFMV
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Non-Abelian gauge theory (Yang—Mills theory):

Starting point:
Lagrangian L4 (P, 0, P) of free or self-interacting fields with “internal symmetry”:

° o = <¢1> = multiplet of a compact Lie group G:
Pn
®— o' =U0)P, U(H) = exp{—igT*0°} = unitary,
T* = group generators, [T%,T° =iC*T°¢, Tr{T*T"} = 15"
* Lo isinvariantunder G: Lg(9,0,P) = Lo (D',0,P")

Example: self-interacting (complex) boson multiplet
Lo = (0,)(0"D) —m’DTD 4+ A(®TP)? (m = common boson mass, A = coupling strength)
Gauging the symmetry by minimal substitution:

Lo(®,0,P) — Lo(®,D,d) with D, = 9, +igT*A% (),

g = gauge coupling, T'“ = generator of G in ® representation, A (x) = gauge fields
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Transformation property of gauge fields:
* Lo(®,D,®) local invariantif D,® — (D,®)' =D, ®" =U(0)(D,?)

= TA) = UT*ALUT - éU(@MU‘L), A% A1 = not gauge invariant
infinitesimal form: 6 A% = gC***§0° AS, + 9,60
* covariant definition of field strength:  [D,, D,| = igT"F},
= T°F}, — T°F% =UT*F2,U', F{,F“" =gauge invariant

explicit form:  F?, = 9, A% — 9, A% — gC**° Al A,

Yang—Mills Lagrangian for gauge and matter fields:

1 a a v
Lyv = _ZFMVF B ,C@((I),DM(I))
e Lagrangian contains terms of order (0A)A?, A* in F? part

— cubic and quartic gauge-boson self-interactions

* gauge coupling determines gauge-boson—matter and gauge-boson
self-interaction — unification of interactions

®* mass term MQ(AZA“’“) for gauge bosons forbidden by gauge invariance
— gauge bosons of unbroken Yang—Mills theory are massless
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Quantum chromodynamics — gauge theory of strong interactions

e Gauge group: SURB)., dim.=38
2

structure constants f**°, gauge coupling g., as = 2=

4
* Gauge bosons: 8 massless gluons g with fields Aj;(z), a=1,...,8

* Matter fermions:  quarks g (spin-1) with flavours ¢ = d, u, s, ¢, b, t
in fundamental representation:
qr ()
Ye(x) = q(x) = | q.(z) | = colour triplet
gv ()

a

A\ 01 0
T = -  Gell-Mann matrices A\' = [ 1 0o o], etc.
2 00 0

* | agrangian:
1 a a,uv A
Lqcp = _ZFWF M+ qu(llp — Mg )Yq
q
1 a a abc 4b ,c 2 A . a
= _Z (aMAV — aVAM - gsf A/,LAI/) + Z wq 1@ — Js E‘A — My qu

q

g g g q
g s g :;%wmg :;%i: Go——q >mmg
g g g q

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture | — 13



3 The Standard Model of electroweak interaction (Glashow—Salam-Weinberg model)

— matter, Yang—Mills, and Higgs sector

3.1 The gauge group for electroweak interaction
Why unification of weak and elmg. interaction ?

* similiarity: spin-1 fields couple to matter currents formed by spin-% fields

* elmg. coupling of charged W bosons

v, W, W~ as gauge bosons of group SU(2) ? — No!
Reason: charge operator Q cannot be SU(2) generator, since Tr{Q} # 0

0 O e
for fermion doublets: (@ = (O 1) for (V ) etc.

Possible way out: additional heavy fermions like E* as partner to e~ ?
<— no experimental confirmation !

e
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Minimal solution: SU2)r x U(1)y
e SU(2); — weak isospin group with gauge bosons W', W, W"
* U(l)y — weak hypercharge with gauge boson B

W" and B carry identical quantum numbers

— two neutral gauge bosons ~, Z as mixed states

Experiment: 1973 discovery of neutral weak currents at CERN
— Indirect confirmation of Z exchange

1983 discovery of W= and Z bosons at CERN
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3.2 Fermion sector and minimal substitution

Multiplet structure:
Distinguish between left-/right-handed parts of fermions: " = w_, "™ = w

a

* )" couple to W= — group %" into SU(2); doublets, weak isospin 71" = %-

e " do not couple to W+ — % are SU(2); singlets, weak isospin 77 = 0

e /R couple to v in the same way
< adjust coupling to U(1)y (i.e. fix weak hypercharges Y™/ for v
such that elmg. coupling results: Lin..qep = —Q e s Aty

L/R)

Fermion content of the SM:

(ignoring possible right-handed neutrinos) TI3
L L L 1
1% 1% v + 5 0

leptons: ok = T, T, Ll ’
P " (eL) (ML) (TL) 1
R S
quarks: | . - oL L +i  +2
(Each quarkexists V¢ = gL ) L) pL ) ) .
in 3 colours!) ) — 3
by = u ¢, t, 0 +3

R R R R

Vg = dY, s, b, 0 -3
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Free Lagrangian of (still massless) fermions:
Loferm = WrPpy = (WEPVE +IVHPVE + F PP + pE P + 1 Poa
Minimal substitution:
Ou — D, =0, —igTYW, +ig13Y B, = Djw_ + Djwy,
L igo (O W i (W, —aY"B, 0
DM — 8,1, - = _ - A 3 L )
\/5 WM 0 2 0 —QQWH — g1Y B,u
D)t =0, +ig1iYEB,

Photon identification: 5 .
“Weinberg rotation”: ( L ) _ ( Cw SW) (Wu ) Cw = €08 Ow, sw=sin Ow,

A, —Sw  Cw B, Ow = weak mixing angle
Py = g, ( g28w = giew ) Lojeq, (@1 )
Ay 2 0 g2sw — griewY 0 Qo
e charged difference indoublet Q1 — Q2 =1  — go = —
Sw
e normalize Y*/® such that ¢, = —
Cw v

< Y fixed by “Gell-Mann—Nishijima relation” Q = T} + 5
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Fermion—gauge-boson interaction:

I 0 + I
Lferm,YM — € \IJL ( W ) \IJ% + € \IJ%O'SZ\IJIFJ’

\/§SW £ W_ 0 2Cw Sw
— eS—Wwa_fzwf —eQ s Ay (f=all fermions, F'= all doublets)
Cw
Feynman rules:
f . f
%% L’y w A —iQ) rey
) % \/§8w 2 i % Fe T
f f
f
Zy evugfwr 4 g5 wo) = ievu(vy — agys)
fT Sw Sw TI3
with ¢f = -2 e = —— X :
gy - Qr, gy - Qr + p——
3 3
PR ¥ S ©
v = Cw Qf * 2CWSW7 o= 2CWSW
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3.3 Gauge-boson sector
Yang—Mills Lagrangian for gauge fields:

1 1
Ly = _ZW'LCLLVW@,MV_ZBMVBMV

Field-strength tensors:

a a a abc b C
Wo, = 9We—d,Wo + goc®WIWE, B, =

Lagrangian in terms of “physical” fields:
1 —,V v —
Lym = —5(8HWJ —(9,,W/j)((9“W Y — "W TR

i(auzy 0, Z,)(0" 2" — 8" 7" — i

9,B, — 0,B,

(0,A, — 9,A,)(O" A — 0” A™)

+ (trilinear interaction terms involving AW W —, ZWTW ™)

-+ (quadrilinear interaction terms involving

AAWYTW =, AZW W =, ZZWTW -, WTW - W W)
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Feynman rules for gauge-boson self-interactions:

(fields and momenta incoming)

W .
ieCwwy | g (ks — k=)o + gup (k= kv ),
Jol
W- -+ gpu(kV - k+)1/}
with CWny =1, Cwwz = _&w
Sw
W v,
iGQCWWVV’ 29uv9poc — Gup9ov — guagvp}
W]/_ Va/ . Cw
Wlth CWW'y'y — _]-7 CWW’YZ — T
Sw
C 1
Cwwzz = ——, Cwwww = —
Sw Sw
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3.4 Higgs sector and spontaneous symmetry breaking
ldea:  spontaneous breakdown of SU(2); xU(1)y symmetry — U(1)eimg Symmetry
— masses for W* and Z bosons, but v remains massless

Note: choice of scalar extension of massless model involves freedom

GSW model: .
Minimal scalar sector with complex scalar doublet ¢ = (?50 ) Yo =

Scalar self-interaction via Higgs potential:

V(®) = —p 0T + %(cb*cb)?, 1, > 0,
= SU(2)1 xU(1)y symmetric
. 2112 v
V(®) = minimal for |®| = \/ = >0
(@) ol =5 =5

ground state &, (=vacuum expectation value of ®) not unique
.. : 0

specific choice ®(= <
V2

. : : 1 0
elmg. gauge invariance unbroken, since Q®y = (O O) Py =0

) not gauge invariant = spontaneous symmetry breaking
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Field excitations in &:

¢" ()
®(z) = ( 2 (v + H(z) + ix(a:)) )

Gauge-invariant Lagrangian of Higgs sector: (6~ = (¢
Ly = (D, @) (D"®) - V(®) withD, =0, — igga—Wa + i%BM
lev 2 2
= (0,07)(0"¢7) — o (W, 0"~ — W, 8" )+ W W "
28W 48\7\/
1 2 62U2 2 1 2 27172
— Z,0" —(0OH)" — u"H
i 2 (0%)" + ZCWSW IXF 4c2, 52, + 2 (OH)" = p
+ (trilinear SSS, SSV, SVV interactions) x> e e

+ (quadrilinear SSSS, SSVV interactions) = :’Afi

e ~ e

Implications:

ev ev M
e gauge-boson masses: My = —, My = — =Y M, =0
2SW QCWSW Cw

e physical Higgs boson H: My = +/2u2 = free parameter
* would-be Goldstone bosons ¢*, y:  unphysical degrees of freedom
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3.5 p-parameter and custodial SU(2) symmetry

Observation:  Higgs potential of SM invariant under larger symmetry

V(@) = f(@'®), @70 =Re{¢"}* +Im{¢"}* + Re{¢’}* + Im{¢"}*
= Invariant under O(4) = 4-dim. rotations

Relation between O(4) ~ SU(2)xSU(2) and SU(2); xU(1)y symmetry
— matrix notation:

= " oF
M= (,®)= _ — T {II'II} = o'®
—¢p~ ¢ ’
SU(2); xU(1)y transformation: U = exp{ig20°T{}, Uy = exp{—igi0" Tv}

I — I'=U:00U), T¢=0%/2, Ty=0"/2
covariant derivative:

D, = 9,10 —igoW, I —igiIB, Ty, W, = WL}
transformation of gauge fields:

Wi = Wu=Ut(Wat £0.) Ul Bu — Bl =By +0.0"

O(4) symmetry:  ®'® invariant under SU(2); x SU(2) transformation
M — ' =07 100, Uy = exp{—igi0°T{}, T9 = o/2
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Situation after spontaneous symmetry breaking:
ground state TIy = (®g, ®g) o 1 still “diagonal” SU(2) symmetric:
Iy — I =UI,U' =1y, ie. [T% 1] = 0 for SU(2) generators T

— under global transformation U

e W transforms as 3-vector: W2 — W/* = RW?. (Ry = rotation matrix)
* B, transforms as 3rd component of a fictive triplet B}, with Ry

— mass terms for gauge bosons

1 1 o 2
LWz mass = 5Tr{(D,J[O)’f(D“HO)} - §Tr{H:§H0 (ggqu +ng3Bu) }

Ve

invariant under U
— length of 3-vector

g (W' W+ W2W?) + (g2W? + 1 B)? < i WTW— + 227

= Relation for the p-parameter. p =

Role of the p-parameter in low-energy physics:
effective four-fermion interaction (cf. IVB model) with charged and neutral currents:
Lifesr = —22G, ( copdoc + le%C,MJf\)I’@ , p =ratio of NC to CC interaction
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6 Quantum field theories and higher perturbative orders

6.1 General procedure

Formulate theory: Lagrangian

e

guantization — gauge fixing, Faddeev—Popov ghosts

Y

Perturbative evaluation:  Feynman rules

e

Feynman graphs

Y

loop integrals — technical problem: divergences (UV, IR)

4

regularization — divergences mathematically meaningful

Y

Define input parameters: renormalization — eliminates UV divergences
Y
Theoretical predictions: calculation of observables (cross sections, decay widths, etc.)

— IR divergences cancel for sufficiently inclusive quantities
(e.g. inclusion of photon bremsstrahlung)
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6.2 Green functions, transition amplitudes, and observables
“Amputated” Green functions G2,

calculated as sum of all connected Feynman diagrams with external n legs
o1, ..., 0, With external propagators (and propagator corrections) omitted

cuge = - = <+ <+ O+

Transition amplitude M, for i) — |f):

calculated from amputated Green functions G;ﬁb‘% by “LSZ reduction™;

* put external momenta to their mass shell, p? = m?

* contract with wave functions of external particles (Dirac spinors, polarization vectors)
Note: fields must be normalized: R,;, = 1 (= residue of propagator pole),
otherwise multiply by /R4, for each external leg

Cross section for transition |¢) — |f):

o = flux x /dLIPS M il
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“Vertex functions” I'*1¢» as irreducible building blocks:

o [¥192 = _(G?192)~! = _(inverse propagator)

example: scalar 2-point function

%% (p) = i(p® — m?) +iX(p?), ¥ = self-energy = sum of 1PI graphs
‘ _ ‘ 1P| = 1-particle-irreducible
o + (graph canFr)lot be disconnected by cutting one line)
G??(p) = o R—— + o R—— i3 (p”) o R— +... (Dyson series)

(O = + @+ @@ + .
- - -(m)” - (@)

p? —m? + X(p?)

° F¢1---¢n — G;br%-b-qbn

only 1PI graphs

example:
>:< = >‘< + )—Q—( + two permutations
Gooeo [odod [66 (106 ddd
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6.3 Loop integrals and regularization

Regularization of divergences
Observation: loop integrals involve divergences

* UV divergences for ¢ — oo, €.9.:

1 dq : .
d*q ~ / — forg — o0 — logarithmic divergence
/ (¢ —m3)(q® — m3) q ) °

* |IR divergences for ¢ — qo, €.9.:

1 dq : .
d* ~ | = for 0 logarithmic divergence
/ 4 q%(q% + 2qp1)(q? + 2qp2) / q 1 o9 J

“Regularization”™  extension of theory by free parameter ¢ such that

* integrals (and thus the theory) become finite, i.e. well defined
* original theory is obtained as limiting case § — do
— fix input parameters z; of regularized theory (6 # do) by experiment

= observables must have finite limit § — ¢ as functions of z;
(independent of regularization scheme)
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Convenient regularization schemes:

* Dimensional regularization:  switch to D # 4 space-time dimensions
¢ regularizes UV (and IR) divergences, respects gauge invariance, easy use

© prescription: (u = arbitrary reference mass, drops out in observables)
4 4—D D : : :
/d qg — (2mp) /d g and D-dim. momenta, metric, Dirac algebra

and analytic continuation to complex D !

¢ divergences appear as poles In results

. 2 2
= — —— 4 const.
— define A =D ~ve + In(47) =D +

* IR regularization by infinitesimal photon mass m.,
and (if relevant) by small fermion mass m

¢ prescription:  photon propagator pole

—

1 1
q2 q2 _ m%
¢ divergences appear as In(m.) and In(m ) terms
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Standard 1-loop integrals:

* 2-point integrals:

5

2mp) "t 1, qu, Qe - - -
Bosuson(p.maym) = 0 [ a7 ( Qs 40

i ¢*> —mg +10)[(q +p)? — mi + 0]

scalar integral By = logarithmically UV divergent = A + finite,

vector integral B, = —2p,A + finite, etc.
* 3-point integrals: /;2
—>
p1

Co.pu,pv,...(p1, P2, Mo, M1, M2)

(2mp)*=" /qu 1, qu, QuQy, - - -
im? (¢2 —mg +1i0)[(q + p1)? — m3 +1i0][(¢ + p2)? — m3 + i0]

Co, C,, = UV finite,
Cyv = logarithmically UV divergent = 1g,, A + finite, etc.

* A-point integrals:  D__ functions, etc.
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Features of one-loop integrals:

* sign of infinitesimally small imaginary part i0 in mass terms reflects causality

* general results for 1-loop integrals known
(complicated but straightforward calculation)

¢ momentum integrals can be carried out after “Feynman parametrization”
— (n — 1)-dimensional integrals for n-point functions
¢ B functions — can be expressed in terms of log’s

© C, D, etc. — involve dilogarithms Liz(z) = — [ ¢ In(1 — ¢)

* tensor integrals can be decomposed into Lorentz covariants:
B" = p" By, B"” = g"” Boo + p"p” B11,
CH =piC1+p5C2, CF =pipiCr1 + phpsCaz + (pi'Ph + Pips) + 9" Coo,  etc.
— tensor coefficients By, B;;, C;, etc. can be obtained as

linear combinations of scalar integrals By, C, etc.
(e.g. by “Passarino—Veltman reduction”)
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6.4 Renormalization

Propagators and 2-point functions:

Structure of one-loop self-energies (scalar case as example):
Y(p?) = Cip* A + C2 A + Zgnite(p?) = UV divergent

Behaviour of propagator near pole for free propagation:

p2—m2—|—2(p2) p2—m? 1+E’(m2) p2—m2—|—2(m2)

— higher-order corrections change location and residue of propagator pole

Interaction vertices:
Example: scalar 4-point interaction £ 4 = Aop* /4!

F¢¢¢¢(p1’p27p3) = i\ + iA (p17p27p3)

e

momentum-dependent one-loop correction:
A (p1,p2,p3) = C3A + Aginite (p1,D2,p3) = UV divergent
— higher-order corrections change coupling strengths

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture 1l — 10



Structure of UV divergences:

* Renormalizable field theories:

UV divergences in vertex functions have analytical form of
elementary vertex structures (directly related to £)

— idea: absorb divergences in free parameters
= Reparametrization of theory (=renormalization)

Different types of renormalizable theories:

¢ theories with unrelated couplings of non-negative mass dimensions
— renormalizability proven by power counting and “BPHZ procedure”

¢ gauge theories (couplings unified by gauge invariance)
— renormalizability non-trivial consequence of gauge symmetry  ‘t Hooft '71
* Non-renormalizable field theories:

e.g. theories with couplings of negative mass dimensions (cf. Fermi model)

operators of higher and higher mass dimensions needed to absorb
UV divergences

— Infinitely many free parameters, much less predictive power
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Practical procedure for renormalization:

consider original (“bare”) parameters and fields as preliminary
(denoted with subscripts “0” in the following)

— switch to new “renormalized” parameters and fields that obey certain conditions

Propagators and 2-point functions:

e mass renormalization: mja = m? + ém?,
| . .
m? = location of propagator pole = “physical mass” — §m? = X(m?)

* wave-function ren.:  rescale fields ¢o = \/Zyp, G** = Z ' G?%
fix Z, = 1+ 624 such that residue of G at p* = m? equals 1
— 0Zy = —X'(m?)

= Renormalized propagator G*? is UV finite:

9% (p2) — 1
(p ) p2 _ m2 _|_ Eren(pQ),

Yren(p?) = 2(p?) — (M) + (p* — m*)X'(m?) = ren. self-energy
= Bfinite(p”) = Bainite(m?) + (p* — m?) T (m?) = UV finite
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Vertex functions for interactions:
® coupling renormalization: Ao = A+ dA

fix 6\ such that A assumes a measured value for special kinematics p;™
note: %999 — Z£F¢o¢o¢0¢0

— ON = —20Zg)\ — A(pS*P, pS*P, pSP)

= Renormalized vertex function is UV finite:

F¢¢¢¢ (pl’p2,p3) p— iA —|_ iAren (p17p27p3) 9

Aren (P1,P2,03) = Agnite (D1,P2,03) — Agnite(P] ", D5 05 ~) = UV finite
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7 Electroweak Standard Model — radiative corrections

7.1 Loop corrections

Recapitulation of elementary SM couplings (vertices)

gauge-boson self-couplings: Higgs self-couplings:
Wﬁ{ :Ei‘ L« 7/ AN . /
gauge-boson-Higgs couplings: fermion couplings:

/ /
/ /
% %
- — = ANNNNK - — =
\ \
\ \
\ \

Faddeev—Popov couplings:

= Large variety of loop diagrams !
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Examples for 2-point functions at one loop: (‘t Hooft—-Feynman gauge)
Electron self-energy:

[ (p) = i(p — me) + ipwy IR (p?) + ipw_3 (p?) + ime X5 (p?)

H)X ¢ ’77Z W
ST e ST e e e
e \__/ e \__/ e e
e Ve e Ve

W-boson self-energy:

W-WT . 2 2 . kuky W /7.2 ckuky W /7.2
F;u/ (k) — _1g,uy(k o MW) —1 (gMV T %—2) ET (k ) —1 P];Q Z]L (k )
H, x ¢ v, Z W l p
' SRR O NN A O W
W W w W W W W W %%
124/ u
¢ U o) W 72 W
oW W T W WQHQ LW T
W B W . W o W - B
H,x Uy, Uz Uy, UZ v, Z & H
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Examples for 3-point functions at one loop:

Wevr, vertex correction:
HaX/, = e : ¢// : H/, = '772 ¢ '772 ¢ %% ¢
T A e = ST N S T e
¢ \ Ve Ve Ve z Ve w Ve ¢ \ Ve w Ve z Ve

H~~ vertex (loop induced):

1, - N

Y Y Y Y Y
o W e
W b P W b W 3

Y Y Y Y

~
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7.2 Renormalization

Bare input parameters: eo, Mw .0, Mz,0, Mu,0, m¢.0, Vij,o

Renormalization transformation:
* Parameter renormalization:
eo=(1+dZc)e,
My o= My + Mgy, Mzo=Mz+6Mz,  Mg,=Mg+ oMz,
meo=mys + 0my, Vijo=Vi; +0Vi;, (both V;; 0, Vi; unitary)
Mw
M,
(sw IS not a free parameter if My, Mz are used as input parameters)

* Field renormalization

Note: renormalization of cw, sw fixed by on-shell condition cw =

i (2)-( 2 ) (2). e

¢JI?,0 — \/ZJ]-EJJC/ w?’a w?,O — \/Z?f’ %1}/

Note: matrix renormalization necessary to account for loop-induced mixing
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Renormalization conditions:

* Mass renormalization:
on-shell definition:  mass? is location of pole in propagator
— M3 = Re{XZX (M)}, similar expressions for § Mz, S M7, m

Note: ¢ location of pole is complex for unstable particles

— subtlety in all-orders definition, but not relevant at one loop
(gauge-invariant definition: mass? as real part of pole location)

¢ other definitions of quark masses often more appropriate
(running masses, masses in effective field theories)

* Field renormalization:  (bosons and leptons)
¢ residues of propagators (diagonal, transverse parts) normalized to 1
— 0Zw = — Re{3¥ (M%)},
similar expressions for 6 Za4,0222,0 2w, 5ZJI:J{R
¢ suppression of mixing propagators on particle poles
< fixes non-diagonal constants 6§74z, 5ZZA,5ZJI:J{,R (f # f))

Note: problems for unstables particles beyond one loop
(field-renormalization constants become complex)

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture Il — 18



Renormalization conditions:  (continued)

* Charge renormalization: define e in Thomson limit
e k

NG k—0

A, — ey, foron-shell electrons
e

= e = elementary charge of classical electrodynamics
2

fine-structure constant a(0) = Z— = 1/137.03599976
7
Gauge invariance relates d Z. to photon wave-function renormalization:
1
§Z. = —=6Zan — 5724
2 QCW

* Quark-field and CKM-matrix renormalization — fixes 5Z;Jq/,R, OVi;

rotation to mass eigenstates;
CKM part requires a careful (non-trivial) investigation
of mixing self-energies, mass eigenstates, LSZ reduction, etc.

General result:  all renormalization constants can be obtained from self-energies.
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7.3 IR divergences and photon bremsstrahlung

Consider processes with charged external particles, e.g., eTe™ — putpu~

* Virtual corrections:  loop diagrams
IR divergences from soft virtual photons (¢ — 0)

diq...
/ @ —m2) o) 2qpe) )

* “Real” corrections:  photon bremsstrahlung
2

e . IR divergences from soft real photons (q — 0)
q 3
d°q... — —C'ln(m,)

ca
10 Vv aZ + m2(2qp1)(2qp2)

Bloch—Nordsieck theorem:

IR divergences of virtual and real corrections cancel in the sum

— virtual and soft-photonic corrections cannot be discussed separately
— related to limited experimental resolution of soft photons

= Cross-section predictions necessarily depend on treatment of photon emission
(energy and angular cuts)
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Separation of soft and hard photons:
Why?  cancellation of In(m~ ) terms delicate in practice, but terms are universal

* soft photons, m~ < F, < AE < () = typical scale of the process
< correction Is universal factor é..¢ t0 Born cross section

relatively simple analytical expression with explicit C'In(AE /m.~ ) terms
* hard photons, £, > AFE

— Monte Carlo integration of full radiative process, but with m., = 0
—C'In(AFE) terms emerge numerically

In(AFE) contributions cancel numerically in sum for small AFE upto O(AE/FE)

Calculation of soft-photon factor:

— AQp- q>(<’6 e (@) s )

p—q)?—
Q e —A = —Q € —MBorn
o ~Q@res (p)uy(p) e
“Eikonal factorization” holds for all charged particles (spin 0, %, 1)
o d?q (+Qi)(£Q;)(pip;)  ( = particle with charge Q;
= Osoft = 5 92 LN incoming(+) or outgoing (—))
277 Jin<ao<am 200 5= (qpi)(ap;) : Jome
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7.4 The universal radiative corrections A« and Ap
Running electromagnetic coupling a(s):

a becomes sensitive to unphysical quark masses m,

VZMQVZW for |s| in GeV range and below (non-perturbative regime)

. — charge-renormalization constant 6 Z. sensitive to m,

Solution:  fit hadronic part of Aa(s) = — Re{¥%%a(s)/s} and thus of §Z.

o(eTe” — hadrons)
olete” — utp™)

via dispersion relations to R(s) =
Jegerlehner et al.

(0)
1— AOéferm;étop (3)

= Running elmg. coupling: a(s) =

Leading correction to the p-parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

— large effects from bottom—top loops in W self-energy Veltman '77
b

W W A x27(0) 2y "V (0) 3G . m3
Prer M M 8v/2n?

t
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8 Radiative corrections to muon decay
Precision calculation of My via i decay
— My as function of a(0), G,,, Mz and the quantity Ar

i (1 45) - 0,

Ar comprises quantum corrections to p decay
(beyond electromagnetic corrections in Fermi model)

Lowest order: »
B e

W —

(’)(a) corrections: 5 Sirlin ’80, Marciano, Sirlin ’80
C
A”al—loop — A&<M§) — STWA/Otop + Arrem(]\fH)
W
~ 6% ~ 3% ~ 1%
aln(mf/Mz) Gumf Oéln(MH/Mz)
f b
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Virtual correction — 1-loop diagrams:

ol

W self-energy W v, vertex correction box diagrams

K~ Z e M 1,74 e H 174
€.g..
v
v, W v vy, VA Ve vy, Z

Real correction — 1-photon bremsstrahlung:

Consistent use of G,

Photonic QED corrections are treated In
the Fermi model and subtracted from Ar etc.
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State-of-the-art prediction of M from muon decay:
80.5 T T | T T T | T T T | T T T | T T T

Hollik et al. '03
N M,,~® = (80.426 +- 0.034) GeV
=y .
goaN Y _ _
_ _k\'\ | Theoretical uncertainty:
> \
& N\ 1 status '00: AMw ~ 6 MeV
— \
= i B ;
= i status '06: AMwy ~ 4 MeV
80.3 — _|
] ~~—__ | Experimental error:
. R status '06: AMy ~ 29 MeV
. |exp. lower bound on M, = ﬁM.GeV m
| | | | | | | | | | | | I\I\l\ I\ Sy | ILC(?): AMW ~ 7Mev
80.2 200 400 600 800 1000

M, [GeV]
Prediction includes:
* full electroweak corrections of O(«) (1-loop level)

e full electroweak corrections of O(a?) (2-loop level)
(v.Ritbergen,Stuart '98; Seidensticker,Steinhauser '99;
Freitas,Hollik,Walter,Weiglein '00-'02; Awramik,Czakon '02/°03; Onishchenko,Veretin '02)

* various improvements by universal corrections to p-parameter
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General overview

Lecture | — Standard Model (part 1)
Lecture Il — Standard Model (part 2)
Lecture Il — Quantum Corrections
Lecture IV — Unstable Particles (part 1)

9 Unstable particles in quantum field theory
10 Lowest-order descriptions of resonance processes

Lecture V  — Unstable Particles (part 2)

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture IV — 2



9 Unstable particles in quantum field theory

9.1 Introduction

Almost all interesting elementary particles are unstable:
e known: leptons 4, 7 and massive gauge bosons Z, W™, etc.

* Higgs bosons:  Hay, {h, H, A, H* }yssm

* postulated new particles, e.g. in SUSY: [, g, g, ¥ (maybe apart from LSP)

Lifetimes 7 too short for detection (e.g. 7w z ~ 107%°s — Al =c7 ~ 107 '°m)
— only decay products detected,
unstable particles appear as resonances in certain observables

Examples: ete” —Z — ff, ete” = WW —4f, ete” —tt — 6/,

pp — W/Z — 2I, pp — H+2q — Z7Z+42q — 41+2jets, etc.

= Consistent treatment of unstable particles needed
In perturbative evaluation of quantum field theories
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9.2 Mass and width of unstable particles

Dyson series and propagator poles

Propagator near resonance: (scalar example)
(O = R R X T
Gp) =t 150 55— ... = :

p2 — m? p2 — m? p2 — m2 p2 — m2 _|_Z(p2)

¥ (p?) = renormalized self-energy, m = ren. mass

Stable particle: Im{Z(p*)} = 0 at p* ~m?

— propagator pole for real value of p?,
renormalization condition for physical mass m: X(m?) =0

Unstable particle: Im{Z(p*)} # 0 at p* ~m?

< propagator pole shifted into complex p* plane,
definition of mass and width non-trivial

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture IV — 4



Commonly used mass/width definitions:
* “on-shell mass/width” Mos/rosi M(Q)S — m2 + Re{E(MéS)} ; 0

<. (%P —— :
G*(p) 2, (p? — M3)(1 + Re{X/(M2,)}) +iIm{Z(M24)}

comparison with form of Breit—Wigner resonance > RSS ,
p? — m* + iml’
. 2
yields:  MosTos = Im{Z(M&s)} / (1+ Re{X'(M3s)}),  ¥'(p?) = 552
* “pole mass/width” M /T u? —m? 4+ S(p?) = 0
complex pole position: ;% = M* —iMT
1 R
P =
TR AR T o ME T
Note: 1 = gauge independent for any particle (pole location is property of S-matrix)

Mos = gauge dependent at 2-|00p order Sirlin '91; Stuart '91; Gambino, Grassi '99;
Grassi, Kniehl, Sirlin 01
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Relation between “on-shell” and “pole” definitions:

Subtraction of defining equations yields:
M3 + Re{Z(M3s)} = M? —iMT 4+ X(M? —iMT)
Equation can be uniquely solved via recursion in powers of coupling a:

ansatz. M(Q)S = M*+ cra' +c2a® + ...
Mosl'og = MF+d2a2 +d3a3 + ..., Ci,di = real

counting in o Mos, M = 0(a”), Tos,T,2(p°) = O(a’)

Result;

M3s = M?+Im{S(M*)} Im{' (M*)} + O(a)
MosTos = MT +Im{Z(M?)} Im{>' (M*)}*
+ i m{Z(MH P Im{Z" (M)} + O(a*)
l.e. {Mos,l'os} = {M,I'} + gauge-dependent 2-loop corrections
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Important examples: W and Z bosons

In good approximation: W — ff’, Z— ff with masses fermions f, f’
r

sothat: Im{ZY(p*)} = p®> x —=0(p?), V=W,Z
M,
2 2 2 3 r’ 4
— Mg = M*+T1T7 + O(Oé ) Mosl'og = MF+M -+ O(Oé)

In terms of measured numbers:
W boson: Mw ~ 80 GeV, I'w ~ 2.1 GeV
— Mw,0s — Mw pole = 28 MeV
Z boson: Mz ~ 91 GeV, 'y ~ 2.5GeV
— Mz os — Mz pole = 34 MeV
Exp. accuracy: AMw,exp = 29MeV, AMzexp = 2.1 MeV

— Difference in definitions phenomenologically important !
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A closer look into resonance shapes:

e “on-shell mass/width” Mogs /T'os: M2y — m? + Re{S(M3s)} = 0
1
GP? —
P Mg T S0P)  Re(B (M)
o 1
PP=MSs (p? — M3g)[1 + Re{X/(M3g)}] +ilm{%(p?)} + O[(p? — MEg)?]
B Ros
p? — Mg +iMosl'os(p?) + O[(p? — M3g)?]

Im{X(p°)}
Mos[1 + Re{X/(Mgg)}]

with the “running on-shell width” Tos(p®) =

e “pole massiwidth” M/T: % —m?+3(u?) = 0

1
p? — p? 4 X(p?) — X(p?)
1 R

G (p) =

— N —

ot (p2— )1+ ()] + Olp® —p2)?] (P — ) + O[(p® — p2)?]
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Example of W and Z bosons continued:

Approximation of massless decay fermions:

I'v,0s(p®) = Tv,0s X —5— 0(p*), V=W,7Z

Fit of W/Z resonance shapes to experimental data:

R’ 2 .
® ansatz > T Y yields: m' = Mv.os, v =Tv.os
p* —m'* +1y'p*/m
R 2
®* ansatz o T om yields:  m = Mv poles, 7 =1'v pole

Note: the two forms are equivalent:
R/ 12 /1
m2 = m my = ey
141y /m’’ 1+~2/m'?’ 1+~'2/m'?

— consistent with relation between “on-shell” and “pole” definitions !

R —
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9.3 Complex mass and decay widths

Free propagator with finite width:

d*n . i -
Glx —y) = | —L e PlE=Y) E, = +/p2+ M2 —iMT

:/ d’p eiP(XY)/%eipo(moyo) 1~ ( 1 _ 1 _ )
(2m)? 2m 2B, \po— Ep  po+ Ep

Contour integration in pg plane yields

d3p e 1 = L
G — o - ip(x—y) S |:9 _ i(zo—yo)Eyp 0 . i(xg yO)Epi|
=) / (2m)5 ° o7, [0~ wo)e T 6lyo — zo)e

~

ForI' < M: F,~E,—il'M/(2E,), E,=/p?+ M?

/ 1p(x—y) 1 9(£Bo . yo)e—i(wo—yo)Ep e—(wo—yo)l“m/@Ep)
2F,

_|_ H(yO . xo)ei(xo—yO)Ep e(yOQUO)Fm/(ZEp)]

Exponential decay in particle and antiparticle propagation zo — %o Z O:
IG)? x eTovo)l'e  Wwith T, = ’M/E, = I'/~ = width of particle with momentum p
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Conventional definition of decay widths via amplitudes:

Partial decay widths for ¢ — f:

1 2
Lo preony = o~ /dq)¢—>f (Mg ]
N

flux factor

Comments:

* Lorentz-invariant phase space for final state |f) = |¢1(k1), ..., ¢n(kn)):

[avos = [T1 [ 5 mstht — mdo)] 2ot - 57, k)

b1

e Transition matrix element M, _. ¢ calculated from diagrams ¢ J<

Note: M, involves external unstable particle ¢ on
— problems expected in higher orders !

* Mass definition of ¢ relevant
— usual choice at 1-2 loops: m = Mos

Total decay width: Ceony = Z ['y— £.conv
/

— Relation between I'..,v and “on-shell” / pole definitions ?  Answer by unitarity...
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9.4 Unstable particles and unitarity in (perturbative) QFT
Causality implies Cutkowsky cut rules for diagrams:

O + JO + = @ -

any diagram (diagram)* cut diagrams

cut propagators: 2w 6(p? — m?) 6(po)
= phase space for free propagation

< sum over connected diagrams: (S—1) + (S—1D" + (S-1)(S-1)T =0

= unitarity of S-matrix: SST =1
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9.4 Unstable particles and unitarity in (perturbative) QFT
Causality implies Cutkowsky cut rules for diagrams:

O + JO + = @ -

any diagram (diagram)* cut diagrams

cut propagators: 2w 6(p? — m?) 6(po)
= phase space for free propagation

< sum over connected diagrams: (S—1) + (S—1D" + (S-1)(S-1)T =0

= unitarity of S-matrix: SST =1

Application to self-energy — relation to conventional decay width I'cony

p
2 g
m{Z*(P} =5 D, ¢ 6
pr=m cut diagrams
2
o % Z d(I)¢_>f |M¢—>f| — mrconv
decay channels f < _

~~

=2mI4_, ¢ conv

= ['¢tconv = L's—r0s for mass definition m = Mos

Note: “derivation” quite sloppy (ignores problems in defining M 4_,  in higher orders !)
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Subtleties with S-matrix elements and unitarity

S-matrix elements:

Definition for |i) — |f): (f|S|5) = _lim (f,t1]|S|i, to)
t2—>—|—oo
But:  for unstable states |f): ) liril (f,t1] = 0
1—T1T00

— S-matrix elements for external unstable particles do not exist,
application of LSZ reduction not justified !

Unitarity:
Cut equations not consistent for external or internal unstable particles !
But: important result of Veltman '63

Toy field theory with stable and unstable scalar fields
— theory is unitary, causal, and renormalizable on space of stable external states

Comments on Veltman'’s result;

* cut equations: no cuts of internal propagators for unstable particles

* statement rests on consideration of “complete” (resummed) propagators
— does not provide a practical method for standard perturbation theory
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9.5 Resonances — factorization into production and decay su bprocesses

Transition rate near a resonance: i) — |X,¢(p)) — |X, f)

/dq)z'—>Xf M xy|? 02— /dq)z'—>Xf M xoxr|’

Phase-space factorization'

/ dPixr = / / dPi— x4 (p) / AP (p)— s

Decomposition of resonance diagrams:

(A 1 A T
Mioxpoxp = Z /\/lH)Xqb 27 2 imT Mélf, A = polarization index of ¢

— total rate proportional to (hat on &, M means p2=m?2 used)

2 — A Ay
/dq)z—>Xf (M- x ] p2—m?2 Z /d@HXMp) ME—)>X¢(M§—>)X¢)

A,

dp 1 ~(N) \x
" / 2m |p? —m? +imI'|? /dq)‘b(p)*f M2 (M)

J/

~

=D, ,, (“decay correlation”)
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Manipulations for total rate:

* Rotational invariance in ¢ rest frame implies for full integral | d® ;) ¢

Dy = dx D, with spin average D = 2mIy_. f conv
* “Narrow-width approximation” (NWA) for resonance factor'
1 B 1 - 5( B mQ)
’pz — m?2 —|—imF|2 o (pz _m2) + m2['2 T'—o0 mF p

Resulting NWA for total rate and total cross section:

2 Fc25—>f,conv
i Bl L

J/

N/

=BR,_, ; (“branching ratio”)

f— JF_‘)N)?]@ p— Uz’—>X¢ BR¢_>f Wlth Zf BR¢_>f — 1 |f F — Fconv

Note: NWA insufficient to describe
* invariant-mass distributions of decay products (needed for resonance shape)
* angular distributions of decay products (needed for spin determination)

o “off-shell effects” resulting from regions with |[p* — m?| > mT’
(in particular because of neglect of non-resonant diagrams)
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9.6 The issue of gauge invariance
Gauge invariance implies...
e Slavnov-Taylor or Ward identites
= algebraic relations of or between Greens functions

— guarantee cancellation of unitarity-violating terms,
crucial for proof of unitarity of S-matrix
* compensation of gauge-fixing artefacts
= gauge-parameter independence of S-matrix

although Greens function (e.g. self-energies) are gauge dependent
Both statements hold order by order in standard perturbation theory !

But: Resonances require Dyson summation of resonant propagators
— perturbative orders mixed
— gauge invariance jeopardized !

Note: Gauge-invariance-violating terms are formally of higher order,
but can be dramatically enhanced
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Important Ward identities for processes with EW gauge bosons:

Eimg. U(1) gauge invariance implies

= 0 for any on-shell fields F;

— ldentity becomes crucial for collinear light fermions:

. P1 k=p1 —p2
for fermion momenta p; ~ cp2: >
= u2(p2)y"u1(p1) o< k*

P2

A typical situation: quasi-real space-like photons

1
vov koo ﬁk“T[] for k2 — O(m?) « E?

Identity & 77 = 0 needed to cancel 1/k7,
otherwise gauge-invariance-breaking terms enhanced by E?/mZ (~ 10'° for LEP2)
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Electroweak SU(2) gauge invariance implies

F1
. F; = on-shell fields
Kk = 1Mz - : 4 :
X y X, ¢ = would-be Goldstone fields
Fn
F1
K+ = +tMwy ------
qb:l:
Fn

A typical situation: high-energetic quasi-real longitudinal vector bosons

— fermion current attached to V (k) again « k"

1 |4 0
NmkMTN fork' >>MV

Identity k7, = ¢y MyT* needed to cancel factor k°,
otherwise gauge-invariance/unitarity-breaking terms enhanced by k° /M~
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10 Lowest-order descriptions of resonance processes
10.1 Motivation
The final aim: a method to describe resonance processes in lowest order that

* is mathematically consistent, but simple to apply

* valid in resonant and non-resonant regions of phase space
* supports arbitrary differential distributions

® respects gauge invariance (at least controls breaking effects)

® respects unitarity (at least controls breaking effects)

* can be generalized to higher orders

— Aim is highly demanding,
different solutions proposed  (with different strengths and weaknesses)

Discussed in the following:
naive “solutions”  (propagator modifications, fudge factors, etc.),
“complex-mass scheme”, “fermion-loop scheme”, pole expansions

Not discussed:

proposals of effective field theories Beenakker et al. '00,03; Beneke et al. '03,04; Hoang,Reisser '04

Parma School of Theoretical Physics, SNFT06, September 2006

Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture IV — 19



Counting of orders in resonance processes:
e self-energy = loop effect:  X(p?) = O(a)
 width = higher-order effect: mI’ = m* O(«a)

— Propagator in resonance region and in the continuum:

mI’ mID ] Oo@1) for p? —m?| ~ mD
p* —m? + X(p?) p? —m? +iml' O(a) for [p* —m?*| > mI
Implications: [resonant part counted as O(1)]

* higher-order corrections to resonant parts are of O(«)
— (virtual+real) corrections to scattering matrix elements and
to total width I" in resonant denominator

* off-shell effects are generically of O(I'/m) = O(«)
or in presence of phase-space cuts:

(m+A)>2 (m+A)3 1 T
dp? | Myes|? / dp? ~

(m+A)>2 , X AT
/ dp® | Mnon-res|” x O(A) = onon-res/ores ~ — for A>T
(m—A)2 m

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture IV — 20



10.2 Naive approaches

Naive propagator substitutions in full tree-level amplitudes:

1 1
K2 —m2 k2 _m2t imI(k?)

for resonant or all propagators

* constantwidth TI'(k?) = const. — U(1) respected (if all propagators dressed),
SU(2) “mildly” violated

* step width I'(k?) o< 6(k?) — U(1) and SU(2) violated
® running width  T"(k?) o< 6(k?) x k? — U(1) and SU(2) violated
— results can be totally wrong !
Fudge factor approaches:
Multiply full amplitudes without widths with

2 2
p —m

factors for each potentially resonant propagator

p?2 —m? +iml
< procedure preserves gauge invariance,
but introduces spurious factors of O(I'/m)

Note: none of these schemes preserves unitarity
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An example: e e" — e w.ud result of Kurihara, Perret-Gallix, Shimizu '95

Vs = 180 GeV

solid: gauge-invariant
(fudge factor) scheme

o (pb)
o
[AV)

dashed: constant width
only in resonant propagator

7 — crude U(1) gauge-invariance
\ j violation
\ S
IIII|IIII|IIII|IIII|IIIIIIII|IIII|IIII Ll i1l
0 02040608 1 20 40 60 80 100
Electron cut angle (mrad)
Dominant diagrams: ° © e - K u Y u
v wT u u
| v + _ _
nearly real photon ! w 5 WIS S w 3 w 3
ot
et Ve Ve ot Ve ot Ve
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Example continued:

e e e e
e e i i ~ " ~ "
K wT u u
1w a a
W d d w WY
e+
et Ve Ue ot Ve ot Ve

Partial amplitude from above “photon diagrams”:

My = Qeetie(ke)y ue(pe) — T

k2 H
Elmg. Ward identity:
0 £ B4T) o« (0% — p2)QwPu(p2)Pu(p”) + QePu(p%) — (Qa — Qu) P ()

With Qw =Qc=Qa—Qu and Py(p*) = [p* — My +iMwIw(p*)] ™
one obtains: T'w(p?) = Dw(p>)

— EImg. gauge invariance demands
common width on s- and t-channel propagators in “naive fixed width scheme”
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10.3 Complex-mass scheme at tree level Denner, Dittmaier, Roth, Wackeroth '99
Basic idea: mass® = location of propagator pole in complex p? plane
— consistent use of complex masses everywhere !
Application to gauge-boson resonances:
* replace M3, — piy = Ma, — iMwIw, M; — puz = Mz —iMzI'y
and define (complex) weak mixing angle via c¢3, = 1—s3, = W

— preserves all algebraic relations among parameters and amplitudes

® virtue: gauge-invariant result !
(Slavnov—Taylor identities and gauge-parameter independence)
— unitarity cancellations respected !

* drawbacks:
¢ spurios terms of O(%) = O(a))  (from off-shell propagators and complex mixing angle)
— but these terms are beyond tree-level accuracy !

¢ cut equations not valid anymore (reformulation not yet worked out)
< unitarity not yet understood, but possible unitarity violation is of O(%)
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Examples:

results from RAcooNWW (Denner et al. '99-'01) and LUSIFER (Dittmaier,Roth '02)

e o[fb] forete™ — udu v,

Vs 189 GeV | 500 GeV 2 TeV 10 TeV
constant width || 703.5(3) | 237.4(1) | 13.99(2) | 0.624(3)
running width 703.4(3) | 238.9(1) | 34.39(3) | 498.8(1)
complex mass || 703.1(3) | 237.3(1) | 13.98(2) | 0.624(3)

e o[fb] forete”™ — udu v, +

(separation cuts for “visible” v: E-, 0. > cut)

Vs = 189 GeV | 500GeV | 2TeV 10 TeV
constant width || 224.0(4) | 83.4(3) 6.98(5) | 0.457(6)
running width 224.6(4) | 84.2(3) 19.2(1) 368(6)
complex mass || 223.9(4) | 83.3(3) 6.98(5) | 0.460(6)

* g|fb] for ete” — ueﬂe,u_ﬂuua

(phase-space cuts applied)

Vs 500 GeV | 800 GeV 2 TeV 10 TeV
constant width || 1.633(1) | 4.105(4) | 11.74(2) | 26.38(6)
running width || 1.640(1) | 4.132(4) | 12.88(1) | 12965(12)
complex mass || 1.633(1) | 4.104(3) | 11.73(1) 26.39(6)
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10.4 Fermion-loop scheme  Argyres et al. '95: Beenakker et al. '96; Passarino '99; Accomando et al. 99

Procedure: Dyson summation of all closed fermion-loop graphs

Benefits of the scheme:
* introduction of widths via resummed self-energies
for particles that decay into fermions only, e.g. W and Z bosons

Ward identites (WI) maintained,
because full set of diagrams of the form >, N solour js considered

* gauge-parameter independence,
because gauge parameters do not enter loops, and WI are valid for “trees”

* natural inclusion of running-coupling effects possible
* no spurious terms included (selection of diagrams!)
* scheme has natural generalization to remaining “bosonic loops”

— background-field quantization Denner. Dittmaier ‘96

Drawbacks / limitations:

* width in one-loop self-energy is tree-level quantity
— scheme does not include fermion-loop corrections to width

* no applicability to unstable particles that decay into bosons (top, Higgs)
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Example: e e™ —4f

Structural diagrams:

e w ot ot

Ve

=
S

Building blocks:

e resummed propagators:

Qe = -

® corrected vertices:

o
o

+WW©'M+MXVN]1
WWi:ier-(Iier-(Iierwﬁi
W<+Wv><
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Specific example: o[ fb] fore”e™ — p~7,ud at high energies |, -, (Passarin '96)

NG 200 GeV | 500GeV | 1TeV | 2TeV 5TeV 10 TeV

running width 672.96(3) | 225.45(3) | 62.17(1) | 33.06(1) | 123.759(8) | 481.18(5)

constant width 673.08(4) | 224.05(3) | 56.90(1) | 13.19(1) 2.212(6) | 0.591(4)

imaginary-part FLS || 673.1(1) | 224.5(7) | 56.8(1) | 13.18(4) 2.24(3) | 0.597(6)

full FLS 683.7(1) | 227.9(2)| 58.0(1)|13.57(4) 2.34(3) | 0.632(6)
10°

10"

T T T T T
I} Dev. from Fixed width ©
2 _
— — T
= = T
£ 10* | S 1+ -
i - 8 + e =
- [o T = |
B -1 R 1 R 1 R N
- 200 400 600 800 -
E.n(GeV)
10° —
R Imaginary-part FL ........... Running width 7]
Fixed width — - Full FL
10° - : : ]
o 5 10 15
Ecm
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A (not exhaustive) selection of literature

® Unstable particles in quantum field theory

¢ mass and width of unstable particles:
A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127; Phys. Lett. B 267 (1991) 240;
R. G. Stuart, Phys. Lett. B 262 (1991) 113; Phys. Rev. Lett. 70 (1993) 3193;
M. Passera and A. Sirlin, Phys. Rev. Lett. 77 (1996) 4146 [hep-ph/9607253];
P. Gambino and P. A. Grassi, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254];
P. A. Grassi, B. A. Kniehl and A. Sirlin, Phys. Rev. D 65 (2002) 085001 [hep-ph/0109228].

¢ unitarity and causality:
M. J. G. Veltman, Physica 29 (1963) 186.

® Schemes for treating unstable particles in lowest-order amplitudes (see also references therein)
¢ complex-mass scheme:
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472].
¢ fermion-loop scheme:
E. N. Argyres et al., Phys. Lett. B 358(1995) 339 [hep-ph/9507216];
W. Beenakker et al., Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260];
G. Passarino, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482];
E. Accomando, A. Ballestrero and E. Maina, Phys. Lett. B 479 (2000) 209 [hep-ph/9911489].
¢ more discussions of gauge-invariance violation:

Y. Kurihara, D. Perret-Gallix and Y. Shimizu, Phys. Lett. B 349 (1995) 367 [hep-ph/9412215];
S. Dittmaier and M. Roth, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070].

Parma School of Theoretical Physics, SNFT06, September 2006

Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture IV — 29



Introduction into
Standard Model and Precision Physics
— Lecture V —

Stefan Dittmaier

MPI Minchen

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture V. — 1



General overview

Lecture | — Standard Model (part 1)
Lecture Il — Standard Model (part 2)
Lecture Il — Quantum Corrections
Lecture IV — Unstable Particles (part 1)
Lecture V' — Unstable Particles (part 2)

11 The pole scheme for radiative corrections to resonance processes
12 Single-W production at hadron colliders

13 eTe” —WW —4f: double-pole approximation vs. complex-mass scheme
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11 The pole scheme for radiative corrections to resonance processes

11.1 General strategy for a single resonance
Stuart '91; H.Veltman '92; Aeppli, v.Oldenborgh, Wyler '94

The idea: expansion about resonance pole

R(p?) 2 R(m®) | R(p®) — R(m?) 2
R(m?) R(p*) — R(m?) 2
N
- p2—m2—|—imF+ p?2 — m? +N (P
resonant non-resonant

Benefits / drawbacks / subtleties:

procedure is gauge invariant, because residue R(m?) is gauge invariant

scheme is applicable to higher orders
2

R(p?) in general not analytic at p* = m
— “non-factorizable corrections” (i.e. not of the form const. x Breit—~Wigner)

R(m?) is “ambiguous”, because it depends on other phase-space variables
— R(m?) depends on choice of phase-space parametrization

* reliability questionable in presence of small scales,
e.g. v radiation with £, ~ I",  vicinity of thresholds: £ — FEinreshold ~ I’
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The pole expansion including higher orders:
W (p*)
p? —m? + X(p?)

e

Starting point: ~ complete matrix element M = +N(p?)

|solation of pole structure:

p° — M? 4+ S(p°) — S(M?)
(p° = M1+ (M?)] + O((p* — M?)?)

recall: p° —m” + 3(p?)

Lo - oy o W) W)l
p2 . M2 1 _|_ E/<M2) p2 . m2 _|_ E(pQ) p2 _ M2 1 _|_ E/(MQ)
_ w 2
— p2 - M2 —I_ n(p )
Comments:

e complex pole mass )M as well as w and (1)) are gauge invariant

e evaluation of W (M*?) for complex p® = M? not straightforward !

But: w and n(p”) can be perturbatively obtained

. : Aeppli et al. '94
from quantities with real momenta
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Perturbative evaluation of w and n(p?):

Alternative expansion of resonant diagrams about real mass m?:

1 W(pz) - —E(p2) n_ 7
M= m;(ﬁ) =N+ p? —m2+z (p? —m2

— perturbative expansion for coefficients:

W= W)+ S WAS6)] L+ 3 e,
N = B
W (p?)B(p?) — W(m?)S(m?) — (2 —m?) s (WD), |
) (r? — m?)? T
One can show to all orders: (see next slides)

= W, n(pQ) — N(p2>

— residue and non-resonant remainder can be obtained
from perturbative calculation with real p* = m?
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Proof that w = W —!;

S8 [ (o]
Expand [...] with s = M* + (m” — M?) about s = M~
AT o)) s
_s(M2)
:nz:; ﬁ (nZk) [ (f::kw(s)( - z(s))”(z:(z\ﬁ))k] o
:i % ;S: [W(s) KE(MQ) _ z(s))i L:MQ, r=n+k

=[5/ (M2)]" (s—M2)"+...

Only the terms oc [~ (M?)]" survive after setting (s — M?):

> W = S WO -S (M) = 11@{‘(4]\}2) ~ W
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Proof that n(p*) = N (p?):

Formal manipulations with Taylor series:

W(s) — W(m?2) W(s)X(s)

—W(m2)Z(m?) — (s —

m2) d

Lwis)ns)

N(s) = s —m? B

-y

=Y = m) (Wi (-2)” Ezjki[—

Zn:“ k! [ UOICO) n]

(s —m?2)?

CWE(-2e)"]  -mdk)

7

subtraction of first (n + 1) Taylor terms

(s —m2)F—n—1, k=n+/¢

n=0k 2
(o%e) dn_|_g )
:;1 " 12 ”+€)' ”HW(S)(_Z(S)) L:mz’ n=r—1{
o o le’e) W(S) . S )
_Egl {Z Z} [ds”’ _2(3)]2 ( 3( )) L:m2
W (M?) 1 W (s)
s = M2 14X/(M2)  s—m2+3(s) (see next page)
= n(s)
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Proof that n(p®) = N(p?):  (continued)

First term in curly brackets:

i<5 m2)t- 12 1 {ds’r ME/E::;]K <_§3(3)>r]

{=1

s:m2

7

~"

known from proof that w = W_4

2)2—1 W(M2) 1
[=2(M2)]¢ 1+ 5/(M?)

I
M]3
-

=1
_ 1 W (M?2) i (s—m»)* W) 1
—2(M?2) 14 %/(M?) = [-5(M?)}¥ s— M2 1+ (M?2)
Second term in curly brackets:
oo £—1
_ 6 2611 d”  W(s) _S"“ _ 4y
;7;0( ) {ds’“[ Y(s)]¢ ( =( )) ]S:m2’ E=0+
— _oo OOS_ 2£—|—'r 11 d” W(S)
2. 2, (s=m) 7 i [—E(s)]e'L:mz
_ — s — m2 v_1 Wi(s) _ W (s)
= T2 RO T e
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Perturbative ordering in pole scheme:

First step:  calculate M? from M? = m? — R(D -+t (3 r2)
— yields I" in M? up to n-loop order

Expansion of matrix element: (A(™) = n-loop contribution to A)
W(PQ) 2
M = N
p? —m? + X(p?) tANE)
W (M?) 1

2 2
_ 4 + N
p2 — M2 1+ X/ (M?2) n(p”) (P)

= }Ieading order
p2 — M?2 : o
in pole approximation

WD (m2) WO (M)W (m2) WOV (m2)s® (m2)
T p2 — M2 p2 — M? N p2 — M2 NLO:
W (0) (p2) — w (0) (m?) correction to residue

- - + NO(p?) and.
ps—m leading-order off-shellness

A 7

e and

=n(0)(p2) -
_ _ non-fact. corrections
+ non-factorizable corrections

_|_

+ higher orders
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Modified (improved!) version of the pole expansion:

Inclusion of lowest order without pole expansion:

M = M(O) LO:
complete leading order
W (m?2) WO m2)xsmM(m2) Y NLO:
p2 — M2 p2 — M? correction to residue
and

+ non-factorizable corrections non-fact. corrections

+ higher orders

Comments:
* inclusion of M) is usually easier than its expansion

e wave-function correction ©V"(m?) = 0 in on-shell renormalization scheme

* naive estimate of relative theoretical uncertainty (TU) in NLO:

X — x const. in resonance region |p? — m?| < mT

TU ~

A 3|Q

X const. off resonance |p? — m?| > mT
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Factorizable corrections:

M — W) - wO ) (m?)
fact. p2 — M2
_ Z Mélr)OdUCtiOH()\)M((i%)cay()\) + Ml()?‘z)duction()\)‘/\/lc(ile)cay()\)
o 2 _ A2
A p M
qu : P1 qu : ®1
v “ b » b

Spin correlations:  identical definitions of polarized states |¢(\)) needed in
M) (A) and MY (\)

production decay

Subtlety in kinematics:

gauge invariance of /\/lg;‘()) duction /decay EOUIrES p® =m’
— “on-shell projection” of momenta needed !
Example:
;\pj i/kqb i off-shell phase space: (p1 + p2 — k)? = p? # m?
Z N < define % (e.g. from angle of k) such that (p1 + p2 — k)2 = m?
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Non-factorizable corrections: Melnikov, Yakovlev '96; Beenakker, Berends, Chapovsky '97;
Denner, Dittmaier, Roth '97,98

Origin:
on-shell limit (p* — m?) and IR regularization (e.g. m- — 0) do not commute
in diagrams with exchange of ~/g between external and/or resonant lines:

v(q)

\ . 7 \ . 7
TV TV

“manifestly non-factorizable” “not manifestly non-factorizable” diagrams
* diagram has no explicit * diagram has explicit propagator factor (p? — m?)—1
propagator factor and contributes also to factorizable corrections
(v —m?) ! W (m?)
® resonant IR-divergent ® non-factorizable part:
. . . 1 _
contribution in loop wll (p2) = (WO (p?) - W (m?)] 5, s

integral from region 0 : L
J glonq — — receives only contributions from g — 0
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Evaluation of NLO non-factorizable corrections:
Only leading behaviour of loop integrands for soft-photon momentum ¢ — 0 relevant

— “Extended soft-photon (or gluon) approximation”:

neglect ¢ in numerator of diagrams — scalar loop integrals only

g only kept in propagators that become singular for ¢ — 0

* resonance propagators are dressed with complex mass: [(p + q)® — M?*]™*
take limits p?, M* — m? in final result whenever possible

Result factorizes from Born amplitude: virt, = gvirt MO

Features of 6%t . :
* gauge independent by definition

2 7‘ [2
- - - - -
¢ contains contributions like aln<p—>
m~ M

from non-commutativity of on-shell and soft-photon limits
* free of collinear singularities from external particles

* various cancellations after addition of corresponding real-photon contributions:

¢ no resonant contribution from photon exchange between initial and final states
> non-local cancellation of whole effect after integration over p?
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11.2 Real corrections to resonance processes

Calculation of real NLO corrections:

NLO: 1-particle bremsstrahlung in LO (tree-level diagrams)
— LO prescriptions for resonances applicable

But:  real [M,_ r1,,¢|” is related to 2 Re{M " M,El)f} in soft and collinear limits,

— matching between resonance descriptions in virtual and real corrections !

Pole expansions for real corrections:

Split diagrams with radiating resonances (2 resonant propagators) as follows:

1 1 { 1 1 ]
[(p+ k)2 — M?](p?> — M?)  2pk| p>—M? (p+k)2— M?

p—k —
E., > TI'w (hard photon):  photon can be assigned to production or decay,
resonances are well separated in phase space

— pole-scheme decomposition contains two leading on-shell contributions

E, = O(I'w) (“semi-soft photon”):  two resonances overlap in phase space
— definition of leading-pole approximation potentially problematic
(definition depends on specific observable; keep p? or (p — k)? fixed ?)
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Enhancement of real-photon emission due to collinear singularities

Collinear photon emission off light particles:

@ e
J — 7 %’Y
ky ~(1—x)k ky ~(1—x)k
— leads to mass-singular universal corrections
which can be described via “structure functions” in leading-log approximation:
fp(z, M?) = 5(1— ) + Qe 1n<%22) (1“"2) +o
+

27 mi l—=x

1

1
dxy Fee(:c1,M2)/ dwg Tee(w2, M?) 20" (@1p4, x2p—)

Comments:

* M = QED factorization scale = typical scale of process (set by full calculation)
e structure fucntions I'; ¢, etc., known up to O(a®) @ IR exponentiation
* unitarity / KLN theorem demands fol deTss(x, M?) =1
— mass singularities cancel for FSR if f 4+ n~y is treated inclusively for collinear s
* ISR /FSR can lead to large effects, e.g. distortion of resonances
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Distortion of resonance shapes by real radiation:

Initial state fixed: et L f

Typical situations: ete™ — Z — ff,
ptpnT —2Z,H?— ff e f

< scan over s-channel resonance in o(s) by changing CM energy /s

Initial-state radiation (ISR):
Z can become resonant for s = (p4 +p-)* > (p+ +p— — ky)* ~ M
— radiative tail for s > M7 due to “radiative return”

Final-state radiation (FSR):
s = kz ~ My for FSR opb Dittmaier, Kaiser '02
— only rescaling of resonance o000

I I I I I I I

T

corrected ]
-- -- -- corrected, My,q cut A

***** Born

An example:

_ 1000
cross section for u~ ™ — bb in lowest order F

and including photonic and QCD corrections, /
with and without invariant-mass cut 100 1 b o
V5 — M(bb) < 10 GeV Y e

] ] ] ] ] ] ] [—
80 8 90 95 100 105 110 115 120 125

V3lGev]
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Distortion of resonance shapes by real radiation:  (continued)

Resonance reconstructed from decay products: k1

Typical situations: eTe™ — WW/ZZ — 4f, . ,
pp—Z— ff+X ko

o . . do . .
< resonance in invariant-mass distribution i of reconstructed invariant mass M

Final-state radiation (FSR):
resonance for M? = (k1 + k2)* < (k1 + ko + k) ~ M7

— radiative tail for M < My
Beenakker, Berends, Chapovsky '98
i i |

d le-07 i
g born
m ————— O(a) corrected
An eXample: eeBe-OS /\ e r@sUMMed
ZineTe™ — ZZ — 4l i,
6e-08 T
reconstructed via Mee = (p1, + pi,)* o N
X / Z \\~.\:\"
lowest order, O(«a) FSR, A S
and higher-order FSR beyond O(«) s Sy
Oe+0089 90 91 92 93
M| GeV]
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12 Single-W production at hadron colliders

Drell-Yan-like W and Z production:
Physics goals:
® M,z — detector calibration by comparing with LEP1 result
® sin? Hi?t — comparison with results of LEP1 and SLC
* Myy — improvement to AMy ~ 15 MeV
® decay widths I'z and I'vy from M;; or M~ ;,, resonance tails
* search for Z/ and W' at high Mj; or M~ ;,,
® information on PDFs

Partonic cross section and W-boson resonance;

T T T T T T T
10000 | i
u 14
1000 | J
2 100k o
W I
g I
_ 10 _
d I+ i
1 —
0.1 J 1 1 1 1 1 1 1

20 40 60 80 100 120 140
s/ GeV
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Born amplitude:
e? 1

— Ua P (1 — "
Mo Py 3 (=)l T

25T [0, 75 (1 — v5)vi]

Electroweak corrections: Dittmaier, Kramer ’02; Baur, Wackeroth '04
Arbuzov et al. ’05; Carloni Calame et al. '06

® virtual corrections:

el el e M

W self-energy Wud and Wlv; vertex corrections box diagrams

inclusion in factorized form:  |Mo + M1|? = (1 +2Re{d""" })|Mo|* + ...
Wlth 5virt — 5se1f(§)‘|‘5Wdu(§)‘|‘5Wull(§)+5box(§7 2?)
— §¥"" gauge independent in limit T'w — 0,

non-analytic terms in §¥'** described via In(5—M3,) — In(5—Mg,+iMwIl'w)

* real photon corrections:
full amplitude calculation for ud — ;1" ~ with complex W mass
— gauge invariant with correct IR (soft and collinear) limits
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Electroweak corrections in Pole Approximation (PA): Eﬁﬁr:;a'fgr"eér\évrﬁgﬁ?ggth 99

— decomposition into factorizable and non-factorizable contributions:

5¥’Xt — 5%2?‘; + 5Ki)rr)ifact(§7£)
Sy = 5Wdu(M\2zv)|FW:0 + 5Wull(M\2]V)|FW:O
5Xgr£fact(§’£) - 5Virt|§—>M‘27v,FW—>O o 5%2?:
M2, M2
— _i{_2+QdLig(1+ AW) —QuLi2(1‘|‘ - W)
27'(- tres ures
M2, —iMwTIw — 8 M2 M2
(MBI 8) g5 - g, 1m(- 28 )))
mWMW tres Ures
PA versus full O(«) correction:
V'3 /GeV 40 80 120 200 500 1000 2000
60/pb 2.646 | 7991.4 | 8.906 | 1.388 | 0.165 | 0.0396 | 0.00979
d/% 0.7 2.42 —12.9 —3.3 12 19 23
opa /% 0.0 2.40 —12.3 —0.7 18 31 43
: . virt virt Q PW S 2 S
error estimate:  [6}"" — 6V ~ —max{—,ln( 5 >,ln ( 5 )} X const.
7r My’ \ M2, M2,
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Hadronic pp cross section and Jacobian peak:

Note: v, notdetectable — e.g. study “transverse W mass”:
M3 .1 = (Bt miss + E1.1)° — (P miss +P1.1)°

(do/dMr 1)/ (pb/GeV) Dittmaier, Kramer '02
140 — T T T T T T T 1 5 T T T T T T T 1
8/ %
120 — 0
100 —
-5
R0 — I
—10
60 —
—15
40 —
90 I ~ recomb. ----- _
2 —
0 PA --
0 | 95 I R R R B R
b0 HH 60 65 70 75 &0 &8 90 95 100 50 HH 60 65 T0 TH 80 & 90 95 100
MTM[/GGV MTM]/GQV

* pole approximation (PA) for W resonance
sufficient near Jacobian peak, but not for large M+ .,

* EW corrections sensitively depend on treatment of photon radiation
— issue of inclusiveness / KLN violation causes large effects
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13 e+e_—>WW—>4f: double-pole approximation vs. complex-mass scheme

13.1 Double-pole approximation (DPA)

Structure of Monte Carlo generators with EW corrections used at LEP2:
RacoonWW (Denner, Dittmaier,Roth,Wackeroth) and
KoralW & YFSWW (Jadach,Ptaczek,Skrzypek,Ward) include

e full lowest-order matrix elements for ete™ — 4f(+7)

signal diagrams background diagrams
fi w fi

€ w _ € _
fa fa 7
v, Z fa Ve fa "z etc
et w f4 et w = ¥,Z

®* non-universal electroweak corrections DPA

\WY% leading term in expansion about W resonances
— contributions:

— corrections to ee — WW BShm et al. '88; Fleischer, Jegerlehner, Zralek '89

\W

\W

H r/ Bardin, S. Riemann, T. Riemann '86
corrections to W — ff Jegerlehner '86; Denner, Sack 90

. . . Melnikov, Yakovlev '96
— non-factorizable photonic corrections Beenakker, Berends, Chapovsky '97

Denner, Dittmaier, Roth '97

* improvements by leading higher-order corrections
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Virtual corrections in DPA;

* Factorizable corrections:

fl
JLTQ
f3
f_4
on-shell production on-shell decays
METe T WWap R(M;, Mg,)
virt.fact,DPA (k2 — M3, +iMwTw) (k% — ME, +iMwIy)

with the gauge-independent residue

teom WHTW— y W S f1fo x [W™ — f3 f,
ROMGy, M3y) = 3 (oMo e wWIW gt pq s
W-pols

4+ Me+e_—>W+W_5MW+—>f1f2MW_—>f3f4

Born Born

+ Me+e_—>W+W_Mw+—>f1f2 5MW_—>f3f4)

Born Born

containing the corrections to on-shell production and decay
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* Non-factorizable corrections:

Me+e_—>WW—>4f 5Me+e_—>4f . e+e_—>WW—>4f
virt,nonfact,DPA doubly-resonant part virt,fact, DPA

+ —
eTeT -WW—4f
- MBorn,DPA 5virt,nonfact,DPA

Features of 0.i,¢ nonfact, DPA @nalogous to single-resonance case:

¢ gauge independent, no mass singularities

- " - eTe™ SWW—4f
¢ compensates IR singularities of W bosons in M, ¢ . & bpa
¢ no factorization of Breit—Wigner-type resonances

(complicated dependence on off-shellness kft of W bosons)
Manifestly non-factorizable diagrams:
W 4 4
v 1%%
w %% w
Diagrams contributing to factorizable and non-factorizable RCs:
Y
w
w
%
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Combination of contributions:  (as implemented in RacoonWW)

1
do = — dd
/U 28{/ 4

ME e A2

Born

+o— +o—
etTe ->WW-—4f\x« etTeT -WW-—A4f
+ 2 Re( (MBorn,DPA ) 5Mvirt,fact,DPA

_|_ —_
etTeT -WW-—4f 2
+ |MBorn,DPA | 5virt,nonfact,DPA)
+ —
ete —4fv2
+ /dq)‘lf’)’ |MBorn | }

Note: virtual corrections in DPA & real from full amplitudes
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Combination of contributions:  (as implemented in RacoonWW)

1
do = — dd
/U 23{/ 4

ME e A2

Born

—SWW —4f« ete™ S WW—4f
+ 2Re< (MBorn DPA )" OM it fact, DPA

+ |M T WW—4f > non-singular

2
Born ,DPA | 5Virt,nonfact,DPA )

te™ —
_|_|Mee WW 4f|25

Born,DPA sub,1 /

Born

explicit mass singularites —  + |/\/le - _)4f| ®5sub2 ]

Born Born sub
Ny

+/d<1>4f,y |Me+e_—>4ffy|2 B |Me+e_—>4f|254ffy ] }

-~

non-singular

Note: virtual corrections in DPA & real from full amplitudes
— redistribution of singular contributions to avoid mismatch in cancellations
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From LEP2 to the ILC:
Experimental vs. theoretical uncertainties for some observables:
Observable Acxp (LEP2) A (ILC) A (DPA/IBA)

OWW ~ 1% < 0.5% 2% for /s < 170 GeV (IBA range)
0.7% for 170 GeV < /s < 180 GeV
0.5% for 180 GeV < +/s < 500 GeV

My (threshold) ~ 200 MeV — ~ 7MeV ? but > 50 MeV
My (reconstr.)  ~ 30 MeV ~ 10MeV ~ 5—10MeV

TGC some % ~ 0.1% < 1% at LEP2
? at /s > 200 GeV

Exceptional case: threshold region and below (v/s < 170 GeV)

error estimate of DPA not reliable

— description at LEP2 via IBA = “Improved Born Approximation”
(off-shell Born calculation dressed with universal corrections such as ISR)

= DPA/IBA approach sufficiently accurate at LEP2
but precision beyond DPA needed at ILC
— recent treatment beyond DPA in complex-mass scheme
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13.1 The complex-mass scheme at one loop and application to ete” — 4f

The complex-mass scheme at one Ioop Denner, Dittmaier, Roth, Wieders '05

mass? = location of propagator pole in complex p? plane

< complex mass renormalization: My o = piy + Suiy, etc.
N—— ——
bare mass ren. constant

— Feynman rules with complex masses and counterterms

Virtues and drawbacks:

* perturbative calculations as usual

* no double counting of contributions (bare Lagrangian unchanged !)
e spurios terms are of O(a?), but spoil unitarity

* complex gauge-boson masses also in loop integrals

Convenient choice:

complex field renormalization WOjE = (1 + % 0 2w )Wi, etc.
—~— N——
bare field ren. constant

e complex 6Zw appliesto WHand W~ = (WH)T #£ W+

* §Zw drops out in S-matrix elements without external W bosons
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Complex renormalization for W bosons explicitly:

On-shell renormalization conditions for renormalized (transverse) self-energy
ST () = 0, S (uiy) = 0
— i is location of propagator pole, and residue = 1

Solution of renormalization conditions:
S = BT (), 02w = =277 (i)
Note: evaluation of X% (p*) at complex p* can be avoided
Y () = B¢ (M) + (uy — M{)E4Y (M) + O(e”)

N——
beyond one loop

and finite
= Renormalized W self-energy:

SY (p°) = S (0%) — MGy + (p° — My)6 2w
with M3, = S (ME), Zw = =S8 (M)
Differences to the usual on-shell scheme:
* no real parts taken from 2%

e ¥V evaluated with complex masses and couplings
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Full O(«) corrections to (charged-current) et e™ — 4f
Features of the calculation:

e # 1-loop diagrams ~ 1200, loops up to 6-point integrals

* W resonances treated in the complex-mass scheme

* all loop integrals with complex W /Z masses

* new tensor reduction methods for stability in exceptional phase-space points

* real-photonic corrections taken from RacooNnWW

11 lowest-order diagrams:  (*CC11 class”)
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Generic diagrams for loop insertions (4-, 5-, 6-point functions)
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(O(1200) one-loop diagrams per channel:
* 40 hexagons

w fi /2 fi /2 fi

e’ ) f2 et & f2 e 4 f2
Ve v/ Z e w e w

o= - f3 - i f3 t N f3

W fa ~/Z fa ~/Z fa

+ graphs with reversed fermion-number flow in final state

* 112 pentagons
e 227 boxes ('t Hooft—-Feynman gauge)

* many vertex corrections and self-energy diagrams
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Complete O(«) corrections to the total cross section — LEP2 energies
Denner, Dittmaier, Roth, Wieders '05

o[ fb] T 1 I I I | | | |
200 - ¢ ¢ T H Vu o[ %) efe” — v T, etz
—10 —
150 -
-15 —
100 -
—20 —
50 -
—95 ‘ -
0 | | | | | | | | | |
150 160 170 180 190 200 210 150 160 170 180 190 200 210
Vs GeV] V/s[ GeV]

* leedf — DPA| ~ 05% for 170GeV S /s S 210GeV
* leedf —IBA| ~ 2% for /s S170GeV
— agreement with error estimates of DPA and IBA

Remaining theoretical uncertainty from higher-order EW effects ~ a few 0.1%
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Complete O(«) corrections to the total cross section — ILC energies
Denner, Dittmaier, Roth, Wieders '05

o fb] T T T T T 11 20 T T T T TT1
tom TSI
200 b~ eTeT =TT, - 3[%] ete” - v 7D, g
15 -
150 10
)
100
0
50 =
-5
0 N T N N B B I 10
200 500 1000 2000 200 500 1000 2000

VA[GeV] V3[GeV]

* leedf — DPA| ~ 0.7% for 200GeV S +/s S 500GeV

— agreement with error estimate of DPA

* leedf —DPA| ~ 1-2% for 500GeV S /s S1-2TeV
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A (not exhaustive) selection of literature

® Radiative corrections to resonance processes (see also references therein)

¢ expansion about resonance poles (“pole scheme”):
R. G. Stuart, Phys. Lett. B 262 (1991) 113;
A. Aeppli, G. J. van Oldenborgh and D. Wyler, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212];
H. G. J. Veltman, Z. Phys. C 62 (1994) 35.

¢ electroweak corrections to Drell-Yan-like W production:
U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417];
S. Dittmaier and M. Kramer, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062];
U. Baur and D. Wackeroth, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191].
¢ eTe”™ — WW — 4f in DPA:
W. Beenakker, F. A. Berends and A. P. Chapovsky, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481];
S. Jadach et al., Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436];
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307].

¢ eTe™ — 4f and complex-mass scheme at one loop:
A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Phys. Lett. B 612 (2005) 223 [hep-ph/0502063]
and Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042].
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