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Part I

Prolegomena
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Motiv ations

After LEP
After the end� of the Lep era it became evident that including estimates
of higher order radiative corrections into one-loop calculations for
physical (pseudo-)observables could not, anymore, satisfy the need of
precision required by the new generation of experiments.

ILC vs LHC
Admittedly, LHC is an arena for discovery physics, more than anything
else: high precision is certainly not needed, at least in its first phase.
According to some predestinate design hadron machines are
alternating with electron-positron ones and, hopefully, ILC will come
into operation; at that moment the highest available theoretical
precision will play a fundamental role.
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Possib le landscapes

As a matter of fact, it is not clear – at this moment – what kind of
scenario will follow after the first few months of running at LHC; any
evidence of new pysics will favor a striking search for new theoretical
models, for their Born predictions, and the hearthquake could be so
strong to remove any interest in quantum effects of the standard
model. On the contrary, after few months of running, we could be back
to the familiar landscape: effects of new physics hidden inside loops.
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si vis pacem para bellum

We decided to build the envirovment that allows for a complete
two-loop analysis of a spontaneously broken gauge field theory. This
construction requires several steps, so it is difficult to caractherize the
approach with a single achronimus; there are a lot of analytical
aspects in what we are doing, yet the final step (computing arbitrary
two-loop diagrams) can only be done with ‘the numerical way’: we call
it the algebraic - numerical approach.
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What’s new?
If one thinks for a while, everything is in the old papers of ’t Hooft and
Veltman; however, translating few formal properties into a working
scheme is far from trivial; most of the times it is not a question of how
do I do it?, rather it is a question of bookkeeping, namely can I do it
without exhausting the memory of my computer?, or, is there any
practical way of presenting my results besides making my codes
public?.
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layout

First we will deal with general aspects of a spontaneously broken
gauge theory; the treatment of tadpoles, everybody knows how to do it,
yet general results are never presented in a way that everybody can
use them. Secondly, there is the need for a proper diagonalization,
order-by-order, of the neutral sector of a theory of fundamental
interactions: once again, we need a comprehensive collections of
results which allows for practical applications.
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Counter terms?�
Then, there is the perennial question, with or without counter-terms?
In a way, it is a fake question. The two approaches are fully equivalent
and we will discuss the transition from bare parameters to
renormalized ones. Finally we discuss the ultimate step in any
renormalization procedure: the transition from renormalized
parameters to a set of physical (pseudo-)observables.
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Perhaps, one should try to make a clear vocabulary of renormalization
in QFT; a renormalization procedure is designed to bring you from a
Lagrangian to theoretical predictions; it includes,

– regularization (nowadays dimensional regularization is easy to
understand),

– a renormalization scheme and

– an input parameter set.
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Comments
– The scheme, being a transitory step, is almost irrelevant; it can be

on-mass-shell or MS or complex poles, but unless you do
something illegal (resummations that are not allowed or similar
things) it really does not matter.

– One can define MS quantities as convenient landmarks but it is
the last step that matters, at least as long as we have a convenient
subtraction point (which we miss in QCD). Renormalized
quantities should always be expressed in terms of a set of
physical quantities.

– One may indulge to the introduction of an MS running e.m.
coupling constant (importing from QCD to QED, which sounds
strange anyway) but, finally, only cross sectios matter.
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Steps

– All the Green� functions of the theory have to be made finite, up to
two-loops, by introduction of counter-terms and all counter-terms
are of non logarithmic nature, to respect unitarity.

– Renormalized Ward-Slavnov-Taylor identities must be satisfied.

– All ultraviolet finte parts must be classified and an algorithm has to
be designed for their evaluation at any scale.

Of course, there are preliminar steps – not always the easy ones – but
it is only the full control on the multi-scale level that pays off.
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Part II

Higgs tadpoles
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�

the basics

The minimal Higgs sector of the Standard Model (SM) is given by the
Lagrangian

�
S �! #" D$ K %'& " D$ K %  )( 2K & K  *",+.- 2 % " K & K % 2 / (1)

where the covariant derivative is given by

D$ K � 0 $  i
2

gBa$21 a  i
2

g 3 B0$ K / (2)

g 3 - g �4 sin 5 - cos 5 , 1 a are the standard Pauli matrices, Ba$ is a triplet
of vector gauge bosons and B0$ a singlet. For the theory to be stable
we must require +76 0. We choose ( 2 8 0 in order to have
spontaneous symmetry breaking (SSB). The scalar field in the minimal
realization of the SM is

K � 19
2

:<;
i = 0 = 2
;

i = 1

/ (3)

for 2 0 we have SSB, K 0 0. In particular, we choose i 0 to
be the component of K to develop the non-zero VEV, and we set

0 0 0 and 0 0. We then introduce the (physical) Higgs fields
as H zeta v .
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The parameter v is not a new parameter of the model; its value must
be fixed by the requirement that ? H @ 0 � 0 [i.e. ? K @ 0 �A" 1 - 9 2 % " v / 0 % ], so
that the vacuum doesn’t absorb/create Higgs particles. To see how this
works at the lowest order, consider the part of

�
S containing the Higgs

field:
 #" 1 - 2 % ",0 $ H % 2  *"B( 2 - 2 % " H ;

v % 2  *",+.- 8 % " H ;
v % 4 C (4)

These terms generate vertices that imply absorption of H in the
vacuum, namely those linear in H,

 <( 2v  *",+D- 2 % v3 H / (5)

which correspond to the vertex H . This vertex gives a
non-zero value to the diagrams with one ingoing H line, and thus a
non-zero VEV. We will set it to zero, i.e. v �E", 2( 2 -F+ % 1G 2 (or v � 0,
but then, no SSB).
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H

Definitions and Lagrangian

In h.o. of perturbation theory there are more complicated diagrams
contributing to

I ? H @ 0. The parameter v must then be readjusted to
make ? H @ 0 � 0 C First of all, let’s introduce

- the new bare parameters M (the W mass),

- MH , the mass of the physical Higgs particle and

-
�

h (the tadpole constant) according to the following definitions:

M � gv - 2
M2

H � + v2

�
h � ( 2 ;4J

2 v2

�LK
v � 2M - g
+ � " gMH - 2M % 2
( 2 � �

h  1
2M2

H

(6)
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M

The new set of (bare) parameters is therefore

N
g / g 3 / M / MH

/ �
h O (instead of

N
g / g 3 / ( / + / v O % C (7)

Remember that
�

h (like v) is not an independent parameter. In terms
of these parameters the interaction part of the scalar Lagrangian
becomes

� I
S �4 <( 2K & K  *",+.- 2 % " K & K % 2 �4 � h

2M2

g2

; 2M
g

H

; 1
2

H2 ; = 2
0
;

2 =QPR=TS
; M2

H
M2

2g2  1
2

M2
H
H2  g

M2
H

4M
H H2 ; = 2

0
;

2 = P = S
 g2 M2

H

32M2 H2 ; = 2
0
;

2 =DPU=TS 2 / (8)

with =WV �E" = 1 X i = 2 % - 9 2.
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Z
h setting at the lowest order

Let’s now set
�

h such that the VEV of H remains zero to each order of
PT. At the lowest order, the only diagram contributing to ? H @ 0 is

H (9)

originated by the term in
� I

S linear in H,  #" 2� hM - g % H. Therefore, at
the lowest order we will simply set

�
h � 0.
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Z
h setting up to one loop

Define �
h � � h0

;\�
h1g2 ;\�

h2g4 ;^]_]_] C (10)

The lowest-order
�

h setting of the previous section amounts to
�

h0 � 0.
At the one-loop level, two types of diagrams contribute to the Higgs
VEV up to ` " g % :

T0 a + T1 a (11)

where the empty blob on the r.h.s. symbolically indicates all the
one-loop diagrams containing a scalar field (H, =TV , = 0), a gauge field
(Z , W V ), a Faddeev–Popov ghost field (X P , X S , XZ ), or a fermionic
field.
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As an example, consider only the r.h.s. diagram containing the H field:
if this were the only T1 diagram, in order to have ? H @ 0 � 0 it should
cancel with thel.h.s. one (T0), i.e.

" 2cd% 4i  � h
2M
g  g

3M2
H

4M
i c 2A0 " MH % � 0 / (12)

where i c 2A0 " m % �e( 4 S n dnq -f" q2 ; m2  i gh% . The solution of this
equation is

�
h0 � 0 and

�ji H k
h1 � 1

" 2cd% 4i
T1

2Mg �l 1
16c 2

3M2
H

8M2 A0 " MH % C (13)

Of course,
� i H k

h1
is just the contribution to

�
h1

arising from the one-loop
tadpole diagram containing the H field.
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m

The complete expression for
�

h1
in the Rn gauge is

�
h1 �4 1

16c 2

3
2

A0 " M % ; 3
4c2 A0 " M0 % ; M2 ; M2

0

2c2

;
; M2

H

8M2 A0 "Bo Z M0 % ; 2A0 "Bo W M % ;p; 3M2
H

8M2 A0 " MH %
 

f

m2
f

M2 A0 " mf % / (14)

where M0 � M - c and mf are the Z and fermion masses, and
c � cos 5 .
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Z
h ver tices in one-loop calculations

Beyond the lor west order,
�

h is not zero and the Lagrangian
� I

S
contains the following vertices involving a

�
h factor:

H " 2cd% 4i ", 2M
�

h - g % (15)

H H " 2cd% 4i ", � h % (16)

= 0 = 0 " 2cd% 4i ", � h % (17)

=QP =TS " 2cd% 4i ", � h % (18)

(as usual, the combinatorial factorials for identical fields are included.
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Note that only scalar fields appear in the
�

h vertices. These
�

h vertices
must be included in the relevant one-loop calculations. Consider, for
example, the Higgs self-energy at the one-loop level. The diagrams
contributing to this ` " g2 % quantity are

H H
;

H H / (19)

where the empty blob on the r.h.s. represents all the one-loop
contributions (two possible topologies). The l.h.s. diagram containing a
two-leg

�
h vertex shouldn’t be forgotten and plays an important role in

the Ward identities (see later). One should also include diagrams
containing tadpoles:

H H
;

H H / (20)

but these diagrams add up to zero as a consequence of our choice for�
h.
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Z
h setting up to two loops

Up to terms of ` " g3 % , ? H @ 0 gets contributions from the following
diagrams:

T0 a (1) +

T1 a (1/2) +

T2 a (1/6) + (1/4) + (1/4) +

T3 a (1/2) +

T4 a (1/4) + (1/2) +

(21)
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u

T5 a (1/2) + (1) +

T6 a (1/4) + (1/2) +

T7 a vw (1/8) + v vw (1/2) + v vw w (1/2).

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 27 / 47



x

The coefficients in parentheses indicate the combinatorial factors of
each diagram when all fields are identical. By virtue of our previous
choice for

�
h0
y and

�
h1

, all the reducible diagrams add up to zero:
T4 � T5 � T6 � T7 � 0. The equation

3

i z 0

Ti � 0 (22)

provides then
�

h2
:

�
h2 � 1

" 2cd% 4i
T2
;

T3

2Mg3
C (23)
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Z
h ver tices in two-loop calculations

As we described for calculations at the one-loop level, two-leg
�

h

vertices Eq.(16), Eq.(17),Eq.(18)) should be included in all the
appropriate diagrams at the two-loop level, while all graphs (up to two
loops) containing tadpoles will add up to zero as a consequence of our
choice for

�
h0

,
�

h1
and

�
h2

. Note that two-leg
�

h vertices will also
appear in ` " g4 % self-energies of fields which do not belong to the
Higgs sector; for example, in diagrams like these

Z
HH

Z

Z Z
HH

Z /

which are representative of the only two irreducible ` " g4 % Z
self-energy topologies containing

�
h vertices (excluding tadpoles, of

course).

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 29 / 47



|

Definitions and Lagrangian

We will now consider a slightly different strategy to set the Higgs VEV
to zero. Instead} of using Eq.(6), the “

�
h scheme”, we will define the

new bare parameters M 3 (the W mass), M 3
H

(the mass of the physical
Higgs particle) and

�
t (the tadpole constant) according to the following

“
�

t scheme”:

M 3 " 1 ;\� t % � gv - 2
" M 3H % 2 � +~" 2M 3 - g % 2
0 � ( 2 ; J

2 " 2M 3 - g % 2
�LK

v � 2M 3 " 1 ;\� t % - g
+ � gM 3

H - 2M 3 2

( 2 �  1
2 " M 3H % 2

(24)
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�

The new set of bare parameters is therefore

N
g / g 3 / M 3 / M 3

H
/ �

t O instead of
N
g / g 3 / ( / + / v O C (25)

Remember that
�

t (like v and
�

h) is not an independent parameter.
Note that, contrary to

�
h, the parameter

�
t appears in the Higgs

doublet K via
: � H

;
v , with v � 2M 3 " 1 ;\� t % - g [Eq.(24)].

As a consequence, all three terms of the scalar Lagrangian
�

S [Eq.(1)]
depend on it. In particular, the interaction part of the scalar Lagrangian
becomes
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� I
S �! <( 2K & K  *",+.- 2 % " K & K % 2 (26)

�A" 1 ;�� t % 2 1  � t " 2 ;\� t % M 3 2
H

M 3 2
2g2

 � t " � t
;

1 % " � t
;

2 % M 3 2
H

M 3
g

H

 1
2

M 3 2
H

H2  1
4

M 3 2
H

�
t " � t

;
2 % 3H2 ; = 2

0
;

2 = P = S
 g " 1 ;\� t % M 3 2

H

4M 3 H H2 ; = 2
0
;

2 =DPU=WS
 g2 M 3 2

H

32M 3 2 H2 ; = 2
0
;

2 =QPR=TS 2 / (27)
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�

while the term involving the covariant derivatives,  #" D$ K % & " D$ K % ,
results in the same (lengthy)

�
t -independent expression of the

�
h

scheme plus the following
�

t -dependent terms

�
t � igsM 3 = S W P$  = P W S$ A$  s

c
Z$

 gM 3
2

H 2W P$ W S$ ; Z$ Z$
c2

 M 3 2
2 " � t

;
2 % 2W P$ W S$ ; Z$ Z$

c2

; M 3
c

Z$ 0 $Q= 0

;
M 3 W P$ 0 $D=TS ; M 3 W S$ 0 $Q=DP / (28)

where, as usual, W V$ �E" B1$ X iB2$ % - 9 2, s � sin 5 , c � cos 5 , and
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�

Z$
A$ � c  s

s c
B3$
B0$ C (29)

Where else, in the SM Lagrangian, does the parameter
�

t appear?
Wherever v does — as it can be readily seen from Eq.(24). Let’s
quickly discuss the other sectors of the SM: Yang–Mills, fermionic,
Faddeev–Popov (FP) and gauge-fixing. The pure Yang–Mills
Lagrangian obviously contains no

�
t terms.

The gauge-fixing part of the Lagrangian,
�

gf , cancels in the Rn gauges
the gauge–scalar mixing terms Z– = 0 and W V – = V contained in the
scalar Lagrangian

�
S. These terms are proportional to gv - 2, i.e., in

the
�

t scheme, to M 3 " 1 ;\� t % .
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�

gaug e-fixing�
The gauge-fixing Lagrangian

�
gf is matter of choice: we adopt the

usual definition �
gf �4 <� P � S  1

2 � 2
Z  1

2 � 2
A
/ (30)

� A �4 1

o A
0 $ A$ / � Z �4 1

o Z
0 $ Z 0$ ; o Z

M 3
c
= 0
/ � V �4 1

o W
0 $ W V$ ; o W M 3 =TV

(31)
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�

(that is, no
�

t terms), thus canceling the
�

S g-independent
gauge–scalar mixing terms proportional to M 3 , but not those
proportional to

I
M 3 � t [appearing at the end of Eq.(28)], which are of` " g2 % . Clearly, this gauge fixing Lagrangian is different from the usual

one of the
�

h scheme because M and M 3 are not the same�
M � M 3 " 1 ;\� t %h� .

Alternatively, one could choose M 3 " 1 ;\� t % instead of M 3 in eq. (31),
thus canceling all

�
S gauge–scalar mixing terms, both proportional to

M 3 and M 3 � t , but introducing then other new two-leg
�

t vertices. In this
latter case, the gauge fixing Lagrangian is indeed identical to the one
of the

�
h scheme. We will not follow this latter approach. Of course it’s

only matter of choice, but the explicit form of
�

gf determines the FP
ghost Lagrangian.
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�

The parameter
�

t shows up also in the FP ghost sector. The FP
Lagrangian depends on the gauge variations of the chosen
gauge-fixing functions � A, � Z and � V . If, under gauge transformations,
the functions � i transform as

� i � � i
;

Mij
;

gLij � j
/ (32)

with i � A / Z /_� , FP ghost Lagrangian is given by

�
FP ���Xi Mij

;
gLij Xj

C (33)
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�

With the choice for
�

gf given in eq. (30) [and the relation
gv - 2 � M 3 " 1 ;\� t % ] it’s easy to check that the FP ghost Lagrangian
contains the

�
t terms

�
FP �4 M 3 2 �

t o W �X P X P ; o W �X S X S ; o Z �XZ XZ - c2 ;�]_]_] / (34)

where the dots indicate the usual
�

t–independent terms. Had we
chosen

�
gf with M 3 " 1 ;\� t % instead of M 3 in eq. (31), additional

�
t

terms would now arise in the FP Lagrangian.
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�

In the fermionic sector, the parameter
�

t appears in the mass terms:

v9
2
 �� �uu

;�� �dd �4 �" 1 ;�� t % mu �uu
;

md �dd (35)

�
v � 2M 3 " 1 ;\� t % - g � , � and

�
are the Yukawa couplings, and mu, md

are the masses of the fermions. The rest of the fermion Lagrangian
does not contain

�
t , as it doesn’t depend on v . In the

�
t scheme,

contrary to the
�

h one, we have (many) two- and three-leg
�

t vertices
containing also fields outside the scalar sector. Note that three-leg

�
t

vertices introduce a fourth irreducible topology for ` " g4 % self-energy
diagrams containing

�
t vertices, namely:

C
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�

Z
t up to one loop

Define �
t � � t0

;\�
t1g2 ;\�

t2g4 ;�]_]_] C (36)

As we did for
�

h, we will now set the parameter
�

t such that the VEV of
the Higgs field H remains zero to each order of perturbation theory.
At the lowest order, the only diagram contributing to ? H @ 0 is the same
one depicted in (Eq.(9)), originated by the term in

� I
S linear in H,

 � t " � t
;

1 % " � t
;

2 % " M 3 2H
M 3 - g % H. Therefore, at the lowest order we can

simply set
�

t � 0, i.e.
�

t0 � 0.
Up to one loop, the diagrams T 30 and T 31 contributing to the Higgs VEV
are analogous to T0 and T1 appearing in (Eq.(11)), so that

�
t1 can be

set in analogy with
�

h1 :

�
t1 � 1

" 2cd% 4i
T 31

2M 3 gM 3 2H

C (37)

Note that T 31 and T1 have the same functional form, but depend on
different mass parameters; moreover, one gets

�
t1 � � h1 - M2

H

; ` " g2 % .
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�

Z
t up to two loops

The two-loop
�

t fixing slightly differs from the
�

h one. Up to terms of` " g3 % , ? H @ 0 gets contributions from the following diagrams:

T 30 a (1) +

T 31 a (1/2) +

T 32 a (1/6) + (1/4) + (1/4) +

T 33 a (1/2) + (1/2),

plus reducible diagrams (analogous to those appearing in T4–T7 of
section 2.4) which add up to zero because of our choice for

�
t0 and

�
t1 .
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Note the new diagrams in T 33, with three-leg
�

t vertices, not present in
the

�
h case (� T3). The parameter

�
t2 can be set in the usual manner,

requiring

3

i z 0

T 3i � 0 / �LK �
t2 � 1

" 2cd% 4i
T 32 ; T 33

2M 3 g3M 3 2H

 3
2
� 2

t1
C (38)

Note that T 31 � 2 and T1 � 2 have the same functional form (but depend on
different mass parameters) while T 33 and T3 are different also in form.

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 42 / 47



�

A comment on WST identities and mass
renormalization

Consider the (doubly-contracted) WST identity relating the Z
self-energy �T$ � � ZZ " p % , the = 0 self-energy �R¡ o ¡ o " p % , and the Z– = 0

transition � $ � Z ¡ o " p % :
p$ p�Q�T$ � � ZZ " p % ; M2

0 �R¡ o ¡ o " p % ; 2ip$ M0 �W$ � Z ¡ o " p % � 0 C (39)

Both in
�

h and
�

t schemes, each of the three terms in Eq.(39) contains
tadpoles diagrams, but they add up to zero, within each term.
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For example, at the one-loop level, the first term in Eq.(39) contains
the tadpoles diagrams

Z Z
and

Z Z (40)

which cancel each other. In the
�

h scheme at the one-loop level, only
the second term of the identity (Eq.(39)) includes a diagram with a
two-leg

�
h vertex (Eq.(17)); in higher orders, two-leg

�
h vertices will

appear in all three terms. In the
�

t scheme, all three terms of Eq.(39)
contain the two-leg

�
t vertices already at the one-loop level. Similar

comments are valid for the WST identity involving the W self-energy.

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 44 / 47



£

Renormalization¤
Concerning renormalization, the constraint imposed on

�
h (or

�
t ) in the

previous sections is the renormalization condition to insure that? 0 ¥H ¥0 @ � 0, also in the presence of radiative corrections. In particular,
the renormalized

�
h � t parameters are

�¦i R k
h � t � � h � t ;^§¨� h � t � 0. The

equivalent of Eq.(6)) and Eq.(24) for the renormalized parameters are
just the same equations with

� i R k
h � � i R kt � 0.
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In the
�

h scheme, the one-loop renormalization of the W and Z
masses involves the diagrams

" a % " b % " c % C (41)

(Diagrams " a % have two possible loop topologies.)

Both " a % and " b % are gauge-dependent, but their sum is
gauge-independent on-shell. However, as we choose the

�
h tadpole

" c % to cancel " b % , the mass counterterm contains only " a % and is
therefore gauge-dependent.
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ª

On the contrary, in the
�

t scheme, the one-loop renormalization of the
W and Z masses« involves the diagrams

" a % " c % " b % " d % C (42)

Once again, both " a % and " b % diagrams are gauge-dependent, their
sum is gauge-independent on-shell, and the

�
t tadpole " d % is chosen

to cancel " b % . But, the mass counterterm is now gauge-independent,
as it contains both " a % and the two-leg

�
t vertex diagram " c % (which is

missing in the
�

h case).
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�

New coupling constant in the � h scheme

The Z–� transition� in the SM does not vanish at zero squared
momentum transfer. Although this fact does not pose any serious
problem, not even for the renormalization of the electric charge, it is
preferable to use an alternative strategy. Let’s introduce the new
SU � 2 � coupling constant �g, the new mixing angle �� and the new W
mass �M in the

�
h scheme:

g � �g � 1 ����� g ����� � sin ��"! cos �� �#�g
v � 2 �M ! �g $%� �gMH

!
2 �M 2 & 2 � � h � 1

2M2
H

(1)
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note: g sin
�(!

cos
� �)�g sin ��"! cos �� , where � �*� 1 �g2 ��� 2 �g4 �,+-+-+ is a

new parameter. yet to be specified. This change of parameters entails
new �A/ and �Z/ fields related to B3/ and B0/ by

�Z 0/�A/ � cos �� � sin ��
sin �� cos �� B3/

B0/ 0 (2)

The replacement g 12�g � 1 ���3� introduces in the SM Lagrangian
several terms containing the new parameter � . Let us take a close look
at these ‘ � terms’ in each sector of the SM.
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5 The pure Yang–Mills Lagrangian

6
YM ��� 1

4
F a/�7 F a/37 � 1

4
F 0/�7 F 0/�798 (3)

with F a/37 ��:;/ Ba7 �<:;7 Ba/ � g = abcBb/ Bc7 and F 0/�7 �>:�/ B07 �?:�7 B0/ ,
contains the following new � terms when we replace g by �g � 1 ����� :

@BA
YM CED i Fg GHFc IKJML FZ0NPO W QN W RL D W QL W RN�S D FZ0L O W QN JTL W RN D W RN JML W QNUSV FZ0NWO W QL J L W RN D W RL J L W QN�SMX D i Fg GYFs IKJ L FA N O W QN W RL D W QL W RN�S

D FA L O W QN JTL W RN D W RN JML W QN S V FA N O W QL JML W RN D W RL JTL W QN STXV Fg2 G[Z 2 V G]\U^ 1
2
O W QN W RL W QN W RL D W QN W RN W QL W RL SV Fc2 O FZ0N W QN FZ0L W RL D FZ0N FZ0N W QL W RL S V Fs2 O FA N W QN FA L W RL D FA N FA N W QL W RL SV Fs Fc O FA N FZ0L Z W QN W RL V W QL W RN \ D 2 FA N FZ0N W QL W RL S[_a` (4)
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b

where �s � sin �� and �c � cos �� . As these terms are of cd�-�g3 � or cd�-�g4 � ,
they do not contribute to the calculation of self-energies at the
one-loop level, but they do beyond it.
5 The scalar Lagrangian

6
S contains several new � terms when we

employ the relation g �*�g � 1 ����� and the
�

h scheme of eqs. (1).
Actually, the last two equations in (1) are not needed here, as the
interaction part of the scalar Lagrangian does not induce � terms.
They can be arranged in the following three classes

e 6
S f h � e 6 g nf h 2 i

S f h � e 6 g nf h 3 i
S f h � e 6 g nf h 4 i

S f h 8 (5)
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j

according to the number of fields (nf ) appearing in each interaction
term (indicated by the superscript in parentheses. Note that this
superscript does not indicate, in general, the order in �g). The explicit
expressions, up to terms of cd� �g4 � , are@BA9k nf l 2 m

S n h C FM Ga^ D 1

2
FM Fs2 G FA N FA N D 1

2
FM O 2 V GHFc2 S FZ0N FZ0N

D FM FsFc O 1 V GHFc2 S FA N FZ0N V J N-o 0 O Fs FA N V Fc FZ0NpS
D FM Z 2 V G]\ W QN W RN V W RN J N o Q V W QN J N o R _ ` (6)

@BA k nf l 3 m
S n h C Fg G ^ D FMH q FZ0N FZ0N V FsFc FA N FZ0N V 2W QN W RN�r

V 1

2
O Fs FA N V Fc FZ0N S�O H J N o 0 D o 0 J N H

V
i o Q-J N o R D i o RWJ N o Q S

V
i O o R W QN D o Q W RN S qMFs FM FA N D ZsFs2 t Fc \ FM FZ0N V 1

2
J N o 0 r

V 1

2
W RN J N-o Q O H V i o 0 S V 1

2
W QN J NUo R O H D i o 0 S D 1

2
J N H O o Q W RN V o R W QN Su_9` (7)

@BA k nf l 4 m
S n h C Fg2

2
G3v D 1

2
O H2 V o 2

0 S q FZ0N FZ0N V FsFc FA N FZ0N V 2W QN W RN rV o Q o R O D 2 Fs2 FA N FA N V Z 1 D 2 Fc2 \ FZ0N FZ0N V ZKFs t Fc D 4 Fs Fc \ FA N FZ0NTS
D 2W QN W RN o Q o R V O Fs FA N D ZsFs2 t Fc \ FZ0NpS�w
w ^ o 0 O o Q W RN V o R W QNUS D iH O o Q W RN D o R W QN3S[_yxPz (8)
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{

The interaction part of the scalar Lagrangian,6 I
S ��� & 2K | K �}�y$ ! 2 �u� K | K � 2, does not induce � terms; these are only

originated by~ the term involving the covariant derivatives,� � D/ K ��|�� D/ K � . On the other hand, as M
!
g � �M ! �g, the

�
h terms

induced by
6 I

S are expressed in terms of the ratio of the barred
parameters �M ! �g.
5 We choose the gauge-fixing Lagrangian

6
gf with the following gauge

functions:

�
A ��� 1�

A

: / �A/ 8 �
Z ��� 1�

Z

: / �Z 0/ � � Z

�M
�c � 0 8 ��� ��� 1�

W

: / W �
/ � � W

�M �
�
0

(9)
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�

gaug e fixing�
This R� gauge � -independent

6
gf cancels the zeroth order (in �g)

gauge–scalar mixing terms introduced by
6

S, but not those
proportional to � . Had one chosen gauge-fixing functions eqs. (9) with
unbarred quantities, all the gauge–scalar mixing terms of

6
S would be

canceled, including those proportional to � , but additional new �
vertices would also be introduced.
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�

5 New � terms are also originated in the Faddeev–Popov ghost sector.
Studying the gauge transformations of the gauge-fixing functions

�
A,
�

Z

and
� �

defined in eqs. (9), the additional new � terms of the FP
Lagrangian in the

�
h scheme are:

e 6
FP f h � e 6 g nf h 2 i

FP f h � e 6 g nf h 3 i
FP f h 8 (10)

where the two-field terms are,

e 6 g nf h 2 i
FP f h ���%� �M2 �

Z
�XZ XZ � �s

�c XA � � W
�X � X ��� �X � X � 8 (11)
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�

and the three-field terms are

e 6 g nf h 3 i
FP f h � �B�g i �cW �/ �y:;/ �XZ

!��
Z � X �����y:;/ �X � !�� W � XZ (12)

� i �sW �/ �y: / �XA

!��
A � X � ���y: / �X � !�� W � XA

� i �cW �/ �y:�/ �X � !�� W � XZ ���y:�/ �XZ

!��
Z � X �

� i �sW �/ �y:;/ �X � !�� W � XA ���y:�/ �XA

!��
A � X �

� i �c �Z 0/ �y: / �X � !�� W � X � ���y: / �X � !�� W � X �
� i �s �A/ �y:;/ �X � !�� W � X �����y:;/ �X � !�� W � X �
� 1

2
�

W
�M i � 0 �X � X � � �X � X � � H �X � X � � �X � X �

� 1
2 �c
�

Z
�M �XZ iX � � ��� iX � � ���<�sHXA ���cHXZ

� i
2
�

W
�M �X � � � ���cXZ ���sXA ��� �X � � � �y�cXZ ���sXA � 0
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FP ghost fields

The bars over the FP ghost fields indicate conjugation. Obviously, the
new FP fields XA and XZ should also be denoted with the bar for the
field rediagonalization, just like the new fields �A/ and �Z/ . However, this
notation would be too messy and we will leave this point understood.

Note that the FP ghost – gauge boson vertices are simply the usual
ones with g replaced by �g � . This is not the case, in general, for the FP
ghost – scalar terms.
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5 Finally, the fermionic sector. The fermion – gauge boson Lagrangian,

6
fG � i

2 � 2
g W �/ �u �a/�� 1 ��� 5 � d � W �/ �d ��/�� 1 ��� 5 � u

� i
2c

g Z/ �f �a/ I3 � 2Qf s
2 � I3 � 5 f � i gs Qf A/ �f �a/ f 8 (13)

(where I3 ��� 1
!
2 is the weak isospin third component of the fermion f ,

and Qf its charge in units of �e � ) becomes, under the replacement
g 1��g � 1 ����� and the

�
, A/ and Z/ redefinitions,
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Fermions

6
fG � i

2 � 2
�g � 1 � ��� W �/ �u ��/¡� 1 �¢� 5 � d � W �/ �d �a/�� 1 ��� 5 � u

� i
2 �c �g �Z 0/ �f ��/ I3 � 2Qf �s2 � I3 � 5 f � i �g �s Qf �A/ �f �a/ f

� i
2
�g � �s �A/ �£�c �Z 0/ I3 �f � / � 1 ��� 5 � f 0 (14)

The new neutral and charged current � vertices are immediately
recognizable. The CKM matrix has been set to unity.
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The fermion–scalar Lagrangian does not induce � terms. Indeed, the
Yukawa couplings ¥ and

�
in

6
fS ���¦¥ �§ LKuR � � �§ LK cdR � h.c. (15)

(where K c � i ¨ 2K © is the conjugate Higgs doublet) are set by¥ v
! � 2 � mu and

�
v
! � 2 �>� md . As v � 2 �M ! �g, it is ¥ª�)�gmu

! � 2 �M
and

� ���«�gmd
! � 2 �M, and no � appears in Eq.(15).
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Yang–Mills

The Feynman rules for all these new � vertices are computed, up to
terms of cd� �g4 � . Those corresponding to the pure Yang–Mills
Lagrangian [Eq.(4)] are not listed, as they are identical to the usual
Yang–Mills ones, except for the replacement g 12�g � in the three-leg
vertices, and g2 12�g2 ��� 2 ����� in the four-leg ones. In Appendix C, all
bars over the various symbols (indicating rediagonalization) have been
dropped, except over �g.
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New coupling constant in the � t scheme

The
�

t scheme equations corresponding to Eq.(1) are the following

g � �g � 1 ���3� g � ��� � sin ��"! cos �� ���g
v � 2 �M � � 1 � � t � ! �g $®� �gM �

H

!
2 �M � 2 & 2 ��� 1

2 � M �H � 2 0
(16)

(Note: g sin
�B!

cos
� �¯�g sin ��B! cos �� .) The analysis of the � terms

presented in the previous section for the
�

h scheme can be repeated
for the

�
t scheme using Eq.(16) instead of Eq.(1). The new fields �A/

and �Z/ are related to B3/ and B0/ by Eq.(2). Thus, we obtain the
following results:
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5 The replacement g 1 �g � 1 ���3� in the pure Yang–Mills sector
introduces new � vertices collected in

e 6
YM, which does not depend

on the parameters of the
�

h f t schemes.
e 6

YM has already been given
in Eq.(4).
5 The new � terms introduced in

6
S by eqs. (16) can be arranged once

again in the three classes

e 6
S f t � e 6 g nf h 2 i

S f t � e 6 g nf h 3 i
S f t � e 6 g nf h 4 i

S f t 8 (17)

according to the number of fields appearing in the � terms. The explicit
expression for

e 6±g 2 i
S f t is, up to terms of cd�-�g4 � ,
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e 6 g nf h 2 i
S f t � �M � � � 1

2
�M � �s2 � �A/ �A/³� 1

2
�M � 2 ��� �c2 � 4

�
t �Z 0/ �Z 0/ (18)

� �M � �s�c 1 ��� �c2 � 2
�

t �A/ �Z 0/ �,:;/ � 0 �s �A/´� �c �Z 0/ � 1 � � t �
� �M � � 2 ���µ� 4

�
t � W �/ W �/ � W �/ :�/ � � � W �/ :;/ � � � 1 � � t

with �s � sin �� and �c � cos �� , while, up to the same cd�-�g4 � ,
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more fields e 6 g nf h 3 f 4 i
S f t � e 6 g nf h 3 f 4 i

S f h �M 1 �M � (19)

[
e 6 g nf h 3 i

S f h and
e 6 g nf h 4 i

S f h are given in eqs. (7) and (8)]. The subscripts t
and h indicate the

�
t and

�
h schemes. Note the presence of

�
t factors

in the new � terms of Eq.(18). We will comment on this in sec. 23.
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5 Our recipe for gauge-fixing is the same as in the previous sections:
we choose the R� gauge

6
gf to cancel the zeroth order (in �g)

gauge–scalar mixing terms introduced by
6

S, but not those of higher
orders (see discussions in 2). Here, this prescription is realized by

6
gf

with

�
A ��� 1�

A

:;/ �A/ 8 �
Z ��� 1�

Z

:;/ �Z 0/ � � Z

�M ��c � 0 8 � � ��� 1�
W

:�/ W
�
/ � � W

�M � �
� 8

(20)

clearly � -independent.
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The new � terms of the FP ghost Lagrangian in the
�

t scheme are:

e 6
FP f t � e 6 g nf h 2 i

FP f t � e 6±g nf h 3 i
FP f t 8 (21)

where the two-field terms are

e 6±g nf h 2 i
FP f t ���E� 1 � � t �¹� �M � 2 �

Z
�XZ XZ � �s

�c XA � � W
�X � X ��� �X � X � 8

(22)

and the three-field terms are the same as in the
�

h scheme, with �M
replaced by �M � : e 6±g nf h 3 i

FP f t � e 6 g nf h 3 i
FP f h � �M 1 �M � � [Eq.(12)]. Like in the

scalar sector, the � and
�

t factors are entangled; see sec. 23 for a
comment.
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5 We conclude this analysis with the fermionic sector. As in the
Yang–Mills case, the fermion – gauge boson Lagrangian

6
fG does not

depend on the» parameters of the
�

h or
�

t schemes. Its expression in
terms of the new coupling constant �g contains new � terms and is
given in Eq.(14). The neutral sector rediagonalization induces no �
terms in the fermion–scalar Lagrangian

6
fS [Eq.(15)], which contains,

however, the
�

t vertices (the ratio M � ! g is now replaced by the
identical ratio �M � ! �g).

The Feynman rules for all � vertices are listed in Appendix C, up to
terms of cd� �g4 � . All primes and bars over A/ , Z/ , M, MH and

�
have

been dropped (but not over �g). As we mentioned at the end of the
previous section, the � vertices of the pure Yang–Mills sector need not
be listed.
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The ½ – � t mixing

A comment on¾ the presence of
�

t factors in the new � vertices is now
appropriate. Consider the scalar Lagrangian

6
S. As we already

pointed out in sec. 2, the interaction part of
6

S,6 I
S ��� & 2K | K �¢�y$ ! 2 �u� K | K � 2, does not induce � terms. On the other

hand,
6 I

S gives rise to
�

t terms: as M � ! g � �M � ! �g, these
�

t terms are
simply expressed in terms of �M � ! �g instead of M � ! g.

The derivative part of the scalar Lagrangian, � � D/ K ��|¿� D/ K � , induces
both � and

�
t vertices, plus mixed ones which we still call � vertices

(see the
�

t factors in the two-leg � terms of
e 6 g nf h 2 i

S f t ).
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It works like this: first, we replace g 12�g � 1 ���3� and g � 1Á�«�g �p�s ! �c � in� � D/ K � | � D/ K � , splitting the result in two classes of terms, both written
in terms of �g, with or without � .
Then we substitute in both classes v 1 2 �M � � 1 � � t � ! �g: the class
containing � is, up to terms of cd�-�g4 � , e 6 S f t [Eq.(17)], and includes
also

�
t factors, while the class free of � has the same

�
t vertices as

Eq.(?? ) with g,
�
, M � , A/ and Z/ replaced by �g, �� , �M � , �A/ and �Z 0/ . The

upshot is that you need both the results for the new � vertices derived
in the previous section 16 (containing

�
t ), and the expressions for the�

t terms.

The � and
�

t terms of the Faddeev–Popov sector are intertwined just
as in the case of the scalar Lagrangian.
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Summar y of the special ver tices

The upshot of these first sections of the paper lies in the Appendices.
There you find� the full set of Standard Model � [up to cd�-�g4 � ] and

�
h f t

special vertices in the R� gauges. All primes and bars over A/ , Z/ , M,
MH and

�
have been dropped, but not over �g, the SU � 2 � coupling

constant of the rediagonalized neutral sector. Just pick your tadpole
scheme,

�
h or

�
t , and compute your Feynman diagrams including the�

h f t vertices of Appendix A or B, respectively.

If you prefer to work with the rediagonalized neutral sector, you should
simply replace g by �g in the

�
h f t vertices, and add to them the � ones

of Appendix C. There, � vertices are listed for the
�

t scheme (note that� and
�

t terms are intertwined — see sec. 23); just set
�

t � 0 if you
are using the

�
h scheme instead.
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Finally, the following table graphically summarizes which of the SM
sectors provide each type of special vertex. Note the overlap of � and�

t terms in the scalar and Faddeev–Popov sectors.

SECTOR
�

h
�

t �
Scalar: � D/ K � | � D/ K � 5 5
Scalar:

& 2K | K �?�y$ ! 2 �u� K | K � 2 5 5
Yang–Mills 5
Gauge-Fixing

Faddeev–Popov 5 5
Fermion – gauge boson 5
Fermion – Higgs 5
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WSTI for two-loop gaug e boson self-ener gies

WSTI
The purpose of this section is to discuss in detail the structure of the
(doubly-contracted) Ward-Slavnov-Taylor identities (WSTI) for the
two-loop gauge boson self-energies in the Standard Model, focusing in
particular on the role played by the reducible diagrams. This analysis
is performed in the ’t Hooft–Feynman gauge.
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Definitions and WST identities

Let Æ ij be the sum of all diagrams (both one-particle reducible and
irreducible) with two external boson fields, i and j , to all orders in
perturbation theory (as usual, the external Born propagators are not to
be included in the expression for Æ ij )

Æ ij � Ç
n h 1

g2n

� 16È 2 � n Æ
g n i
ij 0 (23)

In the subscripts of the quantities Æ g n iij we will also explicitly indicate,
when necessary, the appropriate Lorentz indices with Greek letters. At
each order in the perturbative expansion it is convenient to make
explicit the tensor structure of these functions by employing the
following definitions:
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Æ g n i/�7 f VV � D
g n i
VV Ê /�7Ë� P

g n i
VV p/ p7 Æ g n i/ f VS ��� ip/ MS G

g n i
VS Æ g n iSS � R

g n i
SS 8

(24)
where the subscripts V and S indicate vector and scalar fields, MS is
the mass of the Nambu–Goldstone scalar S, and p is the incoming
momentum of the vector boson (note: Æ g n i/ f SV �>�%Æ g n i/ f VS). The quantities
Dij , Pij , Gij , and Rij depend only on the squared four-momentum and
are symmetric in i and j . Furthermore, D and R have the dimensions
of a mass squared, while G and P are dimensionless.
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The WST identities require that, at each perturbative order, the
gauge-boson self-energies

satisfy the equations

p/ p7ËÆ g n i/37 f AA � 0

p/ p7 Æ g n i/37 f AZ � ip/ M0 Æ g n i/ f A o o � 0

p/ p7±Æ g n i/�7 f ZZ � M2
0 Æ g n io o o o � 2 ip/ M0 Æ g n i/ f Z o o � 0

p/ p7±Æ g n i/37 f W W � M2 Æ g n ioyo � 2 ip/ M Æ g n i/ f W o � 0 8 (25)
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which imply the following relations among the form factors D, P, G,
and R

D
g n i
AA � p2 P

g n i
AA � 0 (26)

D
g n i
AZ � p2 P

g n i
AZ � M2

0 G
g n i
A o o � 0 (27)

p2 D
g n i
ZZ � p4 P

g n i
ZZ � M2

0 R
g n io o o o � � 2 M2

0 p2G
g n i
Z o o (28)

p2 D
g n i
WW � p4 P

g n i
WW � M2 R

g n ioÎo � � 2 M2 p2G
g n i
W o 0 (29)

The subscripts A, Z , W , � and � 0 clearly indicate the SM fields. We
have verified these WST Identities at the two-loop level (i.e. n � 2) with
our code GraphShot.
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WSTI at two loops: the role of reducib le diagrams

At any given order in the coupling constant expansion, the SM gauge
boson self-energies satisfy the WSTI (25). For n Ð 2, the quantities
Æ g n iij contain both one-particle irreducible (1PI) and reducible (1PR)

contributions. At cd� g4 � , the SM Æ g n iij functions contain the following
irreducible topologies:

eight two-loop topologies,

three one-loop topologies with a
�

t1 vertex,

four one-loop topologies with a � 1 vertex,

and one tree-level diagram with a two-leg cd� g4 � � t or � vertex .
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Reducible cd� g4 � graphs involve the product of two cd� g2 � ones:

two one-loop diagrams,

one one-loop diagram and a tree-level diagram with a cd� g2 �
two-leg vertex insertion,

or two tree-level diagrams, each with a cd� g2 � two-leg vertex
insertion.

There are also cd� g4 � topologies containing tadpoles but, as we
discussed in previous sections, their contributions add up to zero as a
consequence of our choice for

�
t .

In the following we analyze the structure of the cd� g4 � WSTI for photon,
Z , and W self-energies, as well as for the photon–Z mixing,
emphasizing the role played by the reducible diagrams.
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The photon self-ener gy

The contribution. of the 1PR diagrams to the photon self-energy atcd� g4 � is given, in the ’t Hooft–Feynman gauge, by (with obvious
notation)

Æ Z 2 \ R/�7 f AA � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/�7 f AA � 1

p2 � M2
0

ÕÆ Z 2 \ R/37 f AA 8 (30)

where

ÔÆ Z 2 \ R/�7 f AA � Æ g 1 i/�Ö f AA Æ g 1 iÖ"7 f AA

ÕÆ Z 2 \ R/37 f AA �×Æ g 1 i/3Ö f AZ Æ g 1 iÖ"7 f ZA ��Æ g 1 i/ f A o o Æ g 1 i7 f o oA 0
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It is interesting to consider separately the reducible diagrams that
involve an inter. mediate photon propagator ( ÔÆ Z 2 \ R/37 f AA) and those including
an intermediate Z or � 0 propagator (

ÕÆ Z 2 \ R/37 f AA). By employing the
definitions given in the previous subsection and eq. (26) with n � 1,
one verifies that ÔÆ 2R/�7 f AA obeys the photon WSTI by itself,

Theorem

p/ p7 ÔÆ Z 2 \ R/37 f AA � p2 D
g 1 i
AA � p2 P

g 1 i
AA

2 � 0 0 (31)
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This is not the case for
ÕÆ Z 2 \ R/�7 f AA, although most of its contributions cancel

when contracted by p/ p7 as a consequence of eq. (27) (n � 1),

p/ p7 ÕÆ Z 2 \ R/�7 f AA � p2 M2
0 p2 � M2

0 G
g 1 i
A o o 2

0 (32)

The only diagrams contributing to the A– � 0 mixing up to cd� g2 � are
those with a W– � or FP ghosts loop, and the tree-level diagram with a� insertion. Their contribution, in the ’tHooft–Feynman gauge, is

G
g 1 i
A o 0 � � 2ÈÓ� 4i sc 2B0 � p2 8 M 8 M �Ú� 16È 2 � 1 0 (33)

A direct calculation (e.g. with GraphShot) shows that this residual
contribution of the reducible diagrams to the cd� g4 � photon WSTI,
eq. (32), is exactly canceled by the contribution of the cd� g4 � irreducible
diagrams, which include two-loop diagrams as well as one-loop graphs
with a two-leg vertex insertion.
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The photon– Z mixing

We now consider the second of eqs. (25) for n � 2. Reducible
diagrams contribute to both A–Z and A– � 0 transitions. Following the
example of Eq.(30), we divide these contributions in two classes: the
diagrams that include an intermediate photon propagator and those
mediated by a Z or a � 0, namely, for the photon–Z transition in the
’t Hooft–Feynman gauge,

Æ Z 2 \ R/37 f AZ � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/37 f AZ � 1

p2 � M2
0

ÕÆ Z 2 \ R/37 f AZ

ÔÆ Z 2 \ R/37 f AZ � Æ g 1 i/3Ö f AA Æ g 1 iÖ"7 f AZÕÆ Z 2 \ R/37 f AZ � Æ g 1 i/3Ö f AZ Æ g 1 iÖ"7 f ZZ ��Æ g 1 i/ f A o o Æ g 1 i7 f o oZ 8 (34)
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and, for the photon– � 0 transition in the same gauge,

Æ Z 2 \ R/ f A o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/ f A o o � 1

p2 � M2
0

ÕÆ Z 2 \ R/ f A o o
ÔÆ Z 2 \ R/ f A o o � Æ g 1 i/�Ö f AA Æ g 1 iÖ f A o oÕÆ Z 2 \ R/ f A o o � Æ g 1 i/�Ö f AZ Æ g 1 iÖ f Z o o ��Æ g 1 i/ f A o o Æ g 1 io o o o 0 (35)
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The reducible diagrams with an intermediate photon propagator satisfy
the WSTI by themselves. Indeed,

p/ p7 ÔÆ Z 2 \ R/37 f AZ � iM0p/ ÔÆ Z 2 \ R/ f A o o � 0 8 (36)

as it can be easily checked using eq. (26) with n � 1. On the contrary,
the remaining reducible diagrams must be added to the irreduciblecd� g4 � contributions in order to satisfy the WSTI for the photon–Z
mixing:

Theorem

p/ p7
ÕÆ Z 2 \ R/�7 f AZ� 2ÈÓ� 4i � p2 � M2

0 � � Æ
Z 2 \ I/�7 f AZ

� iM0p/
ÕÆ Z 2 \ R/ f A o 0� 2ÈÓ� 4i � p2 � M2

0 � ��Æ
Z 2 \ I/ f A o 0

� 0 0 (37)

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 40 / 80



Þ

The Z self-ener gy
Also in the case of the WSTI for the cd� g4 � Z self-energy it is
convenient to separate the reducible contributions mediated by a
photon propagator from the rest of the reducible diagrams. In the
’t Hooft–Feynman gauge it is

Æ Z 2 \ R/37 f ZZ � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/37 f ZZ � 1

p2 � M2
0

ÕÆ Z 2 \ R/�7 f ZZ

ÔÆ Z 2 \ R/�7 f ZZ � Æ g 1 i/3Ö f ZA Æ g 1 iÖ"7 f AZÕÆ Z 2 \ R/�7 f ZZ � Æ g 1 i/3Ö f ZZ Æ g 1 iÖ"7 f ZZ ��Æ g 1 i/ f Z o o Æ g 1 i7 f o oZ 8 (38)

Æ Z 2 \ R/ f Z o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/ f Z o o � 1

p2 � M2
0

ÕÆ Z 2 \ R/ f Z o o
ÔÆ Z 2 \ R/ f Z o o � Æ g 1 i/3Ö f ZA Æ g 1 iÖ f A o oÕÆ Z 2 \ R/ f Z o o � Æ g 1 i/3Ö f ZZ Æ g 1 iÖ f Z o o � Æ g 1 i/ f Z o o Æ g 1 io o o o 8 (39)
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Æ Z 2 \ Ro o o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ Ro o o o � 1

p2 � M2
0

ÕÆ Z 2 \ Ro o o o
ÔÆ Z 2 \ Ro o o o � Æ g 1 iÖ f o oA Æ g 1 iÖ f A o oÕÆ Z 2 \ Ro o o o � Æ g 1 iÖ f o oZ Æ g 1 iÖ f Z o o ��Æ g 1 io o o o Æ g 1 io o o o 8 (40)

and, once again, the reducible diagrams mediated by a photon
propagator satisfy the WSTI by themselves, i.e.

p/ p7 ÔÆ Z 2 \ R/37 f ZZ � M2
0 ÔÆ Z 2 \ Ro o o o � 2 i p/ M0 ÔÆ Z 2 \ R/ f Z o o � 0 8 (41)

as it can be easily checked using the one-loop WSTI for the photon–Z
mixing [eq. (27) with n � 1].
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The W self-ener gy

All the cd� g4 � 1PR contributions to the WSTI for the W self-energy are
mediated, in the ’t Hooft–Feynman gauge, by a charged particle of
mass M. A separate analysis of their contribution does not lead, in this
case, to particularly significant simplifications of the structure of the
WSTI. However, some cancellations among the reducible terms occur,
allowing to obtain a relation that will be useful in the discussion of the
Dyson resummation of the W propagator. The 1PR quantities that
contribute to the cd� g4 � WSTI for the W self-energy have the following
form:

Æ Z 2 \ R/�7 f W W � 1
� 2ÈÓ� 4i � p2 � M2 � D

g 1 i
WW

2 Ê /37
� p/ p7 2 D

g 1 i
WW P

g 1 i
WW � p2 P

g 1 i
WW

2 � M2 G
g 1 i
W o 2

(42)
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Æ Z 2 \ R/ f W o � � i p/ M
� 2ÈÓ� 4i � p2 � M2 � G

g 1 i
W o D

g 1 i
WW � p2 P

g 1 i
WW � R

g 1 ioÎo
Æ Z 2 \ RoÎo � 1

� 2ÈÓ� 4i � p2 � M2 � p2 M2 G
g 1 i
W o 2 � R

g 1 ioÎo 2

0 (43)

Contracting the free indices with the corresponding external momenta,
summing the three contributions and employing eq. (29) with n � 1, we
obtain

� 2ÈÓ� 4i p/ p7 Æ Z 2 \ R/37 f W W � M2 Æ Z 2 \ RoÎo � 2 i p/ M Æ Z 2 \ R/ f W o � p2 M2 G
g 1 i
W o 2

� R
g 1 ioyo D

g 1 i
WW � p2 P

g 1 i
WW 0 (44)
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Dyson resummed propagator s and their WSTI

Dyson resummed propagator s

We will now present the Dyson resummed propagators for the
electroweak gauge bosons. We will then employ the results of sec. 27
to show explicitly, up to terms of cd� g4 � , that the resummed
propagators satisfy the WST identities.
Following definition (23) for Æ ij , the function Æ I

ij represents the sum of
all 1PI diagrams with two external boson fields, i and j , to all orders in
perturbation theory (as usual, the external Born propagators are not to
be included in the expression for Æ I

ij ).
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As we did in eqs. (24), we write explicitly its ,

Lorentz structure

Æ I/37 f VV � D I
VV Ê /37ä� P I

VV p/ p7 (45)

Æ I/ f VS � � ip/ MS GI
VS Æ I

SS � R I
SS 8 (46)

where V and S indicate SM vector and scalar fields, and p/ is the
incoming momentum of the vector boson [note: Æ I/ f SV ���%Æ I/ f VS].
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We also introduce¾ the

transver se and longitudinal projector s

t /�7 � Ê /37æ� p ç p è
p2 8 l /37 � p ç p è

p2 8
t /�Ö t Ö"7 � t /37 8 l /�Ö l Ö"7 � l /37 8 t /3Ö l Ö"7 � 0 8
Æ I/37 f VV � D I

VV t/37 � LI
VV l/37 8 LI

VV � D I
VV � p2 P I

VV 0 (47)
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The full propagator for a field i which mixes with a field j via the
function Æ I

ij is given by the perturbative series

�e ii � e
ii � e

ii Ç
n h 0

n � 1

l h 1 kl

Æ I
kl D 1kl

e
kl kl

(48)

� e
ii � e

ii Æ I
ii
e

ii � e
ii

k1 h i f j Æ
I
ik1

e
k1k1

Æ I
k1 i
e

ii �ê+-+-+ 8

where k0 � kn � 1 � i , while for l ë� n � 1, kl can be i or j .
e

ii is the Born
propagator of the field i .
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We rewrite Eq.(48) as

�e ii � e ii í 1 ���3Æ e � ii î � 1 8 (49)

and refer to �e ii as the resummed propagator. The quantity �3Æ e � ii is
the sum of all the possible products of Born propagators and
self-energies, starting with a 1PI self-energy Æ I

ii , or transition Æ I
ij , and

ending with a propagator
e

ii , such that each element of the sum
cannot be obtained as a product of other elements in the sum.
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A diagrammatic representation of �3Æ e � ii is the following,

�3Æ e � ii � � � �ð+-+-+
where the Born propagator of the field i (j) is represented by a dotted
(solid) line, the white blob is the i 1PI self-energy, and the dots at the
end indicate a sum running over an infinite number of 1PI j
self-energies (black blobs) inserted between two 1PI i–j transitions
(gray blobs).
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It is also useful to define, as an auxiliary quantity, the partially
resummed propagator for the field i ,

Õe
ii , in which we resum only the

proper 1PI self-energy insertions Æ I
ii , namely,

Õe
ii � e ii 1 �òÆ I

ii
e

ii
� 1 0 (50)

If the particle i were not mixing with j through loops or two-leg vertex
insertions,

Õe
ii would coincide with the resummed propagator �e ii .
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Õe
ii can be graphically depicted asÕe
ii � � � � +-+-+ 0
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Partially resummed propagators allow for a compact expression for�3Æ e � ii , �3Æ e � ii �×Æ I
ii
e

ii ��Æ I
ij

Õe
jj Æ I

ji
e

ii 8 (51)

so that the resummed propagator of the field i can be cast in the form

�e ii � e ii 1 � Æ I
ii ��Æ I

ij

Õe
jj Æ I

ji
e

ii

� 1

0 (52)

We can also define a resummed propagator for the i–j transition. In
this case there is no corresponding Born propagator, and the
resummed one is given by the sum of all possible products of 1PI i and
j self-energies, transitions, and Born propagators starting with

e
ii and

ending with
e

jj . This sum can be simply expressed in the following
compact form, �e ij � �e ii Æ I

ij

Õe
jj 0 (53)
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The charged sector

We now apply Eq.(50), Eq.(52), Eq.(53)) to W and charged Goldstone
boson fields. The partially resummed propagator of the charged
Goldstone scalar follows immediately from Eq.(50). The Born W and �propagators in the ’t Hooft–Feynman gauge are

e /�7
WW � Ê /37

p2 � M2 8 e«ö3ö � 1
p2 � M2 8 (54)

where, for simplicity of notation, we have dropped the coefficients� 2ÈÓ� 4i .
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In the same gaugeø , the partially resummed � and W propagators are

Õe«ö3ö � e«ö3ö
1 �ùÆ Iö�ö e«ö3ö � 1 � p2 � M2 � R Iö3ö � 1

(55)

Õe /�7
WW � 1

p2 � M2 � D I
WW

Ê /�7±� p/ p7 P I
WW

p2 � M2 � D I
WW � p2P I

WW 0 (56)
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Equation (56) assumes a more compact form when expressed in
terms of the transverse and longitudinal projectors t/�7 and l/37 ,

Õe /37
WW � t /37

p2 � M2 � D I
WW

� l /�7
p2 � M2 � LI

WW 0 (57)

The resummed W and � propagators can be then derived from
Eq.(52),

�eûö3ö � p2 � M2 � R Iö�ö � p2 M2 � GI
W

ö � 2
p2 � M2 � LI

WW

� 1

(58)

�e /�7
WW � t /37

p2 � M2 � D I
WW

� l /�7 p2 � M2 � LI
WW � p2M2 � GI

W

ö � 2
p2 � M2 � R Iö3ö

� 1

0 (59)
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The resummed propagator for the W– � transition is provided by
Eq.(53),

�e /
W

ö � � ip/ MGIö
W

p2 � M2 � R Iö�ö p2 � M2 � LI
WW � p2M2 � GI

W

ö � 2
p2 � M2 � R Iö�ö

� 1

0 (60)

We will now show explicitly, up to terms of cd� g4 � , that the resummed
propagators defined above satisfy the following WST identity:

Theorem

p/ p7 �e /�7WW � i p/ M �e /
W

ö � i p7 M �e 7ö
W � M2 �e«ö3ö � 1 8 (61)
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which, in turn, is satisfied if

p2M2 GI
W

ö 2 � M2R Iö3ö � p2LI
WW � R Iö�ö LI

WW � 2p2M2GI
W

ö � 0 0 (62)

This equation can be verified explicitly, up to terms of cd� g4 � , using the
WSTI for the W self-energy: at cd� g2 � Eq.(62) becomes simply

M2R
g 1 iö3ö � p2L

g 1 i
WW � 2p2M2G

g 1 i
W

ö � 0 8 (63)

which coincides with eq. (29) for n � 1.
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To prove Eq.(62) at cd� g4 � we can combine the last of Eq.(25) with
n � 2 and Eq.(44) to get 1

p2M2 G
g 1 i
W
ö 2 � M2R

g 2 i Iö3ö � p2L
g 2 i I
WW � R

g 1 iö�ö L
g 1 i
WW � 2p2M2G

g 2 i I
W
ö � 0 0 (64)

1For simplicity of notation, in this section we dropped the coefficients ÿ 2� � 4i .
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The neutral sector

neutral sector�
The SM neutral sector involves the mixing of three boson fields, A/ , Z/
and � 0. As the definitions for the resummed propagators presented at
the beginning of sec. 44 refer to the mixing of only two boson fields, we
will now discuss their generalization to the three-field case.

Consider three boson fields i , j and k mixing up through radiative
corrections. For each of them we can define a partially resummed
propagator

Õe
ll (l � i 8 j 8 or k) according to Eq.(50). For each pair of the

three fields, say � j 8 k � , we can also define the following intermediate
propagators
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Ôe jj � j 8 k � � e
jj 1 � Æ I

jj ��Æ I
jk

Õe
kk Æ I

kj
e

jj

� 1
(65)

Ôe jk � j 8 k � � Ôe jj � j 8 k �ÚÆ I
jk

Õe
kk 8 (66)

where the parentheses on the l.h.s. indicate the chosen pair of fields.
[ Ôe kk � j 8 k � and Ôe kj � j 8 k � can be simply derived from the above
definitions by exchanging j � k .] The reader will immediately note that
the r.h.s. of the above eqs. (65, 66) are almost identical to those of
eqs. (52, 53), with the appropriate renaming of the fields. Equations
(65, 66), introduced in the context of three-field mixing, define however
only intermediate propagators (denoted by the tilde), while eqs. (52,
53), presented in the analysis of the two-field mixing case, define the
complete resummed propagators (denoted by the bar).
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Indeed, the definition of full resummed propagator in the three-field
mixing scenario requires one further step: the resummed propagator
for a field i mixing with the fields j and k via the functions Æ I

ij , Æ I
ik andÆ I

jk can be cast in the following form

�e ii � e ii 1 � Æ I
ii �

l fm Æ I
il Ôe lm� j 8 k �ÚÆ I

mi
e

ii

� 1

8 (67)

where l and m can be j or k , while the resummed propagator for the
transition between the fields i and k is
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�e ik � �e ii

l h j f k Æ
I
il Ôe lk � j 8 k � 0 (68)

Armed with eqs. (65)–(68), we can now present the A/ , Z/ and A/ –Z/
propagators. First of all, the Born A/ , Z/ and � 0 propagators in the
’t Hooft–Feynman gauge are

e /37
AA � Ê /�7

p2 8 e /37
ZZ � Ê /37

p2 � M2
0
8 eûö

0

ö
0 � 1

p2 � M2
0
8 (69)
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where, for simplicity of notation, we have dropped once again the
coefficients � 2ÈÓ� 4i . The partially resummed propagators (three) can be
immediately computed via Eq.(50) and the intermediate ones (twelve)
via eqs. (65) and (66). Finally, after some algebra, eqs. (67) and (68)
provide us with the fully resummed propagators:�e VV � t/37 �e T

VV � l/37 �e L
VV 8 with V � A 8 Z and

�e T
AA � p2 � D I

AA � � D I
AZ � 2

p2 � M2
0 � D I

ZZ

� 1

(70)

�e T
ZZ � p2 � M2

0 � D I
ZZ � � D I

AZ � 2
p2 � D I

AA

� 1

(71)

�e T
AZ � D I

AZ p2 � D I
AA p2 � M2

0 � D I
ZZ ��� D I

AZ � 2 � 1

0 (72)
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The expressions of the longitudinal components of these propagators
are more lengthy and we will only present them up to terms of cd� g4 � :

�e L
AA � p2 �£cd� g6 � � 1

(73)

�e L
ZZ � p2 � M2

0 � LI
ZZ � � LI

AZ � 2
p2 � p2M2

0 � GI
Z o o � 2

p2 � M2
0

�,cd� g6 �
� 1

(74)

�e L
AZ � LI

AZ

p2 p2 � M2
0 � LI

ZZ

� M2
0

p2 � M2
0

2 GI
A o o GI

Z o o �êcd� g6 � 0 (75)
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Equation (73) achieves its compact form due to the use of the WSTI
(26) and (27)

�
with n � 1 8 2. Also eq. (75) has been simplified using

L Z 1 \AA � 0 [i.e. eq. (26) with n � 1]. We point out that if we use the
one-loop WSTI for the photon self-energy, eq. (26), the transverse part
of the resummed A–Z propagator becomes, up to terms of cd� g4 � ,

�e T
AZ � D I

AZ p2 1 � P I
AA p2 � M2

0 � D I
ZZ

� 1 ��cd� g6 � 8 (76)

thus showing a pole at p2 � 0 if D I
AZ � p2 � 0 � were not vanishing

because of the rediagonalization of the neutral sector.
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In order to show explicitly, up to terms of cd� g4 � , that the above
resummed propagators satisfy their WSTI, we also present the
resummed propagators involving the neutral scalar � 0:

�e /
A o o �ù� ip/ M0

p2

GI
Z o o LI

AZ

p2 � M2
0

2 � GI
A o o

p2 � M2
0 � R Io o o o �,cd� g6 � (77)

�e /
Z o o � � ip/ M0

p2 � M2
0 � LI

ZZ

GI
A o o LI

AZ

p2 p2 � M2
0

� GI
Z o o

p2 � M2
0 � R Io o o o ��cd� g6 � (78)

�e o o o o � p2 � M2
0 � R Io o o o � M2

0 GI
A o o 2� p2M2

0

p2 � M2
0

GI
Z o o 2

� 1

�,cd� g6 � 0(79)
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With these results, and with the WSTI (Eq.(26))–(Eq.(28)), (Eq.(37))
and (Eq.(41)),

�
we can finally prove, up to cd� g4 � , the following WSTI for

the resummed A, Z and A–Z propagators,

p/ p7 �e /37AA � 1 (80)

p/ p7 �e /37AZ � ip/ M0 �e /A o o � 0 (81)

p/ p7 �e /37ZZ � M2
0 �e o o o o � 2ip/ M0 �e /Z o o � 1 0 (82)
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The LQ basis

For the purpose of the renormalization, it is more convenient to extract
from the quantities defined in the previous sections the factors
involving the weak mixing angle

�
. To achieve this goal, we employ the

LQ basis, which relates the photon and Z fields to a new pair of fields,
L and Q:

Z/
A/ � c 0

s 1
!
s

L/
Q/ 0 (83)
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Consider the fermion currents j
/
A and j

/
Z coupling to the photon and to

the Z . As the Lagrangian must be left unchanged under this
transformation, namely j

/
Z Z/ � j

/
A A/û� j

/
L L/æ� j

/
Q Q/ , the currents

transform as

j
/
Z

j
/
A

� 1
!
c � s2 ! c

0 s
j
/
L

j
/
Q 0 (84)
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If we rewrite the SM Lagrangian in terms of the fields L and Q, and
perform the same transformation (83) on the FP ghosts fields [from
(XA,XZ ) to (XL� ,XQ)], then all the interaction terms of the SM Lagrangian
are independent of

�
. Note that this is true only if the relation

M
!
c � M0 is employed, wherever necessary, to remove the remaining

dependence on
�
. In this way the dependence on the weak mixing

angle is moved to the kinetic terms of the L and Q fields which, clearly,
are not mass eigenstates.

The relevant fact for our discussion is that the couplings of Z , photon,
XZ and XA are related to those of the fields L and Q, XL and XQ by
identities like the one described, in a diagrammatic way, in the
following figure:
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Z
f

f

� 1
c

L
f

f

� s2

c
Q

f

f

A Z

W

� s
c

Q L

W

� s3

c
Q Q

W

0
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As the couplings of the fields L, Q, XL and XQ do not depend on
�
, all

the dependence on this parameter is factored out in the coefficients in
the r.h.s. of these identities.
Since

�
appears� only in the couplings of the fields A, Z , XA and XZ

(once again, the relation M
!
c � M0 must also be employed, wherever

necessary), it is possible to single out this parameter in the two-loop
self-energies of the vector bosons. Consider, for example, the
transverse part of the photon two-loop self-energy D Z 2 \AA (which includes
the contribution of both irreducible and reducible diagrams). All
diagrams contributing to D Z 2 \AA can be classified in two classes: those
including � i � one internal A, Z , XA or XZ field, and � ii � those not
containing any of these fields. The complete dependence on

�
can be

factored out by expressing the external photon couplings and the
internal A, Z XA or XZ couplings of the diagrams of class � i � in terms of
the couplings of the fields L, Q, XL and XQ, namely
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D Z 2 \AA � s2 1
c2 f AA

1 � f AA
2 � s2f AA

3 8 (85)

where the functions f AA
i � i � 1 8 2 8 3 � are

�
-independent. Similarly, we

can factor out the
�

dependence of the transverse part of the two-loop
photon–Z mixing and Z self-energy,

D Z 2 \AZ � s
c

1
c2 f AZ

1 � f AZ
2 � s2f AZ

3 � s4f AZ
4 8 (86)

D Z 2 \ZZ � 1
c2

1
c2 f ZZ

1 � f ZZ
2 � s2f ZZ

3 � s4f ZZ
4 � s6f ZZ

5 8 (87)
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where, once again, the functions f AZ
i and f ZZ

i � i � 1 8 0-0-0 8 5 � do not
depend on

�
. Analogous relations hold for the longitudinal components

of the two-loop self-energies.
We note that D Z 2 \AZ and D Z 2 \ZZ also contain a third class of diagrams
containing more than one internal Z (or XZ ) field (up to three, in D Z 2 \ZZ ).
However, the diagrams of this class involve the trilinear vertex ZHZ (or�XZ HXZ ), which does not induce any new

�
dependence.
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However, from the point of view of renormalization it is more convenient
to distinguish between the

�
dependence originating from external legs

and the one introduced by external legs. We define, to all orders,

DAA � s2 Æ QQ � ext p2 � s2 Ç
n h 1

g2

16 È 2

n Æ g n iQQ � ext p2 8
DAZ � s

c
�

AZ � ext � s
c
Ç

n h 1

g2

16 È 2

n
�äg n i

AZ � ext 8
DZZ � 1

c2

�
ZZ � ext � 1

c2 Ç
n h 1

g2

16 È 2

n
� g n i

ZZ � ext 8
� g n i

AZ � ext � � g n i3Q � ext � s2 Æ g n iQQ � ext p2 8
� g n i

ZZ � ext � � g n i33 � ext � 2 s2 � g n i
3Q � ext � s4 Æ g n iQQ � ext p2 0 (88)
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Furthermore, our procedure is such that

� g n i
3Q � ext �×Æ g n i3Q � ext p2 8 (89)

with Æ g n i3Q � ext regular� at p2 � 0. At c g2 the external quantities are�
-independent while, at c g4 the relation with the coefficients of

Eqs.(85)–(87) is

Æ g 2 iQQ � ext p2 � 1
c2 f AA

1 � f AA
2 � f AA

3 s2 8
�äg 2 i

3Q � ext � 1
c2 � f AA

1 � f AZ
1 �¹� f AA

1 � f AZ
2 � s2 � f AA

2 � f AZ
3 ��� s4 � f AA

3 � f AZ
4 �

� g 2 i
33 � ext � 1

c2 � f AA
1 � 2 f AZ

1 � f ZZ
1 ��� f AA

1 � 2 f AZ
1 � f ZZ

2

� s2 �y� f AA
1 � 2 f AZ

2 � f ZZ
3 �#� s4 � f AA

2 � 2 f AZ
3 � f ZZ

4 �
� s6 � f AA

3 � 2 f AZ
4 � f ZZ

5 � 8 (90)

and s 8 c in Eq.(90) should be evaluated at c g0 .
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�

Consider the process f f 1 hh; taking into account Dyson re-summed
propagators and neglecting, for the moment, vertices and boxes we
write

� � f f 1 hh � � � 2ÈÓ� 4 i � e2 Qf Qh � /�� � / �e T
AA

� eg
2 c

Qf � / � � / � vh � ah � 5 � �e T
ZA

� eg
2 c

Qh � / � vf � af � 5 � � � / �e T
ZA

� g2

4 c2 � / � vf � af � 5 � � � / � vh � ah � 5 � �e T
ZZ (91)

where f and h are fermions with quantum numbers QI 8 I3i 8 i � f 8 h;
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furthermore we have introduced

vf � I3f � 2 Qf s2 8 af � I3f 8 (92)

with e2 � g2 s2. Always neglecting terms proportional to fermion
masses it is useful to introduce an effective weak-mixing angle as
follows:

Definition

s2
eff � s2 1 � Æ AZ � ext

1 � s2 Æ AA � ext
8 Vf � I3f � 2 Qf s2

eff 0 (93)
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!

The amplitude of Eq.(91) can be cast into the following form:

� � f f 1 hh �µ�ò� 2ÈÓ� 4 i � � / � � / 1
1 � s2 Æ AA � ext

e2 Qf Qh

p2

� g2

4 c2 � / � Vf � af � 5 � � � / � Vh � ah � 5 � �e T
ZZ 0 (94)

The functions Æ AA � ext 8 Æ AZ � ext and
�

ZZ � ext start at c g2 in perturbation
theory. Eq.(94) shows the nice effect of absorbing – to all orders –
non-diagonal transitions into a redefinition of s2 and forms the basis for
introducing renormalization equations in the neutral sector, e.g. the
one associated with the fine-structure constant ¥ . Questions related to
gauge-parameter independence of Dyson re-summation, e.g. in
Eq.(93), will not be addressed here.
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�

The QED case
To understand renormalization at the two-loop level we consider first
the case of pure QED where we have

�
QED

	
s 
 m �
� e2

16 � 2

��� 1 � 	 s 
 m ��� e4

256 � 4

��� 2 � 	 s 
 m ��
 (1)

where p2 ��� s and where we have indicated a dependence of the
result on the (bare) electron mass. Suppose that we compute the
two-loop contribution (3 diagrams) in the limit m � 0. The result is

��� 2 � 	 s 
 0 �
��� 4� ��� 	 1 ��
 (2)

where n � 4 � � . This is a well-known result which shows the
cancellation of the double ultraviolet pole as well as of any non-local
residue. The latter is related to the fact that the four one-loop diagrams
with one-loop counterterms cancel due to a Ward identity. Let us
repeat the calculation with a non-zero electron mass;
Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 4 / 61



�

after scalarization of the result we consider the ultraviolet divergent
parts of the various diagrams. Collecting all the terms we obtain

� � 2 � 	 s 
 m ����� 1�
4 1 � 24

m2

s
� 192

m4

s2

1� 	
m � ln

� 	
m ��� 1� 	
m ��� 1

� � 	 1 ��!
(3)

Note that the m dependent part is not only finite but also zero in the
limit s " 0; indeed, in the limit s " 0 and with # 2 � m2 $ s � i % we have

� � 2 i #&� i
2 # �'� #)( 2 
 1� ln

� � 1� � 1
��� 1

2 # 2 
 (4)

so that

� � 2 � 	 0 
 m �*��� 4� � � � 2 �fin

	
0 
 m ��! (5)
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+

Eq.(5) is the main ingredient to build our renormalization equation and
contains only bare parameters, in the true spririt of the fitting equations
that express a measurable input, , in this case, as a function of bare
parameters, e and m in this case, and of ultraviolet singularites.
To make a prediction, the running of , in this case, is a different issue:
the scattering of two charged particles is proportional to

e2

1 � f
	
s � � e2 1 � f

	
s ��� f 2 	 s ���.-/-/- 


f
	
s �
� e2

16 � 2

��� 1 � 	 s ��� e4	
16 � 2 � 2

��� 2 � 	 s �0��� e6 ! (6)
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Renormalization

Renormalization amounts to substituting

e2 � 4 �2,3�4, 2 � � 1 � 	 0 �5� , 3

4 �
� � 1 � 	 0 � 2 � � � 2 � 	 0 � ��� , 4 
 (7)

with the following result

e2

1 � f
	
s � � 4 �2, 1 � ,

4 �
� � 1 �

R

	
s ��� ,

4 �
2 � � 1 �

R

	
s � � � 1 �R

	
s �

� � � 2 �R

	
s ���6� , 3 


� � n �
R

	
s ��� � � n � 	 s ��� � � n � 	 0 ��! (8)
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7

If our result has to be ultraviolet finite then the poles in
� � n � 	 s � should

not depend on the scale s. This is obviously true for the one-loop
result but what is the origin of the scale-dependent extra term in
Eq.(3)? One should take into account that

� � 1 � 	 s 
 m �
��� 8
3

1� � 4
3

ln
m2

M2 � 	 1 � 2
m2

s
� 	

m � ln
� 	

m ��� 1� 	
m ��� 1

� 20
9
� 4

3
8

UV � 16
3

m2

s

 (9)

and that m is the bare electron mass. To proceed step-by-step we
introduce a renormalized electron mass which is given by

m � mR 1 � e2

16 � 2 � 6� � finite part ! (10)
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9

If we write m2 � m2
R

	
1 ��%:� then

� 	
m �
� � 	 mR ��� 2

m2
R� 	

mR � s %���� % 2 

ln
� 	

m �5� 1� 	
m ��� 1

� ln
� 	

mR �0� 1� 	
mR �;� 1

� %� 	
mR � ��� % 2 ! (11)

Inserting this expansion into our results we obtain

�
QED

	
s 
 mR �*� e2

� 2 � 1
6
� � 1

12
ln

m2
R

M2

� 1
3

1
4
� 1

2
m2

R

s
� 2

m4
R

s2

1� 	
mR � ln

� 	
mR �5� 1� 	
mR ��� 1

�
� 5

36
� 1

12
8

UV � 1
3

m2
R

s

� e4

� 4 � 1
64
� � 1

256
� � 2 �

fin

	
s 
 mR � 
 (12)
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<

showing cancellation of the ultraviolet poles in
� � n �

R

	
s 
 mR � with

n � 1 
 2. Of course Eq.(10) is not yet a true renormalization equation
since the latter should contain the physical electron mass me and not
the intermediate parameter mR but the relation between the two is
ultraviolet finite. All of this is telling us that a renormalization equation
has the structure

pphys � f
1� 
 pbare 
 (13)

where the residue of the ultraviolet poles must be local. A prediction,

O
1� 
 pbare = O

	
pphys��
 (14)

gives a finite quantity that can be computed in terms of some input
parameter set.
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>

The SM case

In the full standard model the one-loop result is

� � 1 � � � � 1 �bos �
l

� � 1 �
l � � � 1 �tb � � � 1 �udcs ! (15)

We introduce

xW � M2
W

s

 xl � m2

l

M2
W


 etc 

8

UV �6? � ln �@� ln
M2

W# 2 
 LA 	 x �
� ln
� 	

x ��� 1� 	
x ��� 1


 (16)
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B

In the limit s " 0 we have

� � 1 �
bos

	
0 �
��� 3 � 2� � 8 UV 


� � 1 �
l

	
0 �
� 4

3
� 2� � 8 UV � 4

9
� 4

3
ln xl 


� � 1 �
tb

	
0 �
� 20

9
� 2� � 8 UV � 20

27
� 16

9
ln xt � 4

9
ln xb ! (17)

First we consider fermion mass renormalization, obtaining

m2
f � m2

f R 1 � 2
g2

16 � 2

% Z f
m� 
 (18)

with renormalization constants given by
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C

fermion mass renormalization

lepton

% Z l
m ��� 3

2
1
c4 x ( 1

H � 3
1
c2 � 3 � 3

4
xL

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H 
 (19)
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D

b quark

% Z b
m ��� 3

2
1
c4 x ( 1

H � 1
3

1
c2 � 1

3
� 3

4
xB � 3

4
xT

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H 
 (20)
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E

t quark

% Z t
m ��� 3

2
1
c4 x ( 1

H � 2
3

1
c2 � 2

3
� 3

4
xB � 3

4
xT

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H ! (21)
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F

Consider the fermionic part of
� � 1 � relative to one fermion generation

( G l 
 l 
 t and b) and perform fermion mass renormalization; we obtain

� � 1 �
fer " � � 1 �

ferm � g2

� 2

� 8H� � 1 �
ferm 
 (22)

where

� � 1 �
fer � 32

9
� 2� � 8 UV � 4

3
ln xL � 1

3
ln xB � 4

3
ln xT

� 160
27

� 16
3

xW

	
xL � 1

3
xB � 4

3
xT �0� 4

3
	
1 � 2 xW xL � 8 x2

W x2
L �

� 4
3
� ( 1 	 xW xL � LA 	 xW xL ��� 4

9
� ( 1 	 xW xB � LA 	 xW xB �

� 16
9
� ( 1 	 xW xT � LA 	 xW xT ��
 (23)
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I

8H� � 1 �
ferm � 3

2
c ( 4xW xLx ( 1

H � 1
2

c ( 4xW xBx ( 1
H � 2c ( 4xW xT x ( 1

H � 3c ( 2xW xL

� 1
9

c ( 2xW xB � 8
9

c ( 2xW xT � 6xW xLx2
B x ( 1

H � 6xW xLx2
T x ( 1

H ��-/-/-
� 2x2

W x2
T xH � 16

9
x2

W x2
T � 2x2

W x3
T � 16x2

W x4
T x ( 1

H ! (24)
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J

When we add the two-loop result we obtain

g2

16 � 2

� � 1 �
fer � g4	

16 � 2 � 2
��� 2 � � one loop � g4

� 4 R
� 2 � � ( 2 � R

� 1 � � ( 1 � � fin !
(25)

The two residues are given by

R
� 2 � ��� 11

256



R
� 1 � � 11

256
8

UV � 407
27648

� 9
64

c ( 4xW x ( 1
H � 9

128
c ( 2xW � 131

6912
c ( 2

� 3
64

xW xL � 3
16

xW x2
L x ( 1

H � 9
64

xW xB � 9
16

xW x2
B x ( 1

H (26)
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K

� 9
64

xW xT � 9
16

xW x2
T x ( 1

H � 9
32

xW x ( 1
H � 9

128
xW xH

� 1
32

xWL � 3
512

xL � 7
1536

xB � 13
1536

xT

� � ( 1 	 xW � LA 	 xW � � 11
768

� 3
64

c ( 4xW x ( 1
H � 9

32
c ( 4x2

W x ( 1
H

� 1
32

c ( 2xW � 9
64

c ( 2x2
W � 3

128
xW xL � 1

16
xW x2

L x ( 1
H � 9

128
xW xB

� 3
16

xW x2
B x ( 1

H � 9
128

xW xT � 3
16

xW x2
T x ( 1

H � 3
32

xW x ( 1
H

� 3
128

xW xH � 13
384

xW � 3
32

x2
W xL � 3

8
x2

W x2
L x ( 1

H

� 9
32

x2
W xB � 9

8
x2

W x2
B x ( 1

H � 9
32

x2
W xT � 9

8
x2

W x2
T x ( 1

H

� 9
16

x2
W x ( 1

H � 9
64

x2
W xH � 1

16
x2

W ! (27)
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M

Theorem
Therefore massN renormalization has removed

all logarithms in the residue of the simple ultraviolet pole for the
fermionic part

while a non-local residue remains in the bosonic part.

Unfortunately a simple procedure of W mass renormalization is not
enough to get rid of logarithmic residues in the bosonic component and
the reason is that in a bosonic loop we may have three different fields,
the W, the O and the charged ghosts
and only one mass is available.
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P

Example

The situation is illustrated in Fig. 1 where the cross denotes insertion
of a counterterm % ZM ; the latter is fixed to remove the ultraviolet pole in
the W self-energy and one easily verifies that the total in the second
and third line of Fig. 1 ( O and X self-energies, respectively) is not
ultraviolet finite.
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Q

R
ZM �

R
ZM �

ZM

Figure: W mass counterterm insertion in the charged tarnsitions. While the
WW one is ultraviolet finite the same is not true for and ghost-ghost
transitions.
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S

R
ZM �

R
ZM T 2

R
Z
UV

�

ZM ZW Z

ZW Z

Figure: The correct recipe for renormalizing mass dependent ultraviolet
poles in the charged sector.
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W

The procedure has to be changed if we want to make the result in the
bosonic sector as similar as possible to the one in the fermionic sector.
With this goal in mind we introduce the following counterterms

WXY� Z 1Z 2
W W RX 
 O2� Z 1Z 2[ O R 
 MW � Z 1Z 2

M MR

W
! (28)

Our solution is to work in a R\]\ -gauge where the gauge-fixing term
(limited to the charged sector) is

^ ��� 1_
W

` X WXa� _ [ MW Ob! (29)
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c

We also introduce additional counter-terms for the gauge parameters,

_
W � Z

\
W

_ R
W 
 _ [ � Z

\[ _ R[ ! (30)

Our scheme is further specified by imposing the condition

_ R
W � _ R[ � 1 ! (31)
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d

Dropping from now on the index R for renormalized fields and
parameters we define the counter-Lagrangian to be

e
ct � g2

16 � 2

e W W
ct � e [ W

ct � e [f[ct 
 e ij
ct �hg R

i � ij g R
i 
 (32)

g i being a vector or scalar field. We define % Z factors in the
MS-scheme as

Z � 1 � g2

16 � 2 % Z 1� 
 (33)
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i

and obtain

� � W WXkj ��� % ZW

	
p2 � M2

W
�5��% ZM M2

W
%lXfjm� 2 % Z \W pX pjn
� � [f[ ��� % Z[ 	 p2 � M2

W
�5� M2

W

	 % ZM � 2 % Z \[ � 
� � W
[X � 	 % Z \W �4% Z \[ � i MW pXo! (34)
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p

These counter-terms are used to remove all poles from the transitions
in the charged sector. After including the tadpole contribution and
using Eq.(31) we find

% Z \W � 11
6



% Z \[ ��� 2
3
� 3

2
c ( 4x ( 1

H � 5
4

c ( 2 � xL � 2x2
L x ( 1

H

� 3xB � 6x2
B x ( 1

H � 3xT � 6x2
T x ( 1

H � 3 $ 4xH � 3x ( 1
H 


% ZW � 11
3% Z[ � 2 � c ( 2 � xL � 3xB � 3xT 


% ZM ��� 2
3
� 3c ( 4x ( 1

H � 3
2

c ( 2 � xL � 4x2
L x ( 1

H � 3xB

� 12x2
B x ( 1

H � 3xT � 12x2
T x ( 1

H � 3
2

xH � 6x ( 1
H ! (35)
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q

Theorem
An important result follows, namely both

� Z 1Z 2
W

	 _
W Z
\
W � ( 1 
 � Z 1Z 2

M Z
\[ Z 1Z 2[ M

_ [ 
 (36)

are ultraviolet finite so that the gauge-fixing term remains
unrenormalized.
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r

To continue our derivation we consider the ghost Lagrangian and the
associated counter-ters ms,

e
g � ZX tX u 1

Z
\
W

_
W

` 2 � Z
\[ ZM

_ [ M2
W

X u�! (37)

To this Lagrangian corresponds an operator

� � gg ��� 	 % ZX �4% Z \W � 	 p2 � M2
W
��� 	 % ZM ��% Z \W ��% Z \[ � M2

W
! (38)

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 30 / 61



v

A simple calculation shows that, with the choice

% ZX � 23
6

 (39)

also the ghost Lagrangian is ultraviolet finite. The correct combination
of mass counterterms is illustrated in Fig. 2. Note that in the MS
scheme we define

Z � 1 � g2

16 � 2 % Z � 2� � 8 UV 
 % ZMS ��� 1
2
% ZMS ! (40)

Note that the two-loop part of
�

remains unchanged since
modifications are of � g6 while for

� � 1 �
bos we have to repeat the

calculation, working in the new gauge.
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w

The bare propagators for charged fields in the R\]\ gauge are

t8 WWXfj � 1
p2 � M2 %lXfxy�

_ 2
W � 1

p2 � _ 2
W M2

pX px
z %lx{j|� 	 1 �

_ [_
W

� 2
_ 2

W M2	
p2 � _ W

_ [ M2 � 2 px pj 

t8 W
[X � i M pX

_
W

	 _ [ � _ W �	
p2 � _ W

_ [ M2 � 2 
 t8 [f[ � p2 � _ 2
W M2	

p2 � _ W

_ [ M2 � 2 

t8 gg �

_
W

p2 � _ W

_ [ M2 
 (41)

where the last propagator refers to the ghost - ghost transition.
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}

One example will be enough to describe the procedure. Consider the
following integral, corresponding to a O loop in the AA self-energy:

IXfj~� dnq

	
q2 � _ 2

W M2
W
� 	l	 q � p � 2 � _ 2

W M2
W
�	

q2 � _ W

_ [ M2
W
� 2 	l	 q � p � 2 � _ W

_ [ M2
W
� 2z 	 2 qXa� pX�� 	 2 qj�� pj���! (42)

We expand the propagators,

	
q2 � _ 2

W M2
W
� ( k � 	 q2 � M2

W
� ( k

� 2 k
g2

16 � 2

�
dZ
\
W M2

W

	
q2 � M2

W
� ( k ( 1 ��-/-/-�
	

q2 � _ W

_ [ M2
W
� ( k � 	 q2 � M2

W
� ( k

� k
g2

16 � 2

� 	
dZ
\
W � dZ

\[ � M2
W

	
q2 � M2

W
��( k ( 1 ��-/-/-0
(43)
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and obtain
IXfj~� I0 %lXkj�� I1 pX pjn
 (44)

with form factors�
I0 � I0

	 _ � 1 �5� i � 2 g2 8 I0 dZ
\[ 


8
I0 � 1

8
n � 2
n � 1

A0
	
1 
 M2

W
�;� n � 1

2
M2

W
B0
	
1 
 1 
 p2 
 MW 
 MW �

� 1
4

1
n � 1

M2
W

	
p2 � M2

W
� B0
	
1 
 2 
 p2 
 MW 
 MW ��
 (45)

where MW is the bare W mass. Collecting all diagrams, renormalizing
the W mass and inserting the solution for the renormalization
constants we find the expression for the bosonic, one-loop, AA
self-energy:
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� � 1 �
bos " 6� � 6 � 3

8
UV � 8xW ��-/-/- (46)
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Including both components and taking into account the additional
contribution arising from renormalization we finally get residues for the
ultraviolet poles which show the expected properties:

R
� 2 � ��� 55

768



R
� 1 � � 11

192
8

UV � 1199
27648

� 131
6912

c ( 2 � 3
512

xL � 13
1536

xT

� 7
1536

xB ! (47)

Eq.(47) shows complete cancellation of poles with a logarithmic
residue; furthermore the two residues in Eq.(47) are scale independent
and cancel in the difference

� 	
p2 ��� � 	 0 � .
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Transitions

A final comment concerns the Z -photon transition which is not zero, at
p2 � 0, in any gauge where

_H�� 1 even after the � 1 re-diagonalization
procedure.

However, in our case, the non-zero result shows up only due to a
different renormalization of the two bare gauge parameters and it is,
therefore, of � g4 ; it can be absorbed into � 2 which does not modify
our result for

�
since there are no � 2-dependent terms in the AA

transition (only � 21 appears).
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renormalization� procedure

One should observe that our procedure is completely equivalent to
consider one-loop diagrams with the insertion of one-loop
counterterms and one may wonder why
we have not included % ZW 
/% Z[ 
/% ZX and also a % Ze,
arising from charge renormalization and a % ZA from the renormalization
of the photon field.
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about counter terms
The argument goes as follows: first we consider the relevant vertices
with counterterms:

AWW � ZW Z 1Z 2
A Ze � Born 


A O�O2� Z[ Z 1Z 2
A Ze � Born 


AW O2� 	 ZW Z[ ZA ZM � 1Z 2 Ze � Born 

AX u X u@� ZX Z 1Z 2

A Ze � Born ! (48)
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Next, we consider the ultraviolet divergent part of the corresponding
one-loop diagrams and obtain:

VUV � g2

16 � 2

% V� 
 (49)

where

% V AWWx Ak� ��� 11
3
% x A 	 p2 � 2 p1 � � � 11

3
%lx � 	 p1 � 2 p2 ��A

� 11
3
%lAk� 	 p1 � p2 ��x

% V A
[f[x � 2 � c ( 2 � xL � 3 xT � 3 xB

	
p1 � p2 ��x5


% V AXXx � 2 p1x 

% V AW

[x � � i %lx � MW

3
2

c ( 4 1
xH

� 5
4

c ( 2 � 2
x2

L

xH

� 6
x2

T

xH

� 6
x2

B

xH

� 3
xH

� 3
4

xH

� xL � 3xT � 3xB � 5
2
! (50)
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With these results we can prove that

% Ze � 1
2
% ZA � 0 
 (51)

i.e. that, like in QED, charge renormalization is only due to vacuum
polarization. Note that the � 1 prescription is crucial for proving the
Ward identity of Eq.(51). Consider now the one-loop photon
self-energy in our gauge; for instance, the diagrams with a ghost loop
have vertices proportional to ZX (thanks to Eq.(51)) and ghost
propagators given by

8 gg � 1
ZX

_
W

p2 � _ W

_ [ mw2 ! (52)

Clearly, % ZX gives no contribution. The same holds for all other
diagrams and for the remaining counterterms, % Z[ and % ZW . In
conclusion, in computing

�
we can forget about one-loop diagrams

with field and charge counterterms and only worry about mass
renormalization which we do, in some unconventional way, by
expanding the explicit expression for

� � 1 � 	 s � .
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Inclusion of
8

UV

In the previous section we have performed renormalization in the MS
scheme and here we proceed by extending the same procedure to the
MS scheme. The counterterms in the two schemes are connected by
the simple relation % ZMS ��� 1

2 % ZMS and what we may show that not
only the double and single ultraviolet poles of

� 	
s � have scale

independent, local, residues but also the terms proportional to powers
of
8

UV have the same property.

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 42 / 61



�

Fermion mass fitting equations

For the complete� answer we need fitting equations that relate the bare
masses to the physical ones since the renormalized mass is only an
intermediate parameter which is bound to disappear in the expresion
for any physical observable. For a generic u � d doublet we obtain

mf � mphys
f � g2

16 � 2 � f
m � mphys



m2

f ren � m2
f phys 1 � g2

8 � 2
� f

m2
f m � mphys

�4% Z f
m (53)
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W mass fitting equations

The relation between renormalized and physical W mass is

M2
W ren � M2

W phys 1 � g2

16 � 2

Re � WW

	 � M2
W phys�

M2
W phys

�4% ZM 
 (54)

where the quantity within square brackets is ultraviolet finite by
construction and where

� W W �
gen
� f

W W � � b
WW � 2

	 �
t1 ��� 1 ��! (55)
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Part II

Intr oduction to the Fermi Coupling Constant
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Definitions

Writing a renormalization equation that involves GF should not be
confused with making a prediction with the muon life-time.

In the following section we present few examples that are relevant in
evaluating

8
g (see Eq.(58)) up to two-loops and therefore in

contructing one of our renormalization equations.

– The Lagrangian of the Fermi theory which is relevant for our
pourposes can be written as:

e
F � e QED � GF�

2

� j mu ? X ?o� � X � e ? X ?o� � j e 
 (56)

where ?o��� 1 � ? 5.
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To leading order in GF and to all orders in , the muon lifetime takes the
form

1¢ X �£� 0
	
1 � 8 q ��
 � 0 � G2

F m5X
192 � 3 ! (57)

The standard model weak corrections to ¢ X are conventionally
parametrized by the relation

GF�
2
� g2

8 M2

	
1 � 8 g ��! (58)

Our goal will be to derive an explicit expression for
8

g so that one can
use Eq.(58) as a relation where on the left hand side there is a quantity
whose value is obtained by experiment and where on the right hand
side we have bare quantities.
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Ther quantity
8

g may be written as the sum of various contributions,
which are

8
g � 8 gWF � 8 gV � 8 gB � 8 gS ! (59)

The various terms arise from wave-function renormalization factors,
weak vertices, boxes and the W self-energy. Self-energy corrections
always play a special role and will be dicussed separately, although
they are crucial in establishing gauge parameter independence.
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Strategy of the calculation

In the standard model and in the
_ � 1 gauge the lowest order

amplitude is

¦
SM § 0 � 	 2�;� 4 i

g2

8
1

Q2 � M2 u
	
pj/¨k��? x ?�� u

	
pX©� u 	 pe ��? x ?�� v

	
pj e �

ª GF�
2

u
	
pj ¨k��? x ? � u

	
pX � u 	 pe ��? x ? � v

	
pj e � = ¦ F 
 (60)

where we have introduced Q � pX � pe.
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Note that at one loop we have

1¢ X �
m5X

192 � 3

g4

32 M2

	
1 � 2

8
g
� 1 � � 8 q

� 1 � ��
 (61)

and we have to separate the pure e.m. corrections evaluated in the
Fermi theory to obtain

8
g
� 1 � . To obtain the amplitude which generates

the one-loop weak correction we consider first

¦
W § 1 � ¦ SM § 1 � ¦ sub§ 1 
 (62)

where
¦

sub§ 1 is obtained by
grouping the one-loop SM corrections with one photon line connected
to external fermions and one W line,
by shrinking the W line to a point and by replacing the corresponding
W propagator with 1 $ M2.
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At the one-loop level and after the substitution g2 $ 	 8 M2 �­" GF
$ � 2 we

obtain

¦
sub§ 1 = ¦ F § 1 
 (63)

where the latter generates � 0 8 q
� 1 � . In the subtracted amplitude the

soft terms have disappeared and we generate
8

g
� 1 � with the help of

¦ leading
W § 1 � lim

pi ®mi ¯ 0

¦
sub§ 1 
 (64)

i.e. we only retain the lading part, with vanishing lepton masses and
external momenta, which amounts to neglect corrections of� , m2 $ M2 . One-loop diagrams with no photons only have an hard
component and do not need a subtraction.
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Figure: Infrared divergent one-loop box.
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This amplitude contains two structures,

M0 � u ? x ?o� u u ? x ?�� v 
 M1 � u ? x ? X ? A ?�� u u ? A ? X ? x ?o� v !
(65)

However, M1 is simply related to the current � current structure as it
will be illustrated by considering the case of the one-loop box with W 
²?
exchange. We neglect for the moment all coupling constants and write

¦ sub
box³ W ��� dnq

q́ qµ	
q2 � M2 � 	 q2 � 2 J x ´:A J

A µfx 

J x ´:A � u

	
pj/¨¶��? x ?o�·? ´ ? A u

	
pX¸��
 J A µfx � u

	
pe ��? A ? µ ? x ?o� v

	
pj e ��!

(66)
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After integration we obtain

¦ sub
box³ W ��� i � 2 B0

	
2 
 1 º 0 
 0 
 M � J x ´:A J

A¶´ x ! (67)

It can be shown that

J x ´:A J
A¶´ x � B

� 1 � M0 
 (68)

where B
� 1 � is obtained with the help of a projection operator,
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spin

¼
J x ´:A J A¶´ x � B

� 1 � M0 � 0 

¼ � v

	
pj e ��?�½b?�� u

	
pj ¨ � u 	 pX¸��?b½b?o� u

	
pe ��! (69)

After a straightforward algebraic manipulation one obtains (in the limit
Q2 " 0)

B
� 1 � � 	 n � 2 � 2 
 (70)

which, after multiplication by B0
	
2 
 1 º 0 
 0 
 M � and in the limit n " 4

reproduces the correct result, proportional to B0
	
2 
 1 º 0 
 0 
 M ��� 1 $ 2.
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Alternatively we start from the expression for the ?�
 W box without
nullifying the soft scales,

¦
box³ W � dq 1

d0d1d2d3
u
	
pj/¨¶��? x ?o� � i

	 $q � $pX©�5� mX ? A u
	
pX¸�

z u
	
pe ��? A � i

	 $q � $pe �5� me ? x ?�� v
	
pj e ��
 (71)
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where we introduce

d0 � q2 
 d1 � 	 q � pX©� 2 � m2X 
 d2 � 	 q � P � 2 � M2 
 d3 � 	 q � pe � 2 � m2
e 


(72)

pXÀ� pj/¨ 2 � P2 
 	
pXÀ� pe � 2 � Q2 ! (73)

A standard decomposition gives

1
d0d1d2d3

� 1
P2 � M2

1
d0d1d3

� 1
d1d2d3

� 2
q - P

d0d1d2d3
! (74)
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– The first term in the decomposition (in the limit ÂP2 Â¶Ã M2) is the
QED vertex in the local Fermi theory that can be computed with
standardÄ techniques;

– The last two terms inside the square bracket of Eq.(74) are finite
in the soft limit so that the extra contribution from the infrared SM
box can be evaluated for mXÅ
 me � 0 and Q2 
 P2 � 0.

In this limit only the term with three propagators survives and gives the
well-known result.
With this technique (extracting instead of subtracting) we circumvent
the puzzling procedure of Eq.(64) where the subtracted term is zero in
dimensional regularization. However, the two procedures are totally
equivalent.
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If we neglect, for the moment, issues related to gauge parameter
independence it is convenient to define a G constant that is totally
process independent,

8
g ��% G � 8 gS 
 G � GF 1 � g2

8 M2 % G 
 % G �
n � 1

g2

16 � 2

n % � n �G !
(75)

Alternatively, but always neglecting issues related to gauge parameter
independence, we could resum % G by defyning GR � GF

$ 	 1 ��% G � .
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In one case we obtain

G � g2

8 M2 1 � g2

16 � 2 M2 � W W

	
0 � ( 1 


� W W

	
0 �
� � � 1 �WW

	
0 ��� g2

16 � 2 � � 2 �W W

	
0 ��
 (76)

where � WW is the W self-energy,
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whereas withÉ resummation we get

GR � g2

8 M2 1 � g2

16 � 2 M2 � W W

	
0 � ( 1 


� W W

	
0 �
� � � 1 �WW

	
0 ��� g2

16 � 2 � � 2 �W W

	
0 ��� � � 2 �W W

	
0 ��% � 1 �G ! (77)
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Comple x poles

To write additional renormalization equations we need experimental
masses. For the W and Z bosons the IPS is defined in terms of
pseudo-observables (PO); at first, OS quantities are derived by fitting
the experimental lineshapes with

�
VV



s ��� N


s � M2
OS � 2 � s2 � 2

OS � M2
OS � V � W � Z � (1)

where N is an irrelevant (for our purposes) normalization constant.
Secondly we define pseudo-observables (PO)

MP � MOS cos � �
�

P � �
OS sin � � ��� arctan

�
OS

MOS � (2)

which are inserted in the IPS.
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Beyond one-loop

At one-loop level we can use directly the OS masses which are related
to the zero of the real part of the inverse propagator. Beyond one-loop
this would show a clash with gauge invariance since only the complex
poles

sV ��� 2
V � i � V � V (3)

do not depend, to all orders, on gauge parameters. As a consequence,
renormalization equations change their structure.
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There is also a change of perspective with respect to old one-loop
calculations.

– There one� considers the cdb OS masses as input parameters
independent of complex poles and derive the latter in terms of the
former;

– Here the situation changes, renormalization equations are written
for real, renormalized, parameters and solved in terms of (among
other things) experimental complex poles.

When we constuct a propagator from an IPS that contains its complex
pole, say sV , we are left with a consistency relation between theoretical
and experimental values of � V . If instead, we derive sW from an IPS
that contains sZ , this is a prediction for the full W complex pole.
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Furthermore, consistently with an order-by-order renormalization
procedure, renor� malized masses in loops and in vertices will be
replaced with their real solutions of the renormalized equations,
truncated to the requested order.
Alternatively, one could use Dyson resummed (dressed) propagators,

� 
V �

 
V

1 � i
 

V

�
VV � (4)

also in loops, say two-loop resummed propagators in tree diagrams,
one loop resummed in one-loop diagrams, tree in two-loop diagrams.
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renormalization equations

Renormalization" with comple x poles

has more in it than the content of Eq.(3) and is not confined to
prescribe a fixed width for unstable particles; it allows, al least in
principle, for an elegant treatment of radiative corrections via effective,
complex, couplings.
The corresponding formulation, however, cannot be extended naively
beyond the fermion loop approximation; this is due, once again, to
gauge parameter independence. We formulate the next
renormalization equation in close resemblance with the language of
effective couplings and will perform the proper expansions at the end.
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We define residual functions according to�
B



s �$� � 3Q



s � � FB



s � � B � W � Z � and H � (5)

and discuss solutions of the renormalization equations for different
IPS. As a consequence of introducing higher order corrections the
coupling constant g will run according to

1
g2


s � �

1
g2 � 1

16 % 2 &
'
1 (

3Q



s �)� g2


16 % 2 � 2 &
'
2 (

3Q



s �+* (6)

The running of e2 � g2s2 is controlled by

e2 
 s ��� 4 %-,
1 �/.4 0 & R



s � � (7)

while the running of the weak-mixing angle is defined according to

s2 
 s ��� e2 
 s �
g2


s � * (8)

Eqs.(6)–(8) still contain bare parameters and in the following sections
we will show how to replace bare quantities in terms of some IPS.
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Input Parameter St

We use , � GF and � W and predict, among other things, � W which, in
turn, can be compared with the measured OS �

W . We begin with two
equations

G M2 � g2

16 % 2 FW



0 � � g2

8

� 2
W � M2 � g2

16 % 2 Re
�

3Q



sW � � FW



sW � � (9)

where, to second order, we have

FW � F
'
1 (

W
� g2

16 % 2 F
'
2 (

W �
�

3Q � �
'
1 (

3Q
� g2

16 % 2

� ' 2 (
3Q
* (10)

The (finite) mass counterterm of Eq.(9) is to be contrasted with the
conventional mass renormalization where Re

�
WW



M2

W
� is used.
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2

We look for a solution with the following form:

g2 � 8 G � 2
W 1 �

n 3 1

Cg


n � G

% 2

n

�
M2 �4� 2

W 1 �
n 3 1

CM



n � G

% 2

n * (11)

The solution is

Cg


1 ��� 1

2
Re
� ' 1 (

W W



sW �5� F

'
1 (

W



0 � � CM



1 �6� 1

2
Re
� ' 1 (

W W



sW � �

Cg


2 ��� C2

g


1 � � 1

4
� 2

W Re
� ' 2 (

WW



sW �)� F

'
2 (

W



0 � �

CM



2 ��� C2

M



1 � � 1

4
Re � 2

W

� ' 2 (
W W



sW �)� F

'
1 (

W



0 � � ' 1 (W W



sW � * (12)
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7

In particular we obtain

M8 2

g2 � 1
8 G

1 � G
2 % 2 F

'
1 (

W



0 � � G2

4 % 4 � 2
W F

'
2 (

W



0 � * (13)

For this input parameter set renormalization of g is obtained after
inserting Eq.(12) into Eq.(6),

1
g2


s � �

1
8 G � 2

W

� 1
16 % 2 � 2

W

9
g
'
1 ( � G

32 % 4

9
g
'
2 (
�9

g
'
n ( �4� 2

W &
'
n (

3Q



s � � Re

� ' n (
W W



sW �5� F

'
n (

W



0 �+* (14)
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:

The renormalization equation for s2 is

g2 s2 � 4 %-, 1 � g2 s2

16 % 2 & QQ



0 � * (15)

with a solution given by

s2 � 1
2

A 1 �
n 3 1

Cs


n � G

% 2

n

� A � %-,
G � 2

W �
Cs


1 ���;� 1

2
9
s
'
1 (
� Cs



2 �6�<� 1

4
9
s
'
2 ( �=� 2

W A &
'
n (

QQ



0 � 9 s ' 1 ( �9

s
'
n ( � Re

� ' n (
W W



sW �5� F

'
n (

W



0 � � � 2

W A &
'
n (

QQ > ext


0 �+* (16)

In
9
s
'
2 ( we have a residual dependence on s2 which must be set to its

lowest order value, �
s2 � 1

2
A * (17)
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?

For the W propagator we factorize a g2, insert the solution and write
its inverse as

g2  
W



s � @ 1 � s

g2


s � �

1
8 G

� 1
16 % 2 F

'
1 (

W



s �)� F

'
1 (

W



0 �

� G � 2
W

32 % 4 F
'
2 (

W



s �)� F

'
2 (

W



0 � * (18)

Using Eq.(14) the same expression can be rewritten as

g2  
W



s � @ 1 � s

g2


s � �

� 2
W

g2


sW � �

i
16 % 2 R

'
1 (

W



sW � � i G � 2

W

32 % 4 R
'
2 (

W



sW � �
(19)

where the remainders are:

R
'
n (

W



sW ��� Im

� ' n (
W W



sW �A�=� W � W &

'
n (

3Q > ext



sW �+* (20)
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B

The complex zero of this expression is the theoretical prediction for the
complex pole of the W boson. The real part has been fixed to � 2

W ; the
solution for the imaginary part is

� th
W � G � W

2 % 2 � 1
� G

2 % 2 � 2 �
� 1 � Im

� ' 1 (
WW


 � 2
W � �� 2 � Im

� ' 1 (
WW


 � 2
W � Re F

'
1 (

W


 � 2
W �5� F

'
1 (

W



0 � � � 2

W Im F
'
2 (

W


 � 2
W �

� Im F
'
1 (

W


 � 2
W � Re

� ' 1 (
W W > p 
 � 2

W � � (21)

where the suffix p denotes derivation.
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C

We have one consistency condition obtained by comparing the derived
width of Eq.(21) with the experimental input � W . The goodness of the
comparison is a precision test of the standard model.
Furthermore, the parameter controlling perturbative (non-resummed)
expansion is GF � 2

W and we derive,

G � GF 1 � 9 ' 1 (G

GF � 2
W

2 % 2
� 2


 9 ' 1 (
G � 2 � 2

� 2
W

9 ' 1 (
G Cg



1 �D� 9 ' 2 (G

GF � 2
W

2 % 2

2

*
(22)

In other words, we can go from the G option to the GF option by
replacing in the previous results

F
'
1 (

W



0 � E F

'
1 (

W � F
'
1 (

W



0 � � � 2

W

9 ' 1 (
G �

F
'
2 (

W



0 � E F

'
2 (

W � F
'
2 (

W



0 � � � 2

W

9 ' 2 (
G
� 9 ' 1 (

G � 2
W

9 ' 1 (
G
� Re F

'
1 (

W



sW �

� Re
� ' 1 (

3Q > ext



sW �5� 2 F

'
1 (

W � (23)

and G E GF .
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F

All function appearing in the results depend also on internal masses,
M etc. Therefore we always use, for and arbitrary f

f
'
1 ( 
 s G M2

� *H*H*I�6� f
'
1 ( 
 s GJ� 2

W � *H*H*K�� G � 2
W

2 % 2 Re
� ' 1 (

W W



sW GJ� 2

W � *H*H*K�L M
M M2 f

'
1 ( 
 s G M2

� *H*H*K� M2 3ON 2
W

* (24)

A last subtlety in Eq.(18) is represented by the residual s2 dependence
of the W self-energy and of

9
G; we use

s2 � �s2 1 � GF

2 % 2

9
s
'
1 ( in F

'
1 (

W �
9 ' 1 (

G

s2 � �s2 in F
'
2 (

W �
9 ' 2 (

G * (25)
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P

Self-ener gies

Consider a twQ o-point function to all orders in perturbation theory,

�
VV



s �
R �$�

S
n 3 2

� ' n (
VV



s �
R � g2n * (26)

All one-loop self-energies corresponding to physical particles are
gauge-parameter independent when put on their, bare or renormalized,
mass-shell and coincide with the corresponding

R � 1 expression, i.e.

� ' 1 (
VV



s �
R �$� � ' 1 (VV > I 
 s � � 
 s � M2

V �UT VV



s �
R �+* (27)
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V

Theorem
from argumentsW based on Nielsen identities we know that

M
M R
�

VV



sP �
R �$� 0 � (28)

where
sP � M2

V
� �

VV



sP �6� 0 * (29)

We write � ' n (
VV



s �
R ��� � ' n (VV > I 
 s � � �

'
n (

VV >YX 
 s �
R � � (30)
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Z

use

M2
V � sP

� g2 � ' 1 (
VV



sP �

� g[ 4 � ' 1 (
VV > I 
 sP � �

'
1 (

VV >\X 
 sP �
R �)� � ' 2 (VV > I 
 sP �)� �

'
2 (

VV >YX 
 sP �
R �

�;] g6

� (31)

to derive, as a consequence of Eq.(28),

� ' n (
VV >YX 
 sP �

R ��� � ' n @ 1 (
VV > I 
 sP �UT VV



sP �
R � � (32)

etc. As a consequence we obtain

�
VV



sP �6�

S
n 3 2

� ' n (
VV > I 
 sP � g2n * (33)
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^

Dressed propagator s

Suppose that we have a simple model with an interaction Lagrangian

L � g
2
T 
 x �`_ 2 
 x �+* (34)

The mass M of the T -field and m of the _ -field be such that the
T -field be unstable. Let

 
i be the lowest order propagators and

 
i the

one-loop dressed propagators, i.e.

 ba �
 -a

1 �  -ac�daea �
 gf �

 hf
1 �  gfi�ifjf � (35)

etc. In fixed order perturbation theory, the _ self-energy is given in
Fig. 1.
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k

a) skeleton

_ _ l

b)
�

insertion

l

c) skeleton

Figure: The m self-energy with skeleton expansion, diagrams a) and c), and
insertion of a sub-loop n$opo , diagram b).
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q

_ imaginar y par t

Note that the imaginary part of
�ifjf

is non-zero only for

� p2 r 9 m2

� (the three-particle cut of diagram b) in Fig. 1) �if m s M * (36)
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t

When we use dressed propagators only diagrams a) and c) are
retained in Fig. 1 (for two-loop accuracy) but in a) we use

 ba
with

one-loop accuracy:

� ' a (fuf � dnq2

q2
2
� M2 � g2

16 0 2

�daea 

q2

2 � 

q2
� p � 2 � m2 �

�daea 

q2

2 �6� B0


q2

2 G m � m � � (37)

where we assume p2 v 0.
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Since the complex T pole is defined by

M2 � sM � g2

16 % 2

�daea 
 � sM �6� 0 � (38)

we write the inverse (dressed) propagator as

1 � g2

16 % 2

�daea 

q2

2 �A� �daea 
 � sM �
q2

2
� sM

q2
2
� sM � (39)

expand in g as if we were in a gauge theory with problems of gauge
parameter dependence and obtain

� ' a (fuf � g2 dnq

q2 � sM � 


q � p � 2 � m2

L 1 � g2

16 % 2

�daea 

q2 �A� �daea 
 � sM �

q2 � sM

(40)
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x

� i
2

g2 % 2 B0 1 � 1 G p
2 G sM � m2 � i

g4

16
SE p2 G m2

� m
2

� sM � m
2

� sM

� i
g4

16
B0 2 � 1 G p

2 G sM � m2  
UV � ln

m2

� 2
� 2 �zy ln

y � 1
y{� 1 � (41)

where

y 2 � 1 � 4
m2

sM

* (42)
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More on dressed propagator s

Note that there� is an interply between using dressed propagators for
all internal lines of a diagram and combinatorial factors and number of
diagrams with and without dressed propagators.
Note that the poles in the q0 complex plane remain in the same
quadrants as in the Feynman prescription and Wick rotation can be
carried out, as usual.
Evaluation of diagrams with complex masses does not pose a serious
problem; in the analytical approach one should, hovever, pay the due
attention to splitting of logarithms.
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}

Consider a B0 function,

B0


p2 G M1 � M2 ���  UV �

1

0
dx ~



x �
� 2 �

~


x ���;� p2 x2 � 
 p2 � M2

2 � M2
1 � x � M2

1 � (43)

where one usually writes

ln ~


x �
� 2 � ln


 � p2

� 2 � i
9 � � ln



x � x @ �

� ln


x � x �)�+* (44)

Since Im ~


x � does not change sign with in � 0 � 1 � the correct recipe for

M2 � m2 � i m � is

ln ~


x �
� 2 � ln � p2 � � ln



x � x @ �

��� 
 � p2 � ln


x � x �A� ��� 
 � x @ � � x �5�

�<� 
 p2 � ln


x ��� x � ��� 
 � x @ � x �A� * (45)
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�

In the numerical treatent, instead, no splitting is performed and no
special care is needed.
A t -channel propagator deserves some additional comment: one
should not confuse the position of the pole which is always at � 2 � i ���
with the fact that a dressed propagator function is real in the t -channel.

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 28 / 52



�

_ _

 �a 

sM �

 gf 

m2 �

l

 gf 

m2 �

 gf 

m2 �
 -a 


sM � l

Zpole

 gf 

m2 �

 -a 

sM �

Figure: Diagram b) of Fig. 1 with one-loop dressed � propagators is
equivalent, up to � g4 , to the sum of three diagrams with lowest order
propagators mu with the � mass replaced with the � complex pole. The Zpole

vertex is given in Eq.(46)
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�

Theorem
Therefore, using one-loop diagrams with one-loop dressed T
propagators is equivalent, to ] g4 , to use the sum of the three
diagrams of Fig. 2 where T propagators are at lowest order but with
complex mass sM and where the vertex Zpole is defined by

Zpole � g2

16 % 2 B0

 � sM G m � m �`* (46)

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 30 / 52



�

Unitarity and gaug e invariance

When dealing with the calculation of physical processes, with one and
two loops, that include unstable particles, one should construct a
scheme that

a) respects the unitarity of the S � matrix;

b) gives results that are gauge-parameter independent;

c) satisfies the whole set of WST identities.

Resummation will be part of any scheme, a fact that indroduces
additional subtleties if a � c � are to be respected. Consider in more
details the definition of dressed propagator: we consider a skeleton
expansion of the self-energy

�
with progators that are resummed up to] 
 n � and define
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Recur sion relation�
 ' n � 1 ( 
 p2 ���  ' 0 ( 
 p2 �  ' 0 ( 
 p2 �5� � ' n � 1 ( p2

�
 ' n ( 
 p2 � @ 1

� (47)

where  ' 0 ( 
 p2 �6� 1
p2 � m2 * (48)
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�

If it exists, we define a dressed propagator as

 

p2 �6� lim

n � S
� ' n ( 
 p2 � � 


p2 �6�  ' 0 ( 
 p2 �  ' 0 ( 
 p2 �5� � p2

�
 


p2 � � (49)

which is not equivalent to a rainbow approximation and coincides with
the Schwinger - Dyson solution for the propagator.
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�

Figure: Schwinger - Dyson equation for the self-energy
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� �

Figure: Dressed propagator
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� �

Figure: Dressed vertex
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Cutting rules

– Cutting rules

We assume that Eq.(49) has a solution that obeys Källen - Lehmann
representation,

Re
 


p2 ��� Im
� 


p2 � p2 � m2 � Re
� 


p2 � 2 � Im
� 


p2 � 2 @ 1

�4%�� 
 � p2 �+* (50)

A dressed propagator, being the result of an infinite number of
iterations,

Re
 


p2 ���
S

0
ds

� 
 s �
p2 � s � i

9 � (51)

is a formal object which is difficult to handle for all practical pourposes.
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Unitarity

Theorem
Unitarity follows if

– we add all possible ways in which a diagram with given topology
can be cut in two;

– the shaded line separates S from S � . F

For a stable particle the cut line, proportional to
 �

, contains a pole
term  � � 2 i % � 
 p0 � 9 
 p2 � m2 � � (52)

whereas there is no such contribution for an unstable particle. We
express Im

�
in terms of cut self-energy diagrams and repeat the

procedure ad libidum and prove that cut unstable lines are left with no
contribution, i.e. unstable particles contribute to the unitarity of the
S � matrix via their stable decay products.
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�

Figure: Cutting equation for dressed propagator.
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Unitarity

The consistent use of dressed propagators gives a general scheme
where unitarity is satisfied which is essentially a statement on the
imaginary parts of the diagrams.
Approximated, or truncated, schemes (e.g. resummation of one-loop
self energies, or rainbow approximation without further resummation of
the vertex functions) usually lead to gauge dependent results.
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WST identities

WST identities
We assume that WST identities hold at any fixed order in perturbation
theory for diagrams that contain bare propagators and vertices; they
again form dressed propagators and vertices when summed.
We expect that an arbitrary truncation that preferentially resums
specific topologies will lead to violations of WST identities. Of course
such violations are absent if exact calculations were possible.
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Appr oximations

Gauge parameter dependence

A truncated approximation, e.g. simple resummation of two-point
functions, necessarily leads to gauge dependent results. A convenient
tool is to analyze the gauge invariance of the effective action where
one can show that on-shell gauge dependence always occurs at
higher order than the order of truncation.
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Intr oducing comple x poles

Comple x pole

A property of¡ the S � matrix is the complex pole

 @ 1 

p2 �¢� sP �6� 0 � (53)

which is gauge parameter independent as shown by a study of Nielsen
identities. An approximate solution of the unitarity constraint is as
follows:

2 Im Tii �
n

Tni
2

� n

Tni
2 � D



p2 � 2

n

dPSn M1 � n
2

�
(54)

where, S � 1 � i T and where D


p2 � is the unknown form of the

propagator.
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Making the approximation,

n

dPSn M1 � n
2 ¤

m �
tot � (55)

we derive
Im D



p2 ��� m �

tot * (56)

A simple but, once again, approximate solution is

D


p2 ��� p2 � m2 � i m � tot @ 1

� (57)

which is valid far from the mass shell and where the invariant mass at
which the decay is evaluated is identified with m2.
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We can improve upon this solution by writing instead

D


p2 �$� p2 � sP @ 1

� (58)

which is equivalent to resum only the self-energy (up to some fixed
order), and to use m2 � sP

� � 
 sP �
D


p2 �6�¦� s � sP � � 
 s � � � 
 sP � @ 1

�¦� p2 � sP @ 1 � h.o. � (59)

where higher order terms are neglected. Another way to see that
Eq.(58) is an improvement of Eq.(57) is to observe that

p2 � m2 � i
�

tot

m
p2 � 1 � i

�
tot

m


p2 � sP � � h.o. § p2 � sP * (60)

A propagator with the correct analytical structure, p2 � sP , will be
represented with a thick dot. The approximation of Eq.(58) allows us to
write the cutting equation of Fig. 7.
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Figure: Cutting equation for a contribution to the Z self-energy using W
propagators of Eq.(58).
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truncated propagator s

One can see� that using truncated propagators with complex poles (at
the one-loop level of accuracy) is still respecting unitarity of the
S � matrix within the approximation of Eq.(55) if the complex pole is
computed from fermions only; however, this scheme violates gauge
invariance since vertices are not included.

There is a solution to this problem, namely replacing everywhere the
(real) masses with the complex poles, couplings included; this is
known in the literature as complex mass scheme.
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CM scheme

The comple x« mass scheme

Since WST identities are algebraic relations satisfied separately by the
real and the imaginary part one starts from WST identities with real
masses, satisfied at any given order, replaces everywhere m2 E sP

without violating the invariance.
In turns, this scheme violates unitarity, i.e. we cannot identify the two
sides of any cut diagram with T and T � respectively.
To summarize, the analytical structure of the S � matrix is correctly
reproduced when we use propagator factors p2 � sP but unitarity of S
requires more, a dressed propagator
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p2 � sP p2 � sP � � 
 p2 � � � 
 � sP �
analyticity unitarity
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Another drawback of the scheme is that all propagators for unstable
particles will have the same functional form both in the time-like and in
the space-like region while, for a dressed propagator the presence of a
pole on the second Riemann sheet does not change the real character
of the function if we are in a t � channel.
In some sense the scheme becomes more appealing when we go
beyond one loop. WST identities are satisfied with bare (i.e.
non-dressed) propagators and vertices up to two-loops; we may
assume that they are verified order by order to all orders,

W
'
1 ( 
+® �J¯ �°� W

'
2 ( 
+® �p¯ �$�²±H±H±³� 0 � (61)

where
® �p¯ is a set of (off-shell) Green function and cdr W � 0 is the

WST identity.
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Next we write the same set of WST identities but using a skeleton
expansion with one-loop dressed propagators. Calling the scheme
complex mass scheme is somehow misleading; to the requested order
we replace everywhere m2 with sP

� � 
 sP � which is real by
construction. If only one-loop is needed then m2 E sP everywhere
(therefore justifying the name complex mass) and

W
'
1 ( 
I® �J¯ �

m2 3 sP

� 0 � (62)

is trivially true. Also,

W
'
2 ( 
+® �p¯ �

m2 3 sP

� 0 * (63)

At the two-loop level we have two-loop diagrams with no self-energy
insertions where m2 � sP and one-loop diagrams where
m2 � sP

� � 
 sP � and the factor� 

p2 �5� � 
 sP �
p2 � sP � (64)

expanded to first order with
� � � ' 1 ( .
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Furthermore, in vertices we use m2 � sP in two-loop diagrams and
m2 � sP

� � 
 sP � in one-loop diagrams. Expanding the factor of Eq.(64)
generates two-loop diagrams with insertion of one-loop self-energies
plus one-loop¶ diagrams with one more propagator and a vertex
proportional to

� 

sP � ; furthermore one-loop diagrams with m2

dependent vertices get multiplied by
� 


sP � ; it follows that

Theorem

W
'
1 � 2 ( 
+® �p¯

skeleton �
m2 3 sP �¸· ' sP ( � W

'
1 � 2 ( 
+® �p¯ �

m2 3 sP

� � 
 sP � d
dm2 W

'
1 ( 
+® �p¯ �

m2 3 sP� 0 � (65)

as a consequence of Eqs.(62)–(63).
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