Modelling biological systems: a computational challenge

Parma, 8-13 September, 2008

G.C. Rossi University of Rome Tor Vergata INFN - Sezione di Tor Vergata

Acknowledgments --- Apologies

- I wish to thank Enrico for the opportunity he gave me to present this material
- and all the people of the Biophysics group of ToV (especially Silvia) for ∞-ly many discussions which are at the origin of these lectures

- Choice of arguments was made on the basis on my tastes, preferences and incompetence
- The amount of underlying biological knowledge behind most of the arguments I will touch is essentially unlimited and well beyond my competence
- Thus, I will try to convey you rather than a fully detailed biological information, some general description of certain broad classes of systems and problems on which one can probably say something interesting and useful
- I hope you'll find some of these problems intellectually appealing and exciting, not less than High Energy Physics (HEP) or Astrophysics, if not for their dramatic impact on our everyday life

500

600

2005

- I. Reductionism vs complexity
- II. Data, (physical) models and (mathematical) tools
- III. What we would like to know and/or to do
- IV. What we can actually do and/or are really doing
- V. Conclusions and outlook

I. Reductionism vs complexity

A bit of philosophy

A bit of phenomenology

A bit of "philosophy"

Biology vs Physics

(the viewpoint of a theoretical physicist)

 Compare and contrast the situation in the study of Biological systems

- "Complex" structures governed by (as yet) unknown macro-laws
- Powerful and cheap experimental techniques
- Huge amount of data
- Inadequate models: poor understanding of "micro" to "macro" transition
- and, at the other extreme, of Elementary Particle Physics
 - Supposedly "simple" systems governed by "elegant" known micro-laws
 - Very complicated and expensive experiments
 - Very few new experimental data (LHC is coming!)
 - Rather good models (almost "theories")

Physics (until very recently) has always found its way by progressively moving towards more and more elementary structures

matter \rightarrow atoms \rightarrow nucleons \rightarrow quarks \rightarrow ???

guided by the "radical reductionism" paradigm according to which

FUNDAMENTAL LAWS GOVERN ELEMENTARY OBJECTS

This attitude has been very fruitful in the "paradigmatic" case of **HEP**, but it is not obviously being employed in other emerging fields of investigation

Dynamical systems

{ Weather forecasting
 Catalytic reactions
 Fluidodynamics (turbulence)

key words: non-linearity, chaos

Disordered systems Glasses, Spin glasses

key-words: frustration, disorder

Biological systems

key-words: complexity, and perhaps all of the above

1 - There are implications for the notion of modelling and the nature of physical laws

• Even in Fundamental Physics what we usually call

Relativity Field String

are actually Models, formulated in the language of Mathematics, from which they borrow the necessary internal logical consistency

- Complications of everyday life (like friction in Mechanics) are considered (conceptually) irrelevant (up to a certain point airplanes, cars,...!)
- Theories become progressively simpler in the process of understanding
- For **Biosystems**, Models (nobody would call them theories) tend to become more and more complicated, as they develop (not simpler!), with a limit: the model shouldn't become as complicated as the system itself!
- •• The key questions about modelling in **Biology** are then
 - ⇒ When do we decide that we have "understood"? protein folding functional behaviour of the cell
 - \Rightarrow What kind of knowledge/predictions will we be happy with?

2 - There are implications for the notions of experiment and reproducibility

• The Central Dogma of Physics

Theories (models) are validated through reproducible experiments

In many biological instances the situation is somewhat more complicated.
 For instance, to put it in a provocative way

"The experiment of testing *in vivo* the effectiveness of a drug (working *in vitro*), would certainly not be considered a failure if, say, only **30%** of ill people recover"

- •• Can we somehow understand this situation?
 - Biological experiments may not give reproducible results because not all the relevant dof's are/can be kept under control ⇒ # dof's >> 1
 - On the other hand, in most cases (but, see later) it is not of any interest to be able to predict the properties of the final state of a biological system, or process, in its finest details ⇒ disorder & redundancy
 - 3. Models are very crude (when they exist at all) and most often overwhelming complicated ⇒ need for some intrinsically new concept?

The systems of interest

- Elementary is an object characterized by a small # of properties
- All elementary objects of a given kind are alike (electrons)
- Simple physical laws (theories) apply to elementary objects
- Strict determinism and experimental reproducibility follow
- Complex systems have many dof's and many functionally relevant components
- One should talk of classes of systems, e.g.

the class of nervous cells, the class of liver cells
 or, more generally, the class of nucleated cells
 Classes are defined by identifying the common properties of the constituent systems

- Models yield a mathematical description of common features of systems belonging to a given class in terms of probability distribution functions (PDF)
- Class averages are computed and compared to results coming from averages over sets of experiments

Complexity

Reductionism

3 - There are implications for the amount and the nature of the possible information output

Key point

is the accuracy by which a class of homogeneous objects can be defined

The more accurate (looser) the definition of the objects belonging to a certain class the simpler (more complicated) the model the sharper (more involved) its mathematical description the more precise (fuzzier) the information output

Key questions at this point are

Q1: What is complexity? A1: Its meaning is context dependent

Q2: Are biosystems complex objects? A2: Looks like they are 1. Algorithmic Complexity of Kolmogorov and Chaitin

• Definition:

Given a string S of N symbols **AC** = # of bits of a T.M. code that can produce **S** as an output

Such a definition does not look interesting for us

```
AC (random string) >> AC (\pi)

\begin{cases} AC (random string) \sim N \\ AC (<math>\pi) ~ log N [actually the digits of \pi are totally random]
```

- 2. Logical depth of Bennett
 - Definition:

Given a string S of N symbols **LD** = time (# of operation) for a T.M. to run the shortest code that can produce **S** as an output

• A somewhat more interesting definition

```
LD (random string) \propto time to read S ~ N
LD (\pi) \propto time to generate \pi ~ N
```

Biological Complexity

Necessary conditions

- many variables
- many relevant dof's

Here a bit of "phenomenology" starts

N		# of elementary constituents (atoms)
u	ΑΤΟΜ	1
m	AMINO ACID	10
e	PROTEIN	10 ³ -10 ⁵
0	CELL	10 ¹⁰
S		
i		
t y	HUMAN BODY	5x10 ²⁸ (nucleons)

It is not so much the number of "elementary" objects that is important (gas), but rather the existence of a large number of "functionally" relevant distinct components

• There is a lot of <u>disorder</u> in Biosystems

They have ($\sim \infty$ -ly) many randomly distributed microscopic variables and few (still very many!) mesoscopic variables controlling the system

Not every detail can be encoded in DNA, nor every Genoma has been tried

No optimal evolution

• There is a lot of <u>redundancy</u> in Biosystems

They can exist in very many "equilibrium/metastable" states

Individuals Organs Immune system states Proteins

Microscopically different organs (harts, brains,...) equally well accomplish their task

High degeneracy

Complexity: here is a sort of "phenomenological" definition

The more one can say about a class of systems, the more the systems of that class are complex

Complexity is complexity of classification

1. Sequences of random numbers

Not much can be said

all instances belong to the same class

It is a very simple class of systems

2. Equilibrium states of a system of spins at H = 0, T \sim 0

Only two states: spin up, spin down

3. Class of sequences of symbols giving rise to "books"

Many things can be said

Language	\Rightarrow	English, Italian, German,
Style	\Rightarrow	Poem, Tragedy,
Plot	\Rightarrow	Love story, Detective story,
	\Rightarrow	

Many "description levels" Various possible \Rightarrow "types of classification" or tasks

It is a complex class of systems

4. Set of painters

We could learn a lot, if we could establish

- When they were active \Rightarrow Date of birthWhere they were active \Rightarrow Place of birthTheir style \Rightarrow Relative influence... \Rightarrow ...
- Many "description levels"⇒Various possibleor tasks"types of classification"

It is a complex class of systems

5. The class of human languages is a complex system

Evolutive tree

FIG. 1. Comparison of genetic tree and linguistic phyla. See text for details. (Ling.) indicates populations pooled on the basis of linguistic classification. The tree was constructed by average linkage analysis of Nei's genetic distances. Distances were calculated based on 120 allele frequencies from the following systems: AIA2BO, MNS, RH, P, LU, K, FY, JK, DI, HP, TF, GC, LE, LP, PEPA, PEPB, PEPC, AG, HLAA (12 alleles), HLAB (17 alleles), PI, CP, ACP, PGD, PGMI, MDH, ADA, PTC, EI, SODA, GPT, PGK, C3, SE, ESD, GLO, KM, BF, LAD, E2, GM, and PG.

6. The set of living organisms on the Earth is a complex system

temporal evolutive tree

Biological systems and Spin glasses

Biosystems

Disorder

very many random variables, few dynamical (relevant) dof's

Degeneracy

can exist in very many "equilibrium" states

Spin glasses

Disorder

random coupling among spins

Frustration

within triplets of spins

Spin glasses: a suggestive paradigm for biosystems

Protein folding (see below) Associative memory Scaling laws in taxonomy Immune system memory and stability Iori Marinari Parisi Hopfield Mezard Parisi Virasoro Parisi

A Spin glass Primer

• N individuals interacts pairwise with couplings

J _{AB} =+1	if	A likes B
J _{AB} =-1	if	A dislikes B

• Given 3 individuals, there is frustration if

 $J_{AB} J_{BC} J_{CA} = -1$

- The N individuals are asked to separate in 2 fields so as to minimize in each field the number of pairs of "enemies"
- Given a J-PDF and an initial subdivision, "equilibrium" is reached by asking each individual to decide to change field if the move lowers the frustration
- If many pairs are frustrated

system is highly unstable

many possible equally good subdivisions

A locally optimal state is reached in polynomial time

A globally optimal state (if it can be reached at all) generically requires an exponential time (NP-problem)

An illuminating example

 M likes M M dislikes W W likes W W dislikes M

For any triplet J³=+1 No frustration

- \Rightarrow Optimal state: 2 separate groups, [M] and [W]
- M dislikes M
 M likes W
 W likes M

For any triplet J³=-1 Maximal frustration

 \Rightarrow Optimal state: any subdivision with equal number of M and W

Further examples of interesting physical systems

- Alloys, like Fe_x Au_{100-x}, with small $x \% \rightarrow H = \sum_{ik} \sigma_i J(|x_i-x_k|) \sigma_k J(|x_i-x_k|)$ very rapidly oscillating with $|x_i-x_k|$, almost a random function
- Electrons moving in a metallic glass, containing various types of atoms, located at fixed but random positions
- ⇒ We expect the electron conducibility not to depend on the detailed positions of the impurities (for not too small samples)

 $H_{SG} = \sum_{ik} \sigma_i J_{ik} \sigma_k$, with some PDF for the J_{ik}

Basic Mathematics

Sherrington

Kirkpatrick

Parisi

Hamiltonian

 $H_{J}[\sigma] = \sum_{ik} \sigma_{i} J_{ik} \sigma_{k} \qquad J_{ik} = J_{ki}, J_{ii} = 0$

- J_{ik} are random variables with PDF $\Rightarrow P(J)$

- Partition Function and Free Energy at fixed P(J)
 - $Z_{J} = \sum_{[\sigma]} \exp -\beta H_{J}[\sigma] \qquad \beta = 1/KT$ $F_{J} = -\frac{1}{\beta N} \log Z_{J}$
 - N is the number of spins
- We want to compute the quenched average

$$\mathbf{F} = \Sigma_{J} \mathbf{P}(\mathbf{J}) \mathbf{F}_{J} = -\frac{1}{\beta N} \Sigma_{J} \mathbf{P}(\mathbf{J}) \log Z_{J}$$

and not the annealed average

$$F_{An} = -\frac{1}{\beta N} \log Z_{An} \qquad Z_{An} = \sum_{J} P(J) \sum_{[\sigma]} \exp -\beta H_{J}[\sigma]$$

- time scale of J-dynamics >> time scale of σ -dynamics

The Replica Method

 $Z_n \equiv \sum_{I} P(J) (Z_I)^n$ \Rightarrow lim $_{n \rightarrow 0}$ F_n = F $F_n = -\frac{1}{\beta N} \frac{1}{n} \log Z_n$ the replica index A simple proof $\lim_{n \to 0} -\frac{1}{\beta N} \frac{1}{n} \log Z_n = \lim_{n \to 0} -\frac{1}{\beta N} \frac{1}{n} \log [\Sigma_J P(J) (Z_J)^n] =$ = $\lim_{n\to 0} -\frac{1}{\beta N} - \frac{1}{n} \log [\Sigma_J P(J) (1+n \log Z_J + ...)] =$ = $\lim_{n\to 0} -\frac{1}{BN} - \frac{1}{D} \log [1 + n \sum_{J} P(J) \log Z_{J} + ...)] =$ = $-\frac{1}{\beta N} \sum_{J} P(J) \log Z_{J} = F$ looks OK, except that n is an integer... Typical P(J)'s Gaussian: $P(J) \propto \exp[-(J-J_0)^2/2\sigma_1^2]$ Uniform: P(J=+1) = P(J=-1) = 1/2

Phase structure

The whole game is to compute P(q)

Few further numbers

dimensions times weights chemical events

Human body: ~7 x 10²⁷ atoms: 99% C, H, O and N; 87% are either H or O; but 41 different elements

Estimated Atomic Composition of a lean 70 kg Male Human Body

Element	Sym	ì	# Atoms	Element	Sym	1	# Atoms	Element	Sym	i	# Atoms
Hydrogen	н	1	4.22 x 10 ²⁷	Rubidium	Rb	37	2.2 x 10 ²¹	Zirconium	Zr	40	2 x 10 ¹⁹
Oxygen	Ο	8	1.61 x 10 ²⁷	Strontium	Sr	38	2.2 x 10 ²¹	Cobalt	Со	27	2 x 10 ¹⁹
Carbon	С	6	8.03 x 10 ²⁶	Bromine	Br	35	2 x 10 ²¹	Cesium	Cs	55	7 x 10 ¹⁸
Nitrogen	Ν	7	3.9 x 10 ²⁵	Aluminum	ΑΙ	13	1 x 10 ²¹	Mercury	Hg	80	6 x 10 ¹⁸
Calcium	Са	20	1.6 x 10 ²⁵	Copper	Cu	29	7 x 10 ²⁰	Arsenic	As	33	6 x 10 ¹⁸
Phosphorus	Ρ	15	9.6 x 10 ²⁴	Lead	Pb	82	3 x 10 ²⁰	Chromium	Cr	24	6 x 10 ¹⁸
Sulfur	S	16	2.6 x 10 ²⁴	Cadmium	Cd	48	3 x 10 ²⁰	Molybdenum	Мо	42	3 x 10 ¹⁸
Sodium	Na	11	2.5 x 10 ²⁴	Boron	В	5	2 x 10 ²⁰	Selenium	Se	34	3 x 10 ¹⁸
Potassium	К	19	2.2 x 10 ²⁴	Manganese	Mn	25	1 x 10 ²⁰	Beryllium	Be	4	3 x 10 ¹⁸
Chlorine	CI	17	1.6 x 10 ²⁴	Nickel	Ni	28	1 x 10 ²⁰	Vanadium	V	23	8 x 10 ¹⁷
Magnesium	Mg	12	4.7 x 10 ²³	Lithium	Li	3	1 x 10 ²⁰	Uranium	U	92	2 x 10 ¹⁷
Silicium	Si	14	3.9 x 10 ²³	Barium	Ba	56	8 x 10 ¹⁹	Radium	Ra	88	8 x 10 ¹⁰
Fluorine	F	9	8.3 x 10 ²²	lodine	1.1	53	5 x 10 ¹⁹				
Iron	Fe	26	4.5 x 10 ²²	Tin	Sn	50	4 x 10 ¹⁹				
Zinc	Zn	30	2.1 x 10 ²²	Gold	Au	79	2 x 10 ¹⁹	TOTAL			6.71x10 ²⁷

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	<u>H</u>																	<u>H e</u>
	Li	B.c.											R	C	N	0	F	N.e.
2	3	4											5	6	7	8	9	1 0
2	Na	Mg											A 1	Si	Р	S	C 1	A r
3	11	1 2											13	1 4	1 5	16	17	1 8
4	K	Са	Sc	Ti	V	Cr	<u>M n</u>	<u>F</u> e	Co	<u>N i</u>	<u>C</u> u	Zn	<u>G</u> a	Ge	As	<u>S</u> e	<u>Br</u>	<u>K</u> r
4	19	2 0	21	2 2	23	24	2 5	2 6	27	28	29	30	3 1	32	33	34	35	3 6
5	<u>R b</u>	<u>S r</u>	<u>Y</u>	<u>Z r</u>	<u>N b</u>	<u>M o</u>	<u>T c</u>	<u>R u</u>	<u>R h</u>	<u>P d</u>	Ag	<u>C d</u>	<u>I n</u>	<u>S n</u>	<u>S b</u>	<u>T</u> e	<u>I</u>	<u>X e</u>
5	37	3 8	39	4 0	4 1	4 2	4 3	44	4 5	4 6	4 7	4 8	49	50	5 1	5 2	53	54
6	<u>C</u> s	<u>Ba</u>	*	<u>H f</u>	<u>Ta</u>	W	<u>R e</u>	<u>O s</u>	<u>l r</u>	<u>P t</u>	<u>A u</u>	<u>H g</u>	<u>T 1</u>	<u>P b</u>	<u>B i</u>	<u>P o</u>	<u>A t</u>	<u>R n</u>
6	55	56		72	73	74	75	76	77	78	79	8 0	8 1	8 2	83	84	8 5	8 6
-	Fr	<u>Ra</u>	* *	<u>R f</u>	<u>D b</u>	Sg	<u>B h</u>	<u>H s</u>	<u>M t</u>	<u>U u n</u>	<u>U u u</u>	<u>U u b</u>						
/	87	8 8		104	105	106	107	108	109	110	111	112						
			*	La	Ce	<u>P r</u>	<u>N</u> d	P m	S m	<u>E u</u>	Gd	<u>T b</u>	D y	<u>H o</u>	Er	Tm	Y b	Lu
				57	5 8	5 9	6 0	6 1	6 2	63	64	6 5	6 6	67	6 8	6.9	7 0	7 1
			* *	Ac	Th	Pa	U	Np	P u	A m	C m	Bk	Cf	E s	Fm	M d	No	LT
				8.9	9 0	91	92	93	94	95	9 6	97	9.8	99	100	101	1 0 2	1 0 3
					Alka	ıli E a	rth	Alka	line	Earth	<mark>T ran</mark>	sitio n	Met	<mark>a l s</mark>				
					Rar	e Ear	th	Othe	rМе	tals	M eta	llo id s						
					Non	-Met	als	H a lo	gens		Nobl	e Gas	e s					

Estimated Molecular Content of a Typical 20-micron Human Cell

Molecule	Mass %	<mw> (Daltons)</mw>	# Molecules	Molecule %	# of Types
Water	65%	18	1.74 x 10 ¹⁴	98.73 %	1
Other Inorganic	1.5%	55	1.31 x 10 ¹²	0.74 %	20
Lipid	12%	700	8.4 x 10 ¹¹	0.475 %	50
Other Organic	0.4%	250	7.7 x 10 ¹⁰	0.044 %	~200
Protein	20%	50,000	1.9 x 10¹⁰	0.011 %	~5,000
RNA	1.0%	1 x 10 ⁶	5 x 10 ⁷	3 x 10 ⁻⁵ %	
DNA	0.1%	1 x 10 ¹¹	46	3 x 10 ⁻¹¹ %	
TOTALS	100%		1.76 x 10 ¹⁴	100%	

1 Da (Dalton) = 1 atomic unit = m_a(¹²C)/(12 x 1,660540 10⁻²⁷ kg ~ hydrogen mass) dimensionless unit

The largest and smallest cells in the human body are the gametes or the sex cells

 \bigcirc female = oocyte: $\emptyset \approx 35 \ \mu m$ (almost visible with the naked eye)

 δ male = spermatozoon: $\emptyset \approx 3 \ \mu m$

The smallest known organism capable of independent growth and reproduction

Mycoplasma genitalium: $\emptyset \approx 0.2 - 0.3 \ \mu m$

The smallest "theoretical" bacterium: $\emptyset \approx 0.17 \ \mu m$

<Average bacterium>: rod shape V \approx 1 µm² x 3 µm <Average human cell>: spherical shape Ø \approx 25 µm

- **Nucleolus** 1.
- **Nucleus** 2.
- 3. **Ribosome**
- 4. Vesicle
- Rough endoplasmic reticulum 5.
- Golgi apparatus 6.

- **Cytoskeleton** 7.
- Smooth endoplasmic reticulum 8.
- **Mitochondrion** 9.
- 10. Vacuole
- 11. Cytosol
- 12. Lysosome
- 13. Centriole

Comparison of features of <u>prokaryotic</u> and <u>eukaryotic</u> cells

	Prokaryotes	Eukaryotes		
Typical organisms	bacteria, archaea	protists, fungi, plants, animals		
Typical size	~ 1-10 <u>µm</u>	~ 10-100 μ m (sperm cells, apart from the tail, are smaller)		
Type of <u>nucleus</u>	nucleoid region; no real nucleus	real nucleus with double membrane		
DNA	circular (usually)	linear molecules (chromosomes) with histone proteins		
RNA-/protein- synthesis	coupled in cytoplasm	RNA-synthesis inside the nucleus protein synthesis in cytoplasm		
<u>Ribosomes</u>	50S+30S	60S+40S		
Cytoplasmatic structure	very few structures	highly structured by endomembranes and a cytoskeleton		
Cell movement	<u>flagella</u> made of <u>flagellin</u>	flagella and <u>cilia</u> containing <u>microtubules</u> ; <u>lamellipodia</u> and <u>filopodia</u> containing <u>actin</u>		
<u>Mitochondria</u>	none	one to several thousand (though some lack mitochondria)		
Chloroplasts	none	in <u>algae</u> and <u>plants</u>		
Organization	usually single cells	single cells, colonies, higher multicellular organisms with specialized cells		
Cell division	Binary fission (simple division)	Mitosis (fission or budding) Meiosis		

II. Data, (physical) models and (mathematical) tools II. Data, (physical) models and (mathematical) tools • Genome/Protein sequencing

genome sequence reconstruction is an NP-hard problem

Annotation

elucidation and description of biologically relevant features in the sequence and relations with other data

 Identification of gene regulation and metabolic pathways reaction constants and chemical affinities

0)mftollogi

- How to make a model
- Analytical methods
- Numerical approaches and simulations

D.D. Shoemaker et al. 15 February 2001 Vol. **409**, pp. 745-964

Human Genome Project HGP J. Craig Venter et al. 16 February 2001 Vol. **291**, pp. 1304-1351

CELERA

Genome Overview

Table 11. Genome overview.					
Size of the genome (including gaps)	2.91 Gbp				
Size of the genome (excluding gaps)	2.66 Gbp				
Longest contig	1.99 Mbp				
Longest scaffold	14.4 Mbp				
Percent of A+T in the genome	54				
Percent of G+C in the genome	38				
Percent of undetermined bases in the genome	9				
Most GC-rich 50 kb	Chr. 2 (66%)				
Least GC-rich 50 kb	Chr. X (25%)				
Percent of genome classified as repeats	35				
Number of annotated genes	26,383				
Percent of annotated genes with unknown function	42				
Number of genes (hypothetical and annotated)	39,114				
Percent of hypothetical and annotated genes with unknown function	59				
Gene with the most exons	Titin (234 exons)				
Average gene size	27 kbp				
Most gene-rich chromosome	Chr. 19 (23 genes/Mb)				
Least gene-rich chromosomes	Chr. 13 (5 genes/Mb), Chr. Y (5 genes/Mb)				
Total size of gene deserts (>500 kb with no annotated genes)	605 Mbp				
Percent of base pairs spanned by genes	25.5 to 37.8=				
Percent of base pairs spanned by exons	1.1 to 1.4 [*]				
Percent of base pairs spanned by introns	24.4 to 36.4				
Percent of base pairs in intergenic DNA	74.5 to 63.6 [±]				
Chromosome with highest proportion of DNA in annotated exons	Chr. 19 (9.33)				
Chromosome with lowest proportion of DNA in annotated exons	Chr. Y (0.36)				
Longest intergenic region (between annotated + hypothetical genes)	Chr. 13 (3,038,416 bp)				
Rate of SNP variation	1/1250 bp				
*					
In these ranges, the percentages correspond to the annotated gene set (26, 383 genes) and the					

hypothetical + annotated gene set (39,114 genes), respectively.

Genetic structure of human chromosomes

Each human chromosome contains a single long DNA molecule.

There are approximately **38,000 human genes** predicted from analysis of the human genome sequence

- c master
- Summary of Maps:

 Map 1: Ideogram

 Region Displayed: 9pter-9qter

 Map 2: Contig

 Region Displayed: 0-140M bp

 Total Contigs On Chromosome: 39 [7 not localized]

 Contigs Labeled: 34 Total Contigs in Region: 39

 Map 3: Homo sapiens UniGene Clusters

 Region Displayed: 0-140M bp

 Total Transcript alignments On Chromosome: 4925 [29 not localized]

 UniGene Clusters Labeled: 34 Total Transcript alignments in Region: 4925

 Histogram Data: Tick Width=282,809bp/pixel, Max Height=5099 transcripts

Gene Report for ENSG0000096060, FKBP5

Nucleotide Sequence (1374 nt):

ATGACTACTGATGAAGGTGCCAAGAACAATGAAGAAAGCCCCCACAGCCACTGTTGCTGAGCAGGGAGAGG ATATTACCTCCAAAAAAGACAGGGGGGGTATTAAAGATTGTCAAAAGAGTGGGGAATGGTGAGGAAACGCC GATGATTGGAGACAAAGTTTATGTCCATTACAAAGGAAAATTGTCAAATGGAAAGAAGTTTGATTCCAGT CATGATAGAAATGAACCATTTGTCTTTAGTCTTGGCAAAGGCCAAGTCATCAAGGCATGGGACATTGGGG TGGCTACCATGAAGAAAGGAGAGATATGCCATTTACTGTGCAAACCAGAATATGCATATGGCTCGGCTGG CAGTCTCCCTAAAATTCCCCTCGAATGCAACTCTCTTTTTTGAGATTGAGCTCCTTGATTTCAAAGGAGAG GATTTATTTGAAGATGGAGGCATTATCCGGAGAACCAAACGGAAAGGAGAGGGATATTCAAATCCAAACG AAGGAGCAACAGTAGAAATCCACCTGGAAGGCCGCTGTGGGAAGGATGTTTGACTGCAGAGATGTGGC ATTCACTGTGGGCGAAGGAGAGAGACCACGACATTCCAATTGGAATTGACAAAGCTCTGGAGAAAATGCAG CGGGAAGAACAATGTATTTTATATCTTGGACCAAGATATGGTTTTGGAGAGGCAGGGAAGCCTAAATTTG GCATTGAACCTAATGCTGAGCTTATATATGAAGTTACACTTAAGAGCTTCGAAAAGGCCCAAAGAATCCTG GGAGATGGATACCAAAGAAAAATTGGAGCAGGCTGCCATTGTCAAAGAGAAGGGAACCGTATACTTCAAG GGAGGCAAATACATGCAGGCGGTGATTCAGTATGGGAAGATAGTGTCCTGGTTAGAGATGGAATATGGTT TATCAGAAAAGGAATCGAAAGCTTCTGAATCATTTCTCCTTGCTGCCTTTCTGAACCTGGCCATGTGCTA CCTGAAGCTTAGAGAATACACCAAAGCTGTTGAATGCTGTGACAAGGCCCTTGGACTGGACAGTGCCAAT GAGAAAGGCTTGTATAGGAGGGGTGAAGCCCAGCTGCTCATGAACGAGTTTGAGTCAGCCAAGGGTGACT TTGAGAAAGTGCTGGAAGTAAACCCCCCAGAATAAGGCTGCAAGACTGCAGATCTCCATGTGCCAGAAAAA GGCCAAGGAGCACCAACGAGCGGGGACCGCAGGATATACGCCAACATGTTCAAGAAGTTTGCAGAGCAGGAT GCCAAGGAAGAGGCCAATAAAGCAATGGGCCAAGAAGACTTCAGAAGGGGTCACTAATGAAAAAGGAACAG ACAGTCAAGCAATGGAAGAAGAGAAACCTGAGGGCCACGTATGA

Growth of GenBank

(1982 - 2005)

hydrogen bonds

Cytosine

Ю....н

Guanine .

PDB

DNA sequencing

- Cut long DNA strands in short fragments using Restriction Enzymes
- Expand short DNA fragments (e.g. by PRC)

Polymerase Chain Reaction

- Two strategies
 - 1) Maxam-Gilbert method
 - mark (radioactively by ³²P) at the 5' end DNA fragments
 - cut out chemically the 3' end from each basis onward
 - keep only the marked fragments
 - 2) Sanger method
 - single strand fragments are let to polymerize in 4 kinds of different environments, i.e. in the presence of A, T, C, G, plus either A', or T', or C', or G', respectively
 - when either A', or T', or C', or G' is incorporated copying is blocked
 - primer that let the polymerization start or dideoxynucleotides A', T', C', G' are marked (e.g. with a fluorescent dye)
- Electrophoresis and radiography

From marked positions one gets all possible locations of each of the four bases along the fragment from which its sequence is reconstructed

Resulting radioactive fragments

Cleavage @ A ³²P-GCT ³²P-GCTACGT

Cleavage @ G ³²P-GCTAC

Cleavage @ C ³²**P-G** ³²P-GCTA

Cleavage @ T ³²**P-GC** ³²P-GCTACG

The Sanger method

A' → ddATP G' → ddGTP C' → ddCTP T' → ddTTP

chain-terminating nucleotides, lacking both 3'-<u>OH</u> groups required for the formation of a <u>phosphodiester bond</u> between two nucleotides during DNA strand elongation

PDB Current Holdings Breakdown

		Molecule Type					
		Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total	
Exp. Method	X-ray	<u>41431</u>	<u>1058</u>	<u>1902</u>	<u>24</u>	<u>44415</u>	
	NMR	<u>6447</u>	<u>814</u>	<u>138</u>	<u>7</u>	<u>7406</u>	
	Electron Microscopy	<u>125</u>	<u>11</u>	<u>47</u>	<u>0</u>	<u>183</u>	
	Other	<u>89</u>	<u>4</u>	<u>4</u>	2	<u>99</u>	
	Total	<u>48092</u>	<u>1887</u>	<u>2091</u>	<u>33</u>	<u>52103</u>	

Data types

- Amino acid sequences (proteins)
- Genomic sequences (DNA, RNA,...)
- 3D-structures of macromolecules
- Biochemical/Physiological
- Medical/Epidemiological

Data handling

- Collecting/Recording
- Releasing/Validating/Curing
- Updating/Maintaining
- Mining
- Analyzing/Organizing
- Data availability
 - Need easy, standardized, free access to DataBanks

IN

OUT

Patent laws and regulations

There exist about 60 DataBases, each containig trilions of bits

http://expasy.org/

Metabolic pathways
siRNA/RNAi

- Peptide antigens
- Protein interactions
- Kinase-Phosphate
- Transcription factors
- Disease Genes
- Protein database

Most important aspect in the production of antibodies or drugs is the design of peptide-antigens. A peptide-antigen is a small segment (15-18 amino acids) of the protein sequence of interest. These peptide-antigens can be used for immunization in order to produce antibodies against the protein or they can be used as a basis for small-molecule/drug targeting.

The Peptide-Antigen database <u>http://www.proteinlounge.com/</u> contains antigenic peptide targets against all known protein sequences throughout a variety of organisms.

1139 Genes with 5651 Peptide Sequences

5655 Genes with 28138 Peptide Sequences

New words for new concepts and needs, like

Proteomics Genomics Metabolomics Reactomics

. . .

come into play.

The suffix "omics" is alluding to the fact that are not just the single objects of each class (proteins, genoma, metabolic reactions,...) that matter, but their relations and interconnections

<u>Apoptosis</u>	Biological oxidations	Botulinum neurotoxicity	<u>Cell Cycle</u> <u>Checkpoints</u>
Cell Cycle, Mitotic	DNA Repair	DNA Replication	Electron Transport Chain
Gap junction trafficking and regulation	Gene Expression	HIV Infection	<u>Hemostasis</u>
Influenza Infection	Integration of energy metabolism	<u>Lipid and</u> <u>lipoprotein</u> <u>metabolism</u>	Membrane Trafficking
Metabolism of amino acids	<u>Metabolism of</u> carbohydrates	Metabolism of nitric oxide	<u>Metabolism of non-</u> <u>coding RNA</u>
Metabolism of vitamins and cofactors	<u>Nucleotide</u> <u>metabolism</u>	<u>Porphyrin</u> metabolism	Pyruvate metabolism and TCA cycle
Post-translational protein modification	Regulation of beta- cell development	Regulatory RNA pathways	Signaling by BMP
Signaling by EGFR	Signaling by FGFR	<u>Signaling in</u> Immune system	Signaling by Insulin receptor
Signalling by NGF	Signaling by Notch	Signaling by Rho GTPases	Signaling by TGF beta
Signaling by VEGF	Signaling by Wnt	<u>Synaptic</u> <u>Transmission</u>	<u>Telomere</u> <u>Maintenance</u>
Transcription	Translation	mRNA Processing	

G5

METABOLIC NETWORKS

Metabolism of eukaryotic cells

- ~5000-6000 enzymatic reactions
- ~3000 metabolites

most simple:

Red blood cells

Model system for

Calculation of dynamical properties of whole pathways based on the kinetic properties of single enzymes

metabolite concentration

~ 1 μ M: 10⁸ – 10⁹ molecules/cell

for most substances

concentrations of signaling molecules: ~100 nM 10⁴ - 10⁵ molecules/cell

CELL MOVEMENT

Mutations in NER-proteins: photosensitivity and sunlight-induced skin cancer

Dynamics of Cell Reactions

Network of very many interconnected sub-networks of related biochemical reactions

Barabasi

- Non-linear diffusive (of the heat type) PDE's
- Small number of some of the involved molecular species 10²-10⁵/cell
 - large number-fluctuations
 - competition with thermal fluctuations
- Events are discrete with a certain degree of randomness

Gillespie

• Multiplicity of time scales

Realistic (?) Single Cell Simulation

Even for the smallest living organism, Mycoplasma Genitalium

100 genes500 proteins100 regulatory elements10 cellular compartments

The E-Cell Simulation Environment is an object-oriented software suite for modelling, simulation, and analysis of large scale complex systems such as biological cells.

Takahashi Yugi Hashimoto Yamada Pickett Tomita

Process type	Dominant phenomena	Typical computation schemes
Metabolism	Enzymatic reaction	DAE, S-Systems, FBA
Signal transduction	Molecular binding	DAE, stochastic algorithms (StochSim and Gillespie, for example), diffusion-reaction
Gene expression	Molecular binding, polymerization, degradation	OOM, S-Systems, DAE, Boolean networks, stochastic algorithms
DNA replication	Molecular binding, polymerization	OOM, DAE
Cytoskeletal	Polymerization, depolymerization	DAE, particle dynamics
Cytoplasmic streaming	Streaming	Rheology, finite-element method
Membrane transport	Osmotic pressure, membrane potential	DAE, electrophysiology
	Process type Metabolism Signal transduction Gene expression DNA replication Cytoskeletal Cytoplasmic streaming Membrane transport	Process typeDominant phenomenaMetabolismEnzymatic reactionSignal transductionMolecular bindingGene expressionMolecular binding, polymerization, degradationDNA replicationMolecular binding, polymerizationCytoskeletalPolymerization, depolymerizationCytoplasmic streamingStreamingMembrane transportOsmotic pressure, membrane potential

Cellular processes and typical computational approaches.

DAE—differential-algebraic equations (rate equation-based systems), FBA—flux balance analysis, and OOM—object-oriented modeling (includes E-Cell's substance-reactor model, or SRM).

Can we hope to attack such fantastically complicated problems? Probably yes,

looking back at the development of Natural Science

Similar Mathematical Description and Algorithms

Cross-fertilization among nearby Research Fields

- Dealt with by Numerical Tools

Advances in Computer Developments

Numerical Simulations

Dedicated Computers

Models and modellization Strategies

Isolating functional modules, well separated

in time: protein folding vs cell duplication
in space: ribosomal protein synthesis vs cell translocation
chemically: metabolic pathways vs DNA transcription
logically: neuronal network vs electrical transmission along the axon

• Comprehensive (holistic)

Full simulations of a living cell

Degrees of freedom

Positions and velocities

Concentrations / reaction constants

Order parameters

Transmembrane potential / ionic current

Physiological / epidemiological data

.

Mathematical Tools

- Differential equations
 - Ordinary
 - Partial

Regulatory processes

Monte Carlo HMC Simulated Annealing Fluids **Proteins/SG** Stochastic Folding/Phase trans. .angevin Cell growth Classical Molecular Protein dynamics **Dynamics** Cell membrane Mechanics QM/MM Quantum DFT bona fide QM Local recognition Mechanics Car-Parrinello Cell membrane

• Non-equilibrium Statistical Mechanics?

Statistical-Mechanics-Inspired Algorithms

Einstein, Onsager, Touschek Gallavotti, Jona-Lasinio Open, almost stationary systems

Metabolic processes

III. What we would like to know and/or to do

III. What we would like to know and/or to do

Here is a (partial) list of wishes

- Protein folding and functioning
- Protein docking and recognition
- Immunological recognition
- Gene expression and regulation
- <u>Metabolic networks</u>
- System biology
- etc.

- Protein/DNA interactions
- <u>Amyloid aggregation</u>
- Memory and networking
- miRNA/siRNA
- Signal transduction
- <u>Nano-bio devices</u>
- etc.

Not to talk about the ultimate goal, of curing all possible diseases

What we would like to know about METABOLIC NETWORKS

SIMULATION MODELS

Attractors, Chaos (?)

Robustness

Recovery of function

Kinetic parameters

large number 10-1000 of variables

large number 10-1000 of equations

non-linearity

regulatory loops

separation of time scales

natural selection of kinetic parameters

What we would like to know about PROTEINS

♣ primary structure → folding → function linear
3D conform. switches

predict geometry and dynamics of folding and conformational changes
 3D times e.g. heme, rhodopsin

Matter

- predict function motif conservation, structural similarity
- ♣ evolution/selection → #10⁷ among (#10²)²⁰ possibilities folding vs aggregation?
 - understand mis-folding and aggregation
 Mad cow (Prion), Amyloidosis (e.g. β-amyloid in Alzheimer disease)

recognition/docking

Ab vs Ag, ..., transcription factors, promoters, ...

- characterize macromolecules binding
- clarify molecular mimicry and auto-immune reactions

SIMULATION MODELS

Coarse grained models

how general is folding?

- Geometrical considerations
 Lattice models
 Statistical Mechanics

Atomistic models

classical

- Minim. of config. energy (no entropy)
 Canonical/micro-canonical simulations
 Multi-canonical simulations

"right" ensemble? "right" thermodynamic variables?

spin glasses

- Quantum Chemistry
- DFT
- DFT Car-Parrinello dynamical simulations

Two examples, among ∞ -ly many

I. Cis \rightarrow Trans isomerization of 11-cis retinal

II. Hemoglobin "breathing"

Photoisomerization of rhodopsin

Photoisomerization of rhodopsin

Photoisomerization of rhodopsin

11-cis retinal

all-trans retinal

Hemoglobin

4 subunits

Deoxi-hemoglobin

Oxi-hemoglobin

Antigen-functionalized Nanotube for disease diagnosis

Questions

- can all this be done?
- will it work (specificity)?
- can one detect a signal upon Ab_A binding the Ag_A?
- can simulations be of help?

- Specific Antibodies Ab are produced in response to an external Antigen Ag (like a viral or bacterial protein)
- If you have been infected by Ag_A, you will produced Ab_A, detectable in your blood
- One would like to functionalize a nanotube with the Ag we wish to detected

Porphyrin Functionalized Nanotube

- New materials for solar energy applications
- Relatively simple, synthetically feasible (at ORNL-UT) mimics of light-harvesting antenna units
- **Porphyrin** molecules are the light absorbing antenna and the **nanotube** may provide a conducting channel
- Key research questions to address are:
 - How does porphyrin attach to the nanotube?
 - How does the electronic structure change as porphyrin molecules numerice/ sinuletions are added to the nanotube (up to 22 % in weight)?
 - How is the conductance affected by surface orientation and composition?
- Problem size 1500 (~ 60 Å) to 5000 atoms (202 Å by 60 Å) **10** times more electrons

Edoardo Aprà: Materials Chemistry Applications on the ORNL XT3 Cray Technical Workshop - Nashville 2007

IV. What we can actually do and/or are really doing

Two examples

IVa Metabolic networks

IVb Protein folding and aggregation

IV. What we can actually do and/or are really doing

Two examples

IVa Metabolic networks

IVb Protein folding and aggregation

Metabolic networks

• The case of the WNT pathway

the context and the problem

Modelization

data and approximations

Results

some numerics

Outlook

understanding cancer onset (?)

• A paradigmatic case: the WNT pathway

- Morphogenes are proteins that specify the different cell fate in a concentration dependent way
- WNT, Hh, BMP, ... regulator proteins that (during embryogenesis) provide positional information and organize embryonic patterning

- WNT-signalling mechanism is much studied, because defects in its regulation ultimately lead to cancer
- Normally WNT regulates the level of β -catenine in the cell

- In the absence of a WNT signal, a multi-component destruction complex, containing GSK3, Axin, ACP,... promotes Phosphorilation of β-catenine, making it ready for degradation by β-TRCP (an E3 Ubiquitin ligase)
- 2) In the presence of a WNT signal, the activity of the destruction complex is inhibited, and the level of cytoplasmatic β-catenine rises

 β -catenine becomes complexed with the transcription factor TCF and activate TCF-target genes (c-myc, cyclinD1, tcf-1,...), which directly influence cell development processes

Accumulation of β -catenine in the cell and/or deregulation of the TCF/ β -catenine activity can promote carcinogenesis in many tissues

- Mutations in the β -catenine gene CTNNb1 with consequent protein alterations (mostly in the region S29-K49)
- Defects in the WNT pathway, resulting in a deregulation of the cytoplasmatic β-catenine level

Modeling the canonical WNT pathway

Lee Salic Krueger Heinrich Kirschner PloS Biology, **1** (2003) 116

MAIN COMPONENTS

WNT (ligand) **FRIZZLED** (receptor) DISHEVELLED **AXIN** (scaffold) **APC (scaffold) GSK3** (Kinase) **GBP (GSK3** binding protein) **PHOSPHATASE (PP2A)** CASEINE KINASE **β-CATENINE (transcription coactivator) TCF** (transcription factor)

MUTATIONS IN APC PLAY A PARTICULARLY IMPORTANT ROLE IN COLORECTAL CANCER

APC: ADENOMATOUS POLYPOSIS COLIPROTEIN

and many, many more ...

Figure 1. Reaction Scheme for Wnt Signaling

The reaction steps of the Wnt pathway are numbered 1 to 19. Protein complexes are denoted by the names of their components, separated by a slash and enclosed in brackets. Phosphorylated components are marked by an asterisk. Single-headed solid arrows characterize reactions taking place only in the indicated direction. Double-headed arrows denote binding equilibria. Blue arrows mark reactions that have only been taken into account when studying the effect of high axin concentrations. Broken arrows represent activation of Dsh by the Wnt ligand (step 1), Dsh-mediated initiation of the release of GSK3 β from the destruction complex (step 3), and APC-mediated degradation of axin (step 15). The broken arrows indicate that the components mediate but do not participate stoichiometrically in the reaction scheme. The irreversible reactions 2, 4, 5, 9–11, and 13 are unimolecular, and reactions 6, 7, 8, 16, and 17 are reversible binding steps. The individual reactions and their role in the Wnt pathway are explained in the text. DOI: 10.1371/journal.pbio.0000010.g001

Unstimulated reference state Absence of Wnt

Effect of Wnt-stimulation

ACCUMULATION OF β-CATENIN

MAIN INPUT DATA OF THE MODEL

CONCENTRATIONS

total Dsh	100 nM
total APC	100 nM
total TCF	15 nM
total GSK3	50 nM
total axin	0.02 nM
total β-catenin	35 nM
free phosphorylated β -catenin	1 nM
DISSOCIATION CONSTANTS	
binding of GSK3 to (APC.axin)	10 nM

Diffully of GSRS to (AFC.dxiii)	10 111/1
binding of APC to axin	50 nM
binding of β -catenin to (APC.axin.GSK)	120 nM
binding of β -catenin to TCF	30 nM
binding of β -catenin to APC	1200 nM

FLUXES

degradation flux of β -catenin via the proteasome	25 nM/h
Share of degradation of β -catenin via	
unphosphorylated form	1.5 %

CHARACTERISTIC TIMES

phosphorylation/dephosphorylation of APC and axin	2.5 min
GSK3 association/dissociation	1 min
Axin degradation	6 min

Results

β -catenin degradation,

simulations and comparison with experimental data

Outlook

Tumor suppressor role of Axin and/or APC?

Very complicated to devise a winning strategy (non-linear dynamics)

- Axin degradation is APC dependent
- Axin and APC both involved in the β -catenin destruction complex

HUMBOLDT-UNIVERSITY

Reinhart Heinrich

SIGNAL TRANSDUCTION Thomas Höfer Roland Krüger Holger Nathansen

METABOLIC NETWORKS

Oliver Ebenhöh Edda Klipp Stefan Schuster Jana Wolf HARVARD MEDICAL SCHOOL, BOSTON

Marc Kirschner Leon Murphy Benjamin G. Neel Tom A. Rapoport Adrian Salic Ethan Lee Stefanie Schalm

UNIVERSITY BORDEAUX II

Jean-Pierre Mazat Christine Reder **BIOCENTRUM AMSTERDAM**

Hans Westerhoff

Roel van Driel

Martijn Moné

Summary

what can be/was done about metabolic networks

compounds/reaction constants Bio-chemical data suggest the set of relevant < chemical reactions</p> network topology

• Construct the set of (non-linear) diff. eqs (time and space) for concentrations

- identify relevant initial states/ • Solution { evolve the equations { stability studies around different points in concentration space
- Devise experiments and compare
- compounds/reaction constants chemical reactions Identify the key features of the system network topology
- hence what is needed to correct what goes wrong

(like accumulation of β -catenin in adult cell, as it would promote unwanted expression of the silenced TRC β gene)

Protein folding and aggregation

Generalities

• Universality vs natural selection the case of random hetero-polymers

• Folding vs aggregation the case of the Prion protein (PrP) and the role of Cu

• XAS (NMR, EPR) experiments data analysis and EXAFS theory

• QM calculations DFT and Car-Parrinello dynamics

Generalities

> Many degrees of freedom

protein: ~ 300 a.a.'s x 10 atoms = ~ 3000 atoms solvent: ~ 1000 atoms

3 to 4 times more "active" electrons

Large range of folding times

from $\mu sec's$ to sec's

too fast for an exhaustive search

the Levinthal's paradox

too slow for a straight descent to absolute minimum

Protein is a complex

(and complicated) system

Interaction is not short-range

choice of a phenomenologically acceptable potential in MD a Q.M. treatment (DFT, Car-Parrinello) is often needed

> Free-energy landscape looks very corrugated

many hierarchically organized local minima, separated by high barriers

System is not living at thermodynamic equilibrium

flux of energy and matter

> Even single mutations matter

though not always

The CFTR gene is found at the q31.2 locus of chromosome 7, is 230 000 base pairs long, and creates a protein that is 1,480 amino acids long. The most common mutation, Δ F508 is a deletion (Δ) of three nucleotides that results in a loss of the amino acid phenylalanine F at the 508th position on the protein. This mutation accounts for two-thirds of CF cases worldwide and 90 percent of cases in the <u>United States</u>, however, there are over 1,400 other mutations that can produce CF.

There are several mechanisms by which these mutations cause problems with the CFTR protein. Δ F508, for instance, creates a protein that does not fold normally and is degraded by the cell. Several mutations, which are common in the Ashkenazi Jewish population, result in proteins that are too short because production is ended prematurely. Less common mutations produce proteins that do not use energy normally, do not allow chloride to cross the membrane appropriately, or are degraded at a faster rate than normal. Mutations may also lead to fewer copies of the CFTR protein being produced.

68186

a dramati

The protein cannot be crystallized. No full resolution of the critical a.a. 508 region \rightarrow simulations?

We expect numerical approaches to be difficult

. Which atoms are going to be bound?

structure of the potential is not a priori known (QM)

Force computation time grows like NxN

two-body potential

- The system is very heterogeneous the problem is not "embarassingly" parallel
- . Dynamics time step is of the order of a *femptosec*

the system can be followed for very short times

. The system gets easily trapped in metastable states

the exploration of the system phase-space is far from ergodic

. Energy may not be a good label of the states of the system

states with largely different 3D-structures can have similar energies states with only slightly different 3D-structures can have very different energies

Countless number of approaches

- Geometrical approaches
- Simulated annealing
- Molecular Dynamics
- Monte Carlo simulations
- Simulated tempering and variations thereof
- Multi-canonical simulations
- Effective free-energy profile evaluation

Different levels of description

- Systems with discretized degrees of freedom
- String of beads

 Detailed atomistic description with effective interaction potentials with *ab initio* potentials

Universality vs natural selection

Self-interacting random hetero-polymers

 The complexity of the system is encoded in a certain amount of randomicity of the Hamiltonian

•
$$H = \sum_{i=1}^{N} \sum_{i>j} E_{ij}$$
, $N \ge 30$
• $E_{ij} = k \delta_{i, j+1} r_{ij}^2$ + $\frac{B}{r_{ij}^{12}}$ + $\frac{\eta_{ij} - A}{r_{ij}^6}$, $r_{ij}^2 = |\vec{x}_i - \vec{x}_j|^2$
binding repulsive it depends on
 $(B = 2)$ the sign of $\varepsilon - A$

• η_{ij} uncorrelated random gaussian variables

$$<\eta_{ij}>=0$$
 $<\eta_{ij}^2>=\varepsilon$

 The system is brought to equilibrium at β=1/k_BT under the Boltzmann probability distribution ∝ exp [-βH] During the evolution the shape of the chain is continuously monitored and various interesting features are revealed

• $\delta_{\alpha\beta}^2 = \frac{1}{N} \sum_{i=1}^{N} |\vec{x}_i^{(\alpha)} - \vec{x}_i^{(\beta)}|^2 \rightarrow \text{"distance" between } \{\vec{x}_i^{(\alpha)}\} \text{ and } \{\vec{x}_i^{(\beta)}\}$

• $\rho = \frac{1}{N_{conf}} \sum_{\alpha} \frac{1}{N} \sum_{i=1}^{N} |\vec{x}_i^{(\alpha)} - \langle \vec{x}_i^{(\alpha)} \rangle| \rightarrow \text{ average giration radius}$

• $\lambda = \frac{1}{N_{conf}} \sum_{\alpha} \frac{1}{N-1} \sum_{i=1}^{N-1} |\vec{x}_i^{(\alpha)} - \vec{x}_{i+1}^{(\alpha)}| \rightarrow \text{ average link length}$

I. $\varepsilon = 0$, no randomicity \rightarrow homo-polymer

• phase transition at A \approx 2 coil (open) \rightarrow un-shaped globule (closed) P(δ^2) peaked at large $\delta^2 \rightarrow$ small δ^2

II. $\varepsilon \neq 0$, some random interaction \rightarrow hetero-polymer

- new phase beyond a critical ε_c > A
 well-shaped globule (~ glassy phase in SG ?)
 - $P(\delta^2)$ is endowed with a lot of structure

Main result → Sufficiently random hetero-polymers generically fold

Speculation → Perhaps (all the) other a.a. sequences do not fold. Do they rather aggregate?

Comments

- In the "folded" phase the situation displays analogies with what one finds in the glassy phase of SG
 - Many long living, hierarchically organized states at sufficiently large randomicity (frustration)
 - Very long (actually not well defined) correlation times (stretched exponentials: ∝ exp [- (t/τ)^α], α<1, "aging")
 - Complexity of protein folding is reflected in the NP-completeness of SG
- Can one make the SG analogy more stringent and useful?

- Perhaps yes, taking inspiration from results in K-sat problem theory
 - Random K-sat problems can be mapped to SG
 - Alg's borrowed from SG can help solving Random K-sat problems in polynomial time with probability ~1
 - Can a random protein be folded in polynomial time?
- Should we instead move to a more reductionist point of view?

K-sat problems and SG

- K-sat problem: M constraints among N boolean variables, p₁, p₂, ..., p_N
- Constraint: clause among K variables (or their negation, –)
 - e.g. $(p_1 \vee \neg p_2) \land (p_2 \vee p_3) \land (\neg p_1 \vee \neg p_3) \rightarrow$ $[p_1 = t, p_2 = t, p_3 = f]$ or $[p_1 = f, p_2 = f, p_3 = t]$ Form (CNF)

Conjuntive Normal

• $K \ge 3 \implies$ NP-complete problem

www.satlib.org

K-sat problems	Spin systems
 p_i = true/false clause among a set of p_i negated / non-negated variables clauses satisfied / violated # of violated clauses 2^N possible ansatz's 	$\begin{array}{l} - spin \Rightarrow \sigma_i + 1/-1 \\ - interaction among a set of spins \\ - coupling J = -1 / +1 \\ - energy = 0 / 1 \\ - total energy H \\ - s = 1, 2,, 2^N \text{ possible states} \end{array}$

 $P(\sigma,\beta) \propto \exp[-\beta H(\sigma)]$

minimal # of violated clauses

- minimum of H \rightarrow SM at $\beta \rightarrow \infty$ (T = 0)

Random K-sat problem: building the a-th clause, C_a (a = 1, 2, ..., M)

1) p_{i1} , p_{i2} , ..., p_{iK} (K ≥ 3) are picked up with uniform probability among the N variables p_1 , p_2 , ..., p_N

2) variables p_{i1} , p_{i2} , ..., p_{iK} are randomly negated

Spin Glass: building the a-th interaction term, E_a (a = 1, 2, ..., M)

- 1) σ_{i1} , σ_{i2} , ..., σ_{iK} (K ≥ 3) are picked up with uniform probability among the N variables σ_1 , σ_2 , ..., σ_N
- 2) coupling is $J_a = J_{i1} J_{i2} \dots J_{iK}$ with $J_{ir} = -1$ or $J_{ir} = +1$, according to whether p_{ir} was randomly negated or not.

Mézard Monasson Parisi Zecchina

Some interesting result

- 1) Emergence of a phase transition as $N \rightarrow \infty$, at a critical value of $\alpha = M/N$
- 2) Methods developed in SG theory can be used to solve hard K-sat problems (cavity method, decimation alg., ...)
- 3) The average random (not the worst) case can be solved in polynomial time with probability ~1

Mitchell Levesque Selman

Hardest problems around $\alpha_c \approx 4.3$, where SAT propositions tend to become UNSAT

Phase transition → the jump becomes sharper as N gets larger

Protein folding and aggregation

Generalities

• Universality vs natural selection the case of random hetero-polymers

 Folding vs aggregation the case of the Prion protein (PrP) the role of Cu

• XAS (NMR, EPR) experiments data analysis and EXAFS theory

• Q.M. simulations DFT and Car-Parrinello dynamics

Folding vs aggregation

A test case: Prion Protein - PrP

(A bit of phenomenology)

PrP is a cell membrane glycoprotein (highly expressed in the central nervous system of many mammals), whose physiological role is unclear

It is, however, known to selectively bind copper, Cu

Mature PrP has a flexible, disordered, N-terminal (23-120) and a globular C-terminal (121-231)

Misfolding of PrP is held responsible for brain plaque formation and the development of Transmissible Spongiform Encelopathies (TSE)

 The N-terminal domain contains four (in humans) copies (repeats) of the octa-peptide P<u>HGGG</u>WGQ, each capable of binding Cu

 Experiments, more specifically, indicate that the Cu binding site is located within the <u>HGGG</u> tetra-peptide

- Cu seems to play a crucial role
- Cries for (Car-Parrinello) ab initio simulations

Quantum Chemistry in the BO approx

K. Wilson

Alzheimer's disease

• Transmissible Spongiform Encephalopaties (TSEs)

in humans: Creutzfeldt-Jakob Disease sporadic familial iatrogenic variant in sheeps: Scrapie in cattle: Bovine Spongiform Encephalopathy

- Parkinson's disease; Dementia with Lewy bodies
- Amyotrophic Lateral Sclerosis
- Huntington's Disease

in vivo diagnosis by Positron Emission Tomography, PET

DISEASE	AGGREGATING PROTEINS
Alzheimer's disease	Amyloid β -peptide
Transmissible Spongiform Encephalopathies	Full-length prion protein or fragments
Hereditary cerebral haemorrhage with amyloidosis	Amyloid β-peptide or Cystatin C
Parkinson's disease; dementia with Lewy bodies	α-Synuclein
Frontotemporal dementia with parkinsonism	Tau
Type II diabetes	Amylin
Medullary carcinoma of the thyroid	Procalcitonin
Atrial amyloidoses	Atrial natriuretic factor
Amyotrophic lateral sclerosis	Superoxide dismutase
Huntington's disease	Long glutamine stretches within proteins
Primary systemic amyloidosis	Intact immunoglobulin light chains or fragments
Secondary systemic amyloidosis	Fragments of serum amyloid A protein
Familial amyloidotic polyneuropathy 2	Fragments of apolipoprotein A1
Senile systemic amyloidosis	Wild-type transthyretin and fragments
Familial amyloidotic polyneuropathy 1	Mutant transthyretin and fragments
Familian Mediterranean fever	Fragments of serum amyloid A protein
Haemodialysis-related amyloidosis	β_2 -Microglobulin
Finnish hereditary amyloidosis	Fragments of mutant gelsolin
Lysozyme amyloidosis	Full-length mutant lysozyme
Insulin-related amyloid	Full-length insulin
Fibrinogen α-chain amyloidosis	Fibrinogen α-chain variants

How do we go about such a complicated problem?

1) Hints from physiological/biological/biochemical data \rightarrow

- 2) Make a working hypothesis and/or a model for misfolding or aggregation
- 3) Test it against appropriately designed experiments
- 4) Phenomenological interpretation of EXAFS data \rightarrow
- 5) Go to an atomic description to check 4) and \rightarrow interpret the model

At this point, if you think you have understood something

6) Devise (?) an anti-aggregation strategy \rightarrow Test it in vivo

Most probably 7) 2)

PrP accumulated data

 \rightarrow The role of Cu

EXAFS experiments

EXAFS theory

 \rightarrow

Ab initio calculations

 \rightarrow need to go back to

We start with some data

HuPrP (human) α -helices = orange β -strands = cyan non-regular secondary structure = yellow, flexible disordered "tail" (23-121) = yellow dots

BoPrP (bovine) α -helices = green β -strands = cyan, non-regular secondary structure = yellow flexible disordered "tail" (23-121) = yellow dots

C-terminal part

X-crystallography of the HGGGW-Cu⁺² complex

Burns, et al. Biochemistry 41:3991 (2002)

• EXAFS experiments

Synchrotron Radiation (SR)

 $\left\{\begin{array}{l}
charged (electrons) \\
accelerated \\
relativistic (E = \gamma mc^2)
\right\}$ particles

radial acceleration (e.g. deflection by a magnet) Lorentz force $F = e v \ge B$

SR is always emitted in the forward direction and is observed in a narrow cone tangentially to the orbit

The <u>higher</u> the electron kinetic energy the <u>narrower</u> the emission cone

SR spans the electromagnetic spectrum from infrared (IR) to X-ray radiation

Experimental setting

- radiation is directed by optical elements to the monochromator
- monochromator selects the desired wavelength of the spectrum
- the radiation is directed to the sample

Hard X-ray photons $\Rightarrow \lambda \sim$ inter-atomic distances in crystals

Radiation absorption \Rightarrow **photo-electric effect** $I = I_0 \exp[-\mu(E_k)d]$

$$\boldsymbol{E}_{k} = \boldsymbol{h}_{\boldsymbol{\nabla}} - \boldsymbol{E}_{\boldsymbol{0}}$$

- E_k = kinetic energy of the emitted photo-electron
- $h_{\rm V}$ = energy of the photon
- *E*₀ = electron binding energy *

*characteristic of the specific material and bound state of the electron

XAS spectrum from an isolated atom (e.g. mono-atomic gas)

• The absorption coefficient, μ , decreases monotonically with the incident photon energy, h_V

- When $h_V = E_0$ = photo-ionization energy of an inner electron of the absorbing atom (edge energy*), μ sharply increases.
- It then decreases monotonically soon after the edge

XAS spectrum from a non-isolated atom (e.g. a diatomic molecule)

- In a multi-atomic system μ doesn't decrease monotonically after the edge, rather it has an oscillating behaviour
- The absorber (red dot) emits an outgoing spherical wave (the ionized electron, *photo-electron*)
- The scatterer (green dot) acts as diffusion center of the backscattered wave, which interferes (*in phase or out-of-phase*) with the outgoing wave

EXAFS analysis of Cu⁺⁺ site geometry in Prion peptide complexes

(EMBL-DESY) Hamburg

- S1. (BoPrP 25-30, 60-70) KKRPKPWGQPHGGGWGQ
- S2. (BoPrP 25-30, 60-78) KKRPKPWGQPHGGGWGQPHGGGWGQ
- S3. (BoPrP 25-30, 60-94) KKRPKPWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ

S4. (αBoPrP 24-242) CKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQPHGGGWGQ PHGGGWGQPHGGGWGQPHGGGGWGQGGTHGQWNKPSKPKTNMKHVAGAAAAG AVVGGLGGYMLGSAMSRPLIHFGSDYEDRYYRENMHRYPNQVYYRPVDQYSNQNNFVHDCVNITV KEHTVTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYYQRGAS

Ju++	stoichiometry	
	Cu ⁺⁺ equivalence	
Ν	E	E/N
1	0.5	0.5
2	1.5	0.75
4	3.2	0.8
4	2.0	0.5
4-5	2.0	0.5/0.4
	N 1 2 4 4 4 4-5	N Cu++ equiv 1 0.5 2 1.5 4 3.2 4 2.0 4-5 2.0

- N: number of Cu⁺⁺ coordination sites in the complex = number of octarepeats
- E: [Cu++] / [protein (or peptide)]
- E/N: number of sites saturated with Cu⁺⁺ = [Cu⁺⁺] / [octarepeat]

sub-stoichiometric Cu++ concentration

Morante et al., J. Biol. Chem. 279 (2004) 11753

EXAFS data: Single and Multiple Scattering contributions Fitted curves are within data fluctuations

S1

S2

S3

S4

Model interpretation of **EXAFS** data analysis

• EXAFS theory

Extracting structural information from EXAFS data

Data $I = I_0 \exp[-\mu(k)d]$ are expressed and analyzed in terms of

$$\chi(k) = \frac{\sigma_a - \sigma_0}{\sigma_0} = \frac{\mu(k) - \mu_0(k)}{\mu_0(k)} \qquad \qquad k = \frac{\sqrt{2m(h\nu - E_0)}}{\hbar}$$

 μ = absorption coefficient σ_a = absorption cross section

 $\mu \propto \sigma_a$

 $\sigma_a = 4\pi^2 \alpha \hbar \omega \left| \left\langle f \left| \hat{\epsilon} \cdot \vec{r} \right| i \right\rangle \right|^2 N(\omega)$ Fermi's golden rule

 ω photon frequency $N(\omega)$ density of photo-electron final state $\hat{\varepsilon}$ polarization vector of incidente radiation $M_{fi} = |\langle f | \hat{\varepsilon} \cdot \vec{r} | i \rangle|$ matrix element describing the electron transition|i > : initial bound state|f > : final "free" state

Initial, |i>, and the final states, |f>, are eigenfunctions of the Hamiltonian

$$H = \frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{r} + V(r)$$

The potential V(r) is (most often) evaluated in the so-called *muffin tin* (MT) approximation

Computing the transition matrix element, M_{fi}

is

□ Electron initial state: one neglects *V*

The Schrödinger equation for the innermost (K) electron is

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{Ze}{r}\right)|i\rangle = E|i\rangle \qquad \text{whose normalized solution}$$
$$\psi_i(r) = \langle r|i\rangle = \pi^{-1/2} \left(\frac{Z}{a_0}\right)^{3/2} \exp(-Zr/a_0) \equiv \psi_0(r)$$

n=1, *I*=0 eigenfunction of hydrogen atom

Electron final state: one neglects the Coulomb potential

The Schrödinger equation for the outgoing electron is

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\left|f\right\rangle \equiv \left(H_0 + V\right)f\right\rangle = E\left|f\right\rangle$$

 H_0 is the free Hamiltonian, V is the potential due to the presence of scatterers

Iterative solution: let's write $|f\rangle = |k\rangle + |rest\rangle$

|k
angle wave function of a free electron of momentum k

$$\langle r | k \rangle = N \exp \frac{i \vec{k} \cdot \vec{r}}{\hbar}$$

and satisfies the equation

$$H_0 |k\rangle = E |k\rangle \rightarrow (E - H_0) |k\rangle = 0$$

we have

$$(H_0 + V) f \rangle = E | f \rangle \rightarrow (E - H_0) f \rangle = V | f \rangle$$

inserting the definition of $|f\rangle \Rightarrow$

•
$$(E - H_0)k\rangle + (E - H_0)rest\rangle = V|f\rangle \Rightarrow |rest\rangle = (E - H_0)^{-1}V|f\rangle$$

• $|f\rangle = |k\rangle + (E - H_0)^{-1}V|f\rangle =$
 $= |k\rangle + (E - H_0)^{-1}V|k\rangle + (E - H_0)^{-1}V(E - H_0)^{-1}V|k\rangle + ...$
Introducing the Green function $G_0 = (E - H_0)^{-1}$

where, we recall

$$(E - H_0) \left\langle \vec{r} \left| G_0 \right| \vec{r'} \right\rangle = \delta^{(3)}(\vec{r} - \vec{r'}) \qquad \left\langle \vec{r} \left| G_0 \right| \vec{r'} \right\rangle = -\frac{m}{2\pi\hbar^2} \frac{e^{i\vec{k}(\vec{r} - \vec{r'})/\hbar}}{\left| \vec{r} - \vec{r'} \right|}$$

one obtains

$$\begin{split} M_{fi} &= \left\langle f \left| \hat{\varepsilon} \cdot \vec{r} \right| i \right\rangle = \left\langle k \left| \hat{\varepsilon} \cdot \vec{r} \right| i \right\rangle + \left\langle k \left| G_o V \hat{\varepsilon} \cdot \vec{r} \right| i \right\rangle + \left\langle k \left| G_o V G_o V \hat{\varepsilon} \cdot \vec{r} \right| i \right\rangle + \ldots \equiv \\ &\equiv A_0 + A_1 + A_2 + \ldots \end{split}$$

• Stopping the expansion after the first term (single scattering events), one gets

$$\left|\left\langle f\left|\hat{\varepsilon}\cdot\vec{r}\right|i\right\rangle\right|^{2} = \left|A_{0}\right|^{2} + \left|A_{1}\right|^{2} + 2\operatorname{Re}\left(A_{0}A_{1}^{*}\right) + 2\operatorname{Re}\left(A_{0}A_{2}^{*}\right)\right\rangle$$

atomic absorption contribution (isolated atom) oscillations of the EXAFS signal

 Including further terms (multiple scattering events), one gets

$$\sigma_a = \sigma_0 + \sum_i \sigma_i + \sum_{ij} \sigma_{ij} + \sum_{ijk} \sigma_{ijk} + \dots$$

In Single Scattering approximation ($\hbar \omega >> E_0$) Boland Crane Baldeschwieler, JPC 77, 142 (1982)

Single scattering approximation

Need to know

- the position of atoms in the vicinity of Cu, as the whole analysis of EXAFS data rests on this knowledge
- which are the actual metal ligands
- how the rest of the peptide is structurally organized

Ab initio calculations are necessary

- Quantum Mechanics to determine the atomic force field (in the Born-Oppenheimer approximation)
- Electrons are dealt with by **DFT** (Density Functional Theory)
 - Schroedinger equation is solved à la Kohn-Sham
- Atoms are treated classically
- Car-Parrinello simulations especially useful
 - Atomic Molecular Dynamics
 - Some dynamics helps in understanding stability

The DFT method

STEP 1

Decoupling of atomic and electronic dof's (v_A 's << v_{el} 's \Rightarrow BOA)

STEP 2

At fixed atomic coordinates, compute the electronic ground-state w.f. with the help of DFT (Schroedinger eq \Rightarrow Kohn-Sham eq's)

STEP 3

"Optimize" atomic coordinates to adapt them to the currently computed inter-atomic potential

STEP 4

Iterate STEP 2 and STEP 3 until you get consistency

The Car-Parrinello idea

Update atomic coordinates while solving Kohn-Sham eq's

Faster convergence \Rightarrow CPU-time Control over configuration stability Atomic and KS eq's are made to both look Newtonian (2nd order in time)

In Formulae

Starting point is the Schroedinger equation

STEP 1

BO Molecular Dynamics

•
$$M_I \frac{d^2 \vec{R}_I(t)}{dt^2} = -\vec{\nabla}_I \left(\left\langle \Psi_0 \mid H_e \mid \Psi_0 \right\rangle + V_A[\{\vec{R}\}] \right)$$

$$H_{e} |\Psi_{0}\rangle = E_{0} |\Psi_{0}\rangle$$

$$E_{0} = E_{0}[\{\vec{R}\}]$$

$$\langle\{\vec{r}\}|\Psi_{0}\rangle = \Psi_{0}[\{\vec{r}\},\{\vec{R}\}]$$

Atoms move classically in the Quantum Mechanical potential generated by the electrons living in their ground-state w.f., Ψ_0

Difficulties

Schroedinger eq. should be solved over and over again at each atomic MD step

Contributions of excited states should be taken into account

One does not really know how to solve the electronic Schroedinger eq.

A useful approximation is Hartree-Fock

- Ψ₀ is written as a Slater determinant (Pauli principle) of N_e single particle trial w.f.'s, {ψ_i(r_i)}
- The latter are determined by minimizing the total electronic energy

 $\min_{\{\psi\}} \left\langle \Psi_0[\{\psi\}] | H_e^{\mathrm{HF}} | \Psi_0[\{\psi\}] \right\rangle \Big|_{\langle \psi_i | \psi_i \rangle = \delta_{ii}} \left\langle \{\vec{r}\} | \Psi_0[\{\psi\}] \right\rangle = \det_{ij}[\{\psi_i(\vec{r}_j)\}]$ $H_{e}^{HF} = -\frac{\hbar^{2}}{2m} \sum_{i} \nabla^{2}_{i} - \sum_{i,I} \frac{Z_{I}e^{2}}{|\vec{R}_{*} - \vec{r}_{*}|} + W^{dir}[\{\psi\}] + W^{exch}[\{\psi\}]$ $W^{dir}[\{\psi\}] = \sum_{j} \left| \int d\vec{r}' \psi_{j}^{*}(\vec{r}') \frac{1}{|\vec{r}' - \vec{r}|} \psi_{j}(\vec{r}') \right| \psi_{i}(\vec{r})$ $W^{\text{exch}}[\{\psi\}] = \sum_{j} \left[\int d\vec{r}' \psi_{j}^{*}(\vec{r}') \frac{1}{|\vec{r}' - \vec{r}|} \psi_{i}(\vec{r}') |\psi_{j}(\vec{r}) \right]$ • HeHF is a one-body Hamiltonian

• which depends non-locally and non-linearly on all $\{\psi\}$

STEP 2

DFT → provides a way to systematically map the many-body problem (with electron self-interaction, W)

•
$$H_e \Psi[\{\vec{r}\}] = [T + W + U_A] \Psi[\{\vec{r}\}] =$$

= $\left[-\frac{\hbar^2}{2m_e} \sum_i \nabla_i^2 + \sum_{i < j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} - \sum_{i, I} \frac{Z_I e^2}{|\vec{R}_I - \vec{r}_i|} \right] \Psi[\{\vec{r}\}] = E[\{\vec{R}\}] \Psi[\{\vec{r}\}]$

into a single-body problem (without electron self-interaction, W)

DFT → is based on the Hohenberg-Kohn (Phys. Rev 136 (1964) 864) →

Theorem

"There exists a one-to-one mapping between the set of U_A potentials and the set of (admissible) ground-state electronic densities"

• {n}
$$\{ u_A \}$$
 where $n(\vec{r}) = N \int \Pi_{i=1}^N d\vec{r}_i \Psi_0^*(\vec{r}, \vec{r}_2, ..., \vec{r}_N) \Psi_0(\vec{r}, \vec{r}_2, ..., \vec{r}_N)$

Lemma 1

Since U_A fixes $H_e \rightarrow \Psi_0$ is in turn a unique functional of n, hence of U_A

Lemma 2

• $F_{HK}[n] = \langle \Psi[n] | T + W | \Psi[n] \rangle$

is a well-defined, universal functional of the (admissible) electronic density

Lemma 3

The functional

•
$$E_{u_A}[n] = F_{HK}[n] + \int d\vec{r} \, u_A(\vec{r})n(\vec{r}), \quad u_A(\vec{r}) = \sum_{I} \frac{Z_I e^2}{|\vec{R}_I - \vec{r}|}$$

1) attains its minimum when $n = n_{u_A}(\vec{r})$, i.e. when the electronic density equals the value which is in correspondence with U_A in the HK mapping

 γ

2) at the minimum it equals the total electronic energy

Corollary

We can compute the ground-state electronic density, hence all the ground-state observables, from the minimum equation

•
$$\frac{\delta E_{u_A}[n]}{\delta n(\vec{r})} = 0 = \frac{\delta F_{HK}[n]}{\delta n(\vec{r})} + u_A(\vec{r})$$
 (V)

except that we do not know the HK-functional, F_{HK}

Kohn and Sham have proposed a way to go around this problem

The Kohn-Sham equations

- The key observation is that the HK mapping exists, even if we set the electronic self-interaction term to zero in all the above equations, $W \equiv 0$
 - in this situation the many-body electronic Schroedinger equation separates into N decoupled one-body equations
 - furthermore for any given electronic density, n, there exists a u_A^{NSI} such that one can represent n as the sum of the moduli square of the solutions of the one-body Schroedinger equation

$$n \left[-\frac{\hbar^2}{2m_e} \nabla^2 + u_A^{\text{NSI}}[n; \vec{r}] \right] \phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r}) \qquad i = 1, 2, ..., N$$
Kohn-Sham equations
$$n(\vec{r}) = \sum_{i=1}^N |\phi_i(\vec{r})|^2 \qquad u_A \Leftrightarrow n \Leftrightarrow u_A^{\text{NSI}}$$

• We are done if we can find the relation between u_A and u_A^{NSI}

- Ψ_0 is exactly the Slater determinant of the $\{\phi_i\}$
- the NSI HK-functional is simply the kinetic energy

•
$$F_{HK}^{NSI}[n] = T_{HK}^{NSI}[n] = \langle \Psi_0[n] | T | \Psi_0[n] \rangle = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{N} \int d\vec{r}_i \varphi_i^*(\vec{r}_i) \nabla^2 \varphi_i(\vec{r}_i)$$

- and satisfies the equation

•
$$\frac{\delta T_{HK}^{NSI}[n]}{\delta n(\vec{r})} + u_A^{NSI} = 0$$
 (*)

• We now rewrite $E_{u_A}[n] = F_{HK}[n] + \int d\vec{r} u_A(\vec{r})n(\vec{r})$ in the form

•
$$E_{u_A}[n] = T_{HK}^{NSI}[n] + \int d\vec{r} \, u_A(\vec{r})n(\vec{r}) + \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} + E^{exch}[n]$$

•
$$E^{\text{exch}}[n] = F_{\text{HK}}[n] - T_{\text{HK}}^{\text{NSI}}[n] - \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

• Minimizing $E_{v_A}[n]$ and using equations (\checkmark) and (\clubsuit), we get

•
$$u_A^{\text{NSI}}(\vec{r}) = u_A(\vec{r}) - e^2 \int d\vec{r}' \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\delta E^{\text{exch}}[n]}{\delta n(\vec{r})}$$

Inserting back u_A^{NSI} in the KS equations one ends up with

$$\bullet \left[-\frac{\hbar^2}{2m_e} \nabla^2 + u_A(\vec{r}) - e^2 \int d\vec{r}' \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\delta E^{\text{exch}}[n]}{\delta n(\vec{r})} \right] \varphi_i(\vec{r}) = \varepsilon_i \varphi_i(\vec{r})$$

- formally identical to the HF equations, but for
- ϵ_i are Lagrange multipliers enforcing < $\phi_i | \phi_j > = \delta_{ij}$

On the solution the total energy reads

•
$$E_0^{HK} = \sum_{i=1}^N \varepsilon_i + \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n_0(\vec{r})n_0(\vec{r}')}{|\vec{r} - \vec{r}'|} + E^{exch}[n_0] - \int d\vec{r} \frac{\delta E^{exch}[n]}{\delta n(\vec{r})} \bigg|_{n_0} n_0(\vec{r})$$

- it is a function of the atomic positions

- it plays the role of inter-atomic potential in MD simulations

• We need an expression for
$$E^{exch}[n]$$
 and $\frac{\delta E^{exch}[n]}{\delta n(\vec{r})}$

•
$$T_{\text{FEG}}[n] = \frac{3}{10} \int d\vec{r} (3\pi^2 n)^{2/3} n$$
 $E_{\text{FEG}}^{\text{exch}}[n] = -\frac{3}{4\pi} \int d\vec{r} (3\pi^2 n)^{1/3} n$
• LDA / GGA / ... $E_{\text{LDA/GGA}}^{\text{exch}}[n] = c \int d\vec{r} \eta_{\text{LDA/GGA}}^{\text{exch}}[n] n$

STEP 3 \rightarrow STEP 4

"Optimization" of atomic coordinates can be achieved in various ways

1) Solve the classical eqs of motion

•
$$M_{I} \frac{d^{2}\vec{R}_{I}(t)}{dt^{2}} = -\vec{\nabla}_{I} \left(E^{HK}[\{\vec{R}\}] + V_{A}[\{\vec{R}\}] \right)$$

but, need to know $E^{HK}[\{R\}]$ for all values of $\{R\}$

2) Solve simultaneously classical eqs of motion for atoms and the KS eqs for electrons

It can be elegantly done by introducing the effective Lagrangian

 $\delta n(\vec{r})$

Car-Parrinello

 Rather than the minimum equation (⁽), we get for the electronic w.f., the 2nd order equation in the (fictitious) time

$$0 = \frac{\varepsilon_{i} \text{ eigenvalues}}{\text{ of } \Lambda_{ij}}$$

$$\mu_{i} \frac{d^{2} \varphi_{i}(\vec{r},t)}{dt^{2}} = \left[-\frac{\hbar^{2}}{2m_{e}} \nabla^{2} + u_{A}(\vec{r}) - e^{2} \int d\vec{r} \cdot \frac{n(\vec{r}',t)}{|\vec{r}-\vec{r}'|} + \frac{\delta E^{\text{exch}}[n]}{\delta n(\vec{r})} \right] \varphi_{i}(\vec{r},t) - \Lambda_{ij} \varphi_{j}(\vec{r},t)$$

- A unique time step for atomic MD and KS eqs, $\Delta t \approx$ femtosecond
- We need to solve the KS eqs by adiabatically lowering the electronic "kinetic energy"
 - "total electronic energy" is (almost) conserved we have a Lagrangian system little energy transfer between atoms and electrons
 - by progressively lowering T_e → 0, the system will end in the minimum of the "potential"
 - where the force, hence the acceleration is zero

CP dynamics is implemented in a number of codes, among which Quantum ESPRESSO and CPMD

http://www.quantum-espresso.org/

http://www.cpmd.org/

- Quantum ESPRESSO is an initiative of the DEMOCRITOS National Simulation Center (Trieste) and of its partners.
- In collaboration with

٠

٠

•

- CINECA, the Italian National Supercomputing Center in Bologna
- Ecole Polytechnique Fédérale de Lausanne
- Princeton University
- Massachusetts Institute of Technology
- Many other individuals...
- Integrated computer code suite for electronic structure calculations and materials modeling at the nanoscale
 - Released under a free license (GNU GPL)
 - Written in Fortran 90, with a modern approach
 - Efficient, Parallelized (MPI), Portable
- Suite components
 - PWscf (Trieste, Lausanne, Pisa): self-consistent electronic structure, structural relaxation, BO molecular dynamics, linear-response (phonons, dielectric properties)
 - CP (Lausanne, Princeton): (variable-cell) Car-Parrinello molecular dynamics

The **Quantum-ESPRESSO** Software Distribution

- Car-Parrinello variable-cell molecular dynamics with Ultrasoft PP's.
- Developed by A. Pasquarello, K. Laasonen, A. Trave, R. Car,
 N. Marzari, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo,
 G. Chiarotti, P. Focher.
- Verlet dynamics with mass preconditioning
- Temperature control: Nosé thermostat for both electrons and ions, velocity rescaling
- Variable-cell (Parrinello-Rahman) dynamics
- Damped dynamics minimization for electronic and ionic minimization
- Modified kinetic functional for constant-pressure calculations
- "Grid Box" for fast treatment of augmentation terms in Ultrasoft PP's
- Metallic systems: variable-occupancy dynamics
- Nudged Elastic Band (NEB) for energy barriers and reaction paths
- Dynamics with Mannier functions

A *first principle* study of the Cu-HGGG interactions A - the monomer B - the dimer

Furlan, La Penna, Guerrieri, Morante, GCR, JBIC **12(4)** (2007) 571

A - Initial Cu⁽⁺²⁾ HG⁽⁻⁾G⁽⁻⁾G configuration

B - Initial 2 x [Cu⁽⁺²⁾ HG⁽⁻⁾G⁽⁻⁾G] configuration

1.8 ps trajectory @ 300K

Quantum Mechanics at work Car-Parrinello ab initio simulations A *first principle* study of the influence of pH on the geometry of the Cu binding site in the HGGG + H(Im) peptide

Furlan, La Penna, Guerrieri, Morante, GCR, JBIC

$Cu^{2+}(HisG_1^{-}G_2^{-}G_3) + Im + 83 (H_2O)$ System 1, S1: System 2, S2: $Cu^{2+}(HisG_1G_2-G_3) + Im + 105 (H_2O)$ System 3, 53: $Cu^{2+}(HisG_1-G_2G_3) + Im + 92 (H_2O)$ System 4, 54: $Cu^{2+}(HisG_1G_2G_3) + Im + 92 (H_2O)$ P: both Gly₁ and Gly₂ deprotonated **Hethelint**m PH2: only Gly2 protonated protonated

S1: $HisG_1 - G_2 - G_3 + Im$

 N_{δ} of isolated imidazole $\rightarrow N(Im)$

 N_{δ} of His \rightarrow N(His)

N of first Gly $\rightarrow N(G_1)$ N of second Gly $\rightarrow N(G_2)$

Carbonil O of second Gly $\rightarrow O(G_2)$

	Atom	<d>(Å)</d>	σ (Å)				
e	e of "coordination sphere" .08						
	N(His)	2.10	0.10				
	N(G ₁)	2.01	0.08				
	N(G ₂)	2.01	0.08				
	O(G ₂)	3.80	0.30				

S2: $HisG_1G_2$ - G_3 + Im N_{δ} of isolated imidazole $\rightarrow N(Im)$ N_{δ} of His $\rightarrow N(His)$ N of first Gly $\rightarrow N(G_1)$ N of second Gly $\rightarrow N(G_2)$ Carbonil O of second Gly $\rightarrow O(G_2)$

Atom	<d>(Å)</d>	σ (Å)
N(Im)	2.20	0.20
N(His)	2.00	0.10
N(G ₁)	3.00	0.40
N(G ₂)	1.96	0.07
O(G ₂)	2.20	0.10

S3: $HisG_1 - G_2G_3 + Im$

N δ of isolated imidazole \rightarrow N(Im) N δ of His \rightarrow N(His) N of first Gly \rightarrow N(G₁) N of second Gly \rightarrow N(G₂) Carbonil O of second Gly \rightarrow O(G₂)

Atom	<d>(Å)</d>	σ (Å)
N(Im)	2.01	0.07
N(His)	1.99	0.07
N(G ₁)	2.00	0.10
N(G ₂)	4.10	0.30
O(G ₂)	4.70	0.40
S4:
$$HisG_1G_2G_3 + Im$$

No of isolated imidazole $\rightarrow N(Im)$
No of His $\rightarrow N(His)$
N of first Gly $\rightarrow N(G_1)$
N of second Gly $\rightarrow N(G_2)$
Carbonil O of second Gly $\rightarrow O(G_2)$

Atom	<d>(Å)</d>	σ (Å)
N(Im)	1.95	0.08
N(His)	1.95	0.08
N(G ₁)		1
N(G ₂)		
O(G ₂)		

Gly protonation state and Imidazole binding A stability study Is the dimeric (two octarepeats) compound more/less stable than the monomeric one? Compute energies of products of the virtual chemical reactions: 1. $H_1PH_2Im \rightarrow H_1PH_2 + Im \rightarrow H_1 + PH_2 + Im \rightarrow H_1 + H_2 + P + Im$ 2. $H_1PH_2Im \rightarrow H_1PH_2 + Im \rightarrow H_1P + H_2 + Im \rightarrow H_1 + H_2 + P + Im$ 3. $PH_2Im \rightarrow PH_2 + Im \rightarrow H_2^+ + P + Im$ 4. $H_1PIm \rightarrow H_1P + Im \rightarrow H_1 + P + Im$ 5. $PIm \rightarrow P + Im$ P: both Gly_1 and Gly_2 deprotonated H₁P: only Gly₂ deprotonated

H₁P: only Gly₂ deprotonated PH₂: only Gly₁ deprotonated H₁PH₂: both Gly₁ and Gly₂ protonated

Two types of Conclusions

Methodological

we have seen the power of using CP-MD in combination with DFT optimization

Two types of Conclusions

Methodological

we have seen the power of using CP-MD in combination with DFT optimization

"unstable" structures can be recognized and, if needed, discarded

Biological

Multiple Histidine coordination can occur in the presence of deprotonated Glycines The hypothesis that low copper concentration favors The presence of the Perita Pilo Stabilize the curperide complex The binding energy decreases deprotonated Glycines Total Occupancy \mathcal{M} The energy of the con 's nitrogens are deprotonated, P, is e find for the artial Occupancy crysta Increasing Cu Intramolecular ntermolecular laand Free

VI. Conclusions and outlook

Conclusions

Very many difficult problems

But there is hope to successfully attack some of them

Extremely exciting research field

An arena where biology, mathematics, physics, computer science meet

Amazing experimental methods are being developed

Fantastic applications are in view

New positions are foreseeable!

Conclusions

Very many difficult problems

But there is hope to successfully attack some of them

Extremely exciting research field

An arena where biology, mathematics, physics, computer science meet

Amazing experimental methods are being developed

Fantastic applications are in view

New positions are foreseeable!

Outlook This is not the end. But for today

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning

Thank you all for listening!