Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:

- Introduction
- □ Solution Steps
- **□** Examples of Applications and Methods
- □ Lattice QCD
- □ Machines

Motivation

Three methodic pillars in natural sciences:

experimental observation

- too expensive (M€)
- too dangerous (environment, humans)
- ... may be too difficult to measure (aerodynamics, astrophysics)
 - not practical (cosmology, civil protection)
 - controversal (biology)

□ theoretical description (by first principles or phenomenological models)

... often impossible to solve by "analytic" methods (for realistic/relevant systems)

□ numerical simulation . . .

Model:

representation of

- the system, e.g.
 - classical or quantum
 - degrees of freedom (particles or fields)
 - coordinates
 - constraints
- and its dynamics, e.g.
 - deterministic or stochastic
 - local balance (differential) or global conservation (integral)
 - boundary/initial values

Mathematical Problem:

- differential equations (ODE, PDE)
- extremal conditions
- integration (multi-dimensional, stochastic)
- algebraic relations

Discretisation:

approximation scheme to formulate mathematical problem in terms of a finite number of DOF and compute steps

- coordinates (time, space):
 "Finite Differences"
- partial solutions (plane waves, multipoles):
 "Finite Elements"
- sub-systems (particles, cells, ensembles)
- truncation of series expansions

Numerical Problem:

- e.g. formulated as
- recurrence
- minimisation
- integration
- algebraic relations (implicit, explicit)
- linear systems

Algorithm:

method to solve numerical problem

- implicit or explicit
- direct or iterative
- adaptive
- stochastic

often determines

- resource requirements and balance
 - data storage
 - arithmetic operations
 - data transport
- data dependence (parallelisation)
- scaling with problem size (and machine parameters)

Computational Tasks:

sequence of solution steps

- with different levels of granularity, e.g.
 - evolve (sub-)system by one step
 - compute forces
 - solve Ax = y
 - compute eigenvalues of \boldsymbol{A}
 - apply Ax (matrix \times vector)
 - basic linear algebra, FFT, random numbers, . . .
- often described by pseudo-code
- without reference to a specific programming language or machine architecture

Implementation:

- high-level coding (human)
 - data representation
 - memory layout
 - selection and scheduling of (macro-)operations
 - management of communications
- low-level code generation (compiler)
 - management of memory accesses
 - register allocation
 - selection and scheduling of (micro-)instructions

Computer Code:

- sequence of machine instructions
- hardware dependent
- implementation dependent

Challenges

Fundamental research

- * Astrophysics and Cosmology (gravitation, hydrodynamics)
- * Climate and Meteorology (hydro- and thermodynamics)
- * Chemistry, Biology (classical and quantum mechanics)
- * Statistical Physics (critical phenomena, non-equilibrium dynamics)
- * High-energy Physics (QCD)
- * . . .
- * Material Science
- * Medicine
- * Engineering (electro-, hydro-, thermodynamics)
- * Computing (hardware and code optimisation)

Hamming: "The purpose of computing is not numbers but insight"

What makes simulations difficult?

 \square multiple scales, e.g. in

- \bullet time \rightarrow multiple-time scale integration
- space \rightarrow adaptive grids
- energy

coupled systems, e.g.

- stars + gas (discrete + continuum)
- molecules + solvent
- different atoms or molecules
- atoms + electrons (classical + quantum)
- matter + fields (charges + radiation, masses + gravity, quarks + gluons)
- fermions (Pauli principle!)

□ problem size (degrees of freedom) e.g. imposed by

- nature of the system (particles, fields)
- numerical accuracy (grid points)

D parameter limits which are NOT directly accessible by simulations

• often related to most interesting phenomena (e.g. phase transitions, singularities)

Limitations of Numerical Simulation

X costs

- infrastructure: 20. . . 50 M € per Supercomputer (running 4 years)
- operation: > 2000 €/day electricity bill
- environment: $> 10 \text{ t/day} \text{ CO}_2$ emission
- **X** limited processing speed
- **X** limited storage resources
- **✗** numerical accuracy requires
 - well-posed mathematical problem
 - consistent discretisation
 - stable numerical solution
 - precise implementation

(2.5 W/Gflops)

(0.7 kg/kWh)

Error Sources

Computing the value of a function $f : \mathbb{R} \to \mathbb{R}$, we distinguish

- x =true value of input
- $\widetilde{x} =$ inexact input actually used

- f(x) = desired result
- \widehat{f} = approximate function exactly computed
- \widetilde{f} = approximate function actually computed

Total error:

Propagated error: depends on conditioning of problem and stability of algorithm

Computational error: sum of

• Truncation error from approximation (e.g. discretisation) in actual algorithm (exact arithmetics)

 $f(\widetilde{x}) - \widehat{f}(\widetilde{x})$

• Rounding error from inexact arithmetics in actual implementation

$$\widehat{f}(\widetilde{x}) - \widetilde{f}(\widetilde{x})$$

Compute

$$f(x) = F'(x)$$

by finite difference approximation

$$\widetilde{f}(x) = \frac{F(x+h) - F(x)}{h}$$

$$h \approx 2\sqrt{\varepsilon_{mach}/K}$$

 10^{-16} 10^{-14} 10^{-12}

 10^{-10}

 \mathbf{h}

 10^{-8}

 10^{-6}

 10^{-4}

10⁻¹⁰

How much compute power is needed?

Example:

3-d lattice	classical MD		
number of sites	$1000^3 = 10^9$	number particles	10^{5}
variables per site	20	long-range forces	5×10^9
operations per variable	50	operations per force	20
iteration steps	100 000	time steps $fs ightarrow ns$	10^{6}
total operations	10 ¹⁷	total operations	10 ¹⁷

Computer performance:

- 1 Mflops = 10^6 floating-point operations per second
- 1 Gflops = 10^9 floating-point operations per second
- 1 Tflops = 10^{12} floating-point operations per second
- 1 Pflops = 10^{15} floating-point operations per second

Computer resources:

 $10^{17}~{\rm FP}~{\rm operations} = 1.2~{\rm Tflops} \times {\rm day} = 30~{\rm Tflops} \times {\rm hour}$

How efficient is a Computer?

depends on

hardware characteristics

- architectural structure
- storage devices: size σ
- processing/transport devices: bandwidth β

□ application signature

- information exchange
- storage requirements
- parallelism
- → Performance analysis and modeling

How much wall-clock time is (expected to be) required to solve a given task on a given architecture?

$$\begin{array}{ccc} \text{algorithm} & \text{implementation} \\ \downarrow & \downarrow \\ \mathbf{T} = \mathbf{f} \left(\begin{array}{ccc} \text{task} & , & \text{code} & , \end{array} \right) \end{array}$$

Computer Hardware

Comparison: PC vs. Supercomputer

	PC	Supercomputer	factor
processors	2	1000 10000	> 1'000
performance	30 Gflops	50 500 Tflops	\geq 1'000
clock frequency	3 GHz	13 GHz	< 1
memory	10 GB	100 TB	$\geq 10'000$
disk	500 GB	1000 TB	\geq 2'000
storage		10 PB	(1'000'000 CDs)

Moore's Law [1965]

Processor complexity at minimal cost doubles every 18...24 months

#gates
$$\propto 2^{t/\tau}$$
 $(\tau = 18...24 \text{ m})$

Scaling of Chip Technology

- transistors/area $\sim 1/L^2$ (with feature size e.g. $L \approx 65 \, nm$)
- clock $\sim V/L$ (with supply voltage e.g. $V \approx 1.8$ V)
- power/transistor $\sim V^2$

Examples of Supercomputers

See for instance (but not only): http://www.top500.org

#	site	machine	proc	net	cores	R_{max}	R_{peak}
					[1000]	[Tflops]	[Tflops]
1	LANL (US)	Roadrunner (IBM)	STI	InfB	122	1375	1028
2	LLNL (US)	BG/L (IBM)	IBM	3-D	212	478	560
3	Argonne (US)	BG/P (IBM)	IBM	3-D	164	450	557
4	U. Texas (US)	Blade (SUN)	AMD	InfB	63	326	503
5	Oak Ridge (US)	XT4 (Cray)	AMD	3-D	31	205	260
6	FZJ (Germany)	BG/P (IBM)	IBM	3-D	65	180	222
7	New Mexico (US)	Altix (SGI)	Intel	InfB	14	133	172
8	India	Blade (HP)	Intel	InfB	14	132	172
9	IDRIS (France)	BG/P (IBM)	IBM	3-D	40	112	139
10	Total (France)	Altix (SGI)	Intel	InfB	10	106	122

- Architecture: MPP / Blade Cluster
- Processor: multi-core (\geq 4)
- Network: Infiniband (switched) or proprieatary (3-d torus)

Usage of Top500 Supercomputers

Segments	Pflops	Systems
Industry	7.0	297
Research	6.0	91
Academic	3.7	98
Others	0.3	14
Areas	Pflops	Systems
Not Specified	7.0	134
Research	2.7	53
Finance	1.7	76
Geophysics	1.3	49
Service	.56	25
Semiconductor	.45	19
Hardware	.44	19
Info Service	.68	31
Info Processing	.30	9
Defense	.29	5
Benchmarking	.24	7
Energy	.24	8
Weather/Climate	.21	9
Media	.19	8
Telecomm	.16	5

Countries	Pflops	Systems
US	10	257
Germany	1.4	46
UK	1.4	53
France	1.0	34
Japan	0.7	22
Sweden	0.4	9
India	0.3	6
China	0.3	12
Russia	0.2	9
Spain	0.2	7
Italy	0.2	6

Application Examples

system	area	mathematical	numerical
mechanic	astro, molecular	ODE (Newton N-body)	Integrators Ewald
		PDE (MHD, SPH)	Fast Multipole
electromagnetic	engineering	PDE (Maxwell) ODE (time-domain) EVP (frequency-domain)	FD, FE, FI, LinAlg Integrators FFT
hydrodynamic	turbolence, climate	PDE (Navier-Stokes, SPH) kinetic (Lattice Boltzmann)	FD, FE, FI, LinAlg Automata
statistical	phase transitions non-equilibrium	stochastic integration (MC)	Markov Process
quantum mech. (non-relativistic)	nuclei, atoms materials, chemistry	PDE (Schroedinger) Minimisation (DFT) stochastic integration (QMC)	CPMD FFT
quantum field (relativistic)	HEP, LQCD	path integrals	MC, MD, LinAlg

Example: Classical Molecular Dynamics

Mathematical Problem:

Equations of motion for point-like masses (atoms, molecules, stars, ...) in force field

$$m_i \ddot{x}_i = F_i$$
 or
$$\begin{cases} \dot{q} = +\frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

Numerical Methods:

\Box time integration

- multi-time steps: separate scales of time evolution
- adaptive time steps

□ long-range forces (Coulomb, Gravitation)

- Particle Mesh Ewald (split short and long distance ranges, summation in x or Fourier space)
- Fast Multipole

□ short-range forces

- particle decomposition
- space decomposition

N-body Simulations in Astrophysics

Computational Challenges:

- large number of particles: $N = 10^{8...9}$ (but small for thermodynamic ensemble)
- high accuracy for long-range gravitational forces (no screening, infinite binding energy)
- different time scales (e.g. 2-body correlations of close binaries)

Computational Methods and Scaling:

- Exact direct N-body integration (PP): $O(N^2)$ [+ $O(NN^*)$]
 - high-order integration: $\mathbf{r}_i, \mathbf{v}_i, \mathbf{a}_i, \mathbf{\dot{a}}_i$
 - individual time-steps: $\Delta t = 2^{-n} t \approx 0.01 \frac{|\mathbf{a}_i|}{|\dot{\mathbf{a}}_i|}$
 - neighbour lists
- Without direct gravitational forces: $O(N) + O(n_{mesh}, nlm)$
 - Particle Mesh (PM): particles \rightarrow density \rightarrow Poisson (FFT)
 - Fast Multipole
- Mixed codes: $O(N \log N)$
 - distance grouping (tree, P^3M)
 - gas component with Smoothed Particle Hydrodynamics (SPH) $f(\mathbf{r}) \rightarrow \int dV' f(\mathbf{r}') \cdot W(|\mathbf{r} \mathbf{r}'|, h)$

Simulation of Microscopic Systems

Physics Areas:

- material science (solid states, liquids, plasmas)
- quantum chemistry (catalizers, polymers)
- biophysics (macro-molecules with solvent)

Theoretical Descriptions:

- Hydrodynamics: dynamics of effective parameters
- Brownian Dynamics: particles in effective media (solvent)
- Classical Molecular Dynamics (MD): $N = 10^{3...9}$, $T = ns ... \mu s$ particles with effective potentials (ab initio or from experiment)
- Quantum Molecular Dynamics: N = O(100), T = 10 ps solve (approximate) Schrödinger equation

Method: Integration of ODE

Consider n-dimensional system of explicit ODE

$$y' = F(t, y(t)) , \qquad y(0) = y_0 \qquad (y \in \mathbb{R}^n)$$

□ Higher order ODE can be reduced by introducing further variables

$$y'' = F(y, y') \quad \Leftrightarrow \quad \left(\begin{array}{c} y'_0\\ y'_1 \end{array}\right) = \left(\begin{array}{c} y_1\\ F(y_0, y_1) \end{array}\right)$$

 \Box Let λ_i denote eigenvalues of the Jacobian $\partial F_i/\partial y_j$, then the (exact) solution is

- stable if $Re(\lambda_i) \leq 0$ for all λ_i
- unstable if $Re(\lambda_i) > 0$ for any λ_i
- Numerical Solution Schemes:

For discrete time steps $t_k = k \cdot h$, iterate an integration scheme, which can be

• explicit

$$\widehat{y}_{k+1} = g(t_{k+1}, \widehat{y}_k, \widehat{y}_{k-1}, \ldots)$$

• implicit

$$g(t_{k+1}, \widehat{y}_{k+1}, \widehat{y}_k, \widehat{y}_{k-1}, \ldots) = 0$$

Implicit schemes are more stable, but need solution of algebraic equation

Truncation Errors from Discretisation

• The exact solution $y(t) \equiv \phi(t, y_0)$ defines a flow

 $\phi: \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$

and a time-evolution map $\phi_t(y_0) \equiv \phi(t, y_0)$

• Local Truncation Error:

$$\tau_k^{loc} \equiv \widehat{y}_k - \phi(t_k, \widehat{y}_{k-1})$$

• <u>Global Truncation Error:</u>

$$\tau_k^{glob} \equiv \widehat{y}_k - \phi(t_k, \widehat{y}_0)$$

If $\tau_k^{loc} = O(h^{p+1})$, then p is called the order of the integrator

Examples of Integration Methods

\Box Explicit Euler Method: p = 1

 $\widehat{y}_{k+1} = \widehat{y}_k + h \cdot F(\widehat{y}_k)$

Implicit Euler Method (Backward Euler): p = 1, stable for any h > 0

$$\widehat{y}_{k+1} = \widehat{y}_k + h \cdot F(\widehat{y}_{k+1})$$

Example:

$$y' = -\lambda y$$
 with $y(0) = y_0$ and $\lambda > 0$ $\Rightarrow \phi(t, y_0) = y_0 \cdot e^{-\lambda t}$

• Explicit Euler:

$$\widehat{y}_n = (1 - \lambda h) \cdot \widehat{y}_{n-1} = (1 - \lambda h)^n \cdot y_0 \to \begin{cases} +0 & \text{if } 0 < h \le 1/\lambda \quad (\text{undershooting}) \\ \pm 0 & \text{if } 1/\lambda < h \le 2/\lambda \quad (\text{oscillating}) \\ \pm \infty & \text{if } 2/\lambda < h \quad (\text{divergent}) \end{cases}$$

→ numerical solution \hat{y} is only stable for $|1 - \lambda h| < 1$

• Implicit Euler:

$$\widehat{y}_n = \widehat{y}_{n-1} - \lambda h \cdot \widehat{y}_n = y_0 / (1 + \lambda h)^n$$

Properties of Computational Methods

Definitions:

□ Well-posed problem: existence of unique solution with continuous dependence on problem data (e.g. Lifschitz bound, or well-conditioned)

Consistent method: discretisation becomes exact

$$\max_{n} |\widehat{y}_{n} - \phi(\widehat{y}_{n-1})| \longrightarrow 0 \quad (h \to 0)$$

i.e. local truncation error vanishes (original vs. discrete problem)

□ Convergent method: solution becomes exact

$$\max_{n} |\widehat{y}_{n} - \phi(y_{0})| \longrightarrow 0 \quad (h \to 0)$$

i.e. global truncation error vanishes (original vs. discrete problem)

□ Stable method/algorithm: (analogous to well-conditioned problem)

$$\forall \epsilon \; \exists K : \max_{n} |\widehat{z}_{n} - \widehat{y}_{n}| < K$$

for the solution \widehat{z} of perturbed problem with small perturbation $\delta < \epsilon$

<u>Relations</u>: (for finite difference methods)

- For well-posed problem and consistent method: convergent \Leftrightarrow stable
- well-conditioned problem + stable algorithm \Rightarrow accurate

Simple Symplectic Integrators

Consider

$$y = \begin{pmatrix} q \\ p \end{pmatrix} \quad F(p,q) = \begin{pmatrix} f(p) \\ g(q) \end{pmatrix}$$

Symplectic Euler (Euler-Cromer): p = 1

$$\widehat{y}_{k+1} \equiv \begin{pmatrix} q_{k+1} \\ p_{k+1} \end{pmatrix} = \begin{pmatrix} q_k + h \cdot f(p_{k+1}) \\ p_k + h \cdot g(q_k) \end{pmatrix} \qquad \qquad \mathbf{k} \\ \mathbf{k}_{\mathbf{k}+1} \qquad \qquad \mathbf{k}_{\mathbf{k}+1} \qquad \mathbf{k}_{\mathbf{k}+1} \qquad \qquad \mathbf{k}_{\mathbf{k}+1} \qquad \qquad \mathbf{k}_{\mathbf{k}+1} \qquad \mathbf{k}_{\mathbf{k}+1$$

is area preserving (geometric integrator) i.e. Jacobian $\mathbf{Y} \equiv \partial y_{k+1} / \partial y_k$ of the map $y_k \mapsto y_{k+1}$ satisfies

 $det(\mathbf{Y}) = 1$

and symplectic

$$\mathbf{Y}^T \cdot \mathbf{J} \cdot \mathbf{Y} = \mathbf{J}$$
 with $\mathbf{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

q

р

Simple Symplectic Integrators (cont.)

□ Velocity Verlet:
$$p = 2$$
, and $\tau_k^{glob} = O(h^2)$ r v a
 $\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{v}_k \cdot h + \frac{h^2}{2} \cdot \mathbf{a}_k$
 $\mathbf{v}_{k+1} = \mathbf{v}_k + \frac{1}{2}(\mathbf{a}_k + \mathbf{a}_{k+1}) \cdot h$

D Equivalent: Leapfrog Implementation

$$\mathbf{v}_{k+1/2} = \mathbf{v}_k + \frac{h}{2} \mathbf{a}_k$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{v}_{k+1/2} \cdot h$$

$$\mathbf{v}_{k+1} = \mathbf{v}_{k+1/2} + \frac{h}{2} \mathbf{a}_{k+1}$$

Hamiltonian Systems

For a Hamiltonian system

$$\dot{y} = \{y, H(y)\}$$
 with $y \equiv \begin{pmatrix} q \\ p \end{pmatrix}$ and $\{f, g\} \equiv \frac{\partial f}{\partial p} \frac{\partial g}{\partial q} - \frac{\partial g}{\partial p} \frac{\partial f}{\partial q}$

the time evolution has the exact formal solution

$$y(t+h) \equiv \mathbb{E}_H(h) \cdot y(t) = \exp(h \cdot \mathbb{L}_H) \cdot y(t)$$

with the linear Liouville operator $\mathbb{L}_H f \equiv \{f, H\}$

In particular, for a Hamiltonian of the form

$$H(q, p) = \frac{1}{2}p^2 + V(q)$$

we have

$$\mathbb{L}_H = \mathbb{Q} + \mathbb{P}$$
 with $\mathbb{Q} = p \cdot \frac{\partial}{\partial q}$ and $\mathbb{P} = -V' \frac{\partial}{\partial p}$

and the associated time evolution operators

$$\mathbb{E}_Q(h) \equiv \exp(h\mathbb{Q}) : \quad f(q,p) \quad \mapsto \quad f(q+h \cdot p \ , \ p)$$
$$\mathbb{E}_P(h) \equiv \exp(h\mathbb{P}) : \quad f(q,p) \quad \mapsto \quad f(q \ , \ p-h \cdot V')$$

are area preserving and symplectic

Building Symplectic Integrators

Idea: Repeatedly perform integration steps of size h using a product

$$\mathbb{S}(h) \equiv \mathbb{E}_P(c_1h) \cdot \mathbb{E}_Q(d_1h) \cdot \mathbb{E}_P(c_2h) \cdots \mathbb{E}_P(c_nh) \cdot \mathbb{E}_Q(d_nh)$$

to approximate the exact time evolution

$$\exp(h\mathbb{L}_H) = \mathbb{S}(h) + O(h^{p+1})$$

□ The coefficients can be determined by Baker-Campbell-Hausdorff formula

$$e^{A}e^{B} = exp(A + B + \frac{1}{2}[A, B] + \cdots)$$

e.g.

$$p = 1: \quad c_1 = d_1 = 1 \qquad \text{(symplectic Euler)}$$
$$p = 2: \quad c_1 = c_2 = 1/2, \ d_1 = 1 \qquad \text{(Leapfrog PQP)}$$

 \square Leapfrog integrator $\mathbb{E}_P(h/2) \cdot \mathbb{E}_Q(h) \cdot \mathbb{E}_P(h/2)$ is also time-reversible, i.e. satisfies

$$\mathbb{S}(-h) = \mathbb{S}^{-1}(h)$$

□ All symplectic integrators have an exactly conserved Hamiltonian, i.e.

$$\exists K_h(p,q): \ \mathbb{S}(h) = \exp\left(h\mathbb{L}_{K_h}\right) \text{ and } K_h = H + O(h^p)$$

Example: Harmonic Oscillator

$$H(q,p) = \frac{1}{2}(p^2 + q^2)$$

Exact solution

 $\mathbb{E}_{H}(h) = \begin{pmatrix} \cos h & \sin h \\ -\sin h & \cos h \end{pmatrix}$

Generators of individual time-evolution steps

Symplectic Euler Integrator:

$$e^{h\mathbb{Q}} \cdot e^{h\mathbb{P}} = \begin{pmatrix} 1-h^2 & -h \\ h & 1 \end{pmatrix} = \mathbb{E}_H(h) + O(h^2)$$

Leapfrog Integrator:

$$e^{\frac{h}{2}\mathbb{P}} \cdot e^{h\mathbb{Q}} \cdot e^{\frac{h}{2}\mathbb{P}} = \begin{pmatrix} 1 - h^2/2 & h \\ -h + h^3/4 & 1 - h^2/2 \end{pmatrix} = \mathbb{E}_H(h) + O(h^3)$$

N.B.: For h > 2, LF integrator has positive real eigenvalue \Rightarrow can become instable

Multiple Timescales

If Hamiltonian has the form

$$H(p,q) = \frac{p^2}{2} + V_1(q) + V_2(q)$$

with

- forces from V_1 large (but cheap to compute)
- forces from V_2 small (and expensive to compute)

split $\mathbb{P}=\mathbb{P}_1+\mathbb{P}_2$ accordingly

$$\mathbb{P}_i = -V_i' \frac{\partial}{\partial p}$$

and consider symplectic integrator of the form

$$\mathbb{S}(h,n) = \left[\mathbb{E}_{P_1}\left(\frac{h}{2n}\right) \cdot \mathbb{E}_Q\left(\frac{h}{2n}\right)\right]^n \cdot \mathbb{E}_{P_2}(h) \cdot \left[\mathbb{E}_Q\left(\frac{h}{2n}\right) \cdot \mathbb{E}_{P_1}\left(\frac{h}{2n}\right)\right]^n$$

Example: Classical MD with effective potentials

- Intra-molecular forces:
 - stretching

$$V_s = \sum_{bonds} \frac{K_b}{2} (r_b - r_{0b})^2$$

- bending

$$V_b = \sum_{angles} \frac{K_a}{2} (\theta_a - \theta_{0a})^2$$

• Inter-molecular forces: Coulomb or Lennard-Jones

$$V_{LJ} = \sum_{pairs} \sum_{i=1}^{N} \sum_{j=1}^{N'} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$$

• Multi-time step integration: fast evolution only with $V_s + V_b$

Classical MD

Computational Cost:

task	scaling	operations	weight $^{*)}$
update x or v	MNS	O(100)	2 %
forces (intra, fast)	MNS	O(1000)	9 %
forces (intra, slow)	MN^2	O(1000)	2 %
forces (inter, slow)	$M^2 N^2 P$	O(2000)	85 %
communication	MNP	O(10)	1 %

*) weight in total execution time for M = 64, N = 64, P = 8, S = 8

with

- P = number of processors
- M = number of molecules / P
- N = number of atoms per molecule
- S = number of fast time steps per slow step

Parallelisation Strategies:

D Particle Decomposition: PID = f(i)

D Space Decomposition: $PID = f(x_i)$

 $(\rightarrow \text{ all-to-all communications})$

 $(\rightarrow \text{ nearest-neighbour communications})$

Classical MD

Parallel Computation of long-range Forces

Systolic Algorithm:

 \square Initialize auxiliary arrays $\widehat{\mathbf{x}} \leftarrow \mathbf{x}$ and $\mathbf{y} \leftarrow f(\mathbf{x}, \mathbf{x})$

 \square For $k = 1, \ldots, P-1$

- $\bullet\,$ move $\widehat{\mathbf{x}}$ to next processor in ring
- compute forces $f(\widehat{\mathbf{x}},\mathbf{x})$ and accumulate them in \mathbf{y}

(in parallel on each processor) (in parallel on each processor)

Improvements:

• Avoid redundant force computations

$$f(x_i, x_j) = -f(x_j, x_i)$$

by moving auxiliary force array (Half-Orrery Algorithm)

- Avoid redundant communication steps by storing data which passed (Hypersystolic Algoritm)
- Exploit all concurrent communication links of multi-dimensional torus network

k	Processor / Data (P=8)							
0	0	1	2	3	4	5	6	7
1	7	0	1	2	3	4	5	6
2	6	7	0	1	2	3	4	5
3	5	6	7	0	1	2	3	4
4	4	5	6	7	0	1	2	3
5	3	4	5	6	7	0	1	2
7	2	3	4	5	6	7	0	1
6	1	2	3	4	5	6	7	0

Classical MD

Neighbour Lists for Computation of short-range Forces

In multi-particle simulations, like MD or Astrophysics, one may need lists to keep track of the particles to be taken into account in force computation

□ Verlet List:

$$\forall \text{ particles } i: \ L_i = \{(j, x_j) : |x_j - x_i| < R + \delta\}$$

- + force computation cost $N(N^*-1)$
- update cost $O(N^2)$ e.g. each time when $\exists \Delta x > \delta/2$
- storage $O(3N\cdot N^*)$

Linked Cell List:

Decompose space domain into cells with linear extent $R+\delta$

 $\forall \text{ cells } c: \ L_c = \{j : x_j \in \text{ cell } c\}$

- + force computation only for particles in neighbour cells
- $+ \,$ update O(N) e.g. at each force computation
- + storage O(N)
- inefficient if less than 4 cells in each direction (L < 4R)

Ab initio MD of microscopic systems

Quantum Mechanical Dynamics:

$$i\hbar \frac{\partial}{\partial t} \Phi(R_I, r_i, t) = H\Phi(R_I, r_i, t)$$

with

$$H = \sum_{I} T_{I} + \sum_{i} T_{i} + V_{n-e}(R_{I}, r_{i})$$
$$= \sum_{I} T_{I} + H_{e}(R_{I}, r_{i})$$

Product Ansatz: separation of electronic and nuclear wave functions

$$\Phi(R_I, r_i, t) \approx \psi(r_i, t) \cdot \chi(R_I, t) \cdot \text{phase}$$

⇒ time-dependent self-consistent field (TDSCF) method: mean field

$$\begin{cases} \chi(R_I, t) : \quad V \sim \langle \psi | V_{n-e} | \psi \rangle & \to \text{MD} \quad \text{(atoms)} \\ \psi(r_i, t) : \quad V \sim \langle \chi | H_e | \chi \rangle & \to \text{QM}, \text{DFT} \quad \text{(electrons)} \end{cases}$$
Strategies for solution of coupled Ion-Electron system

□ $\forall R_I$ solve electronic structure : Born-Oppenheimer MD classical MD on global potential energy surface (from time-independent el. structure) Problem: dimensional bottleneck ~ 10^{3N-6} → replace by parametrised effective potential

□ $\forall t$ solve both equations on-the-fly: Ehrenfest MD coupled classical MD + time-dependent electronic structure Problem: different time scales (10¹² steps of 1 fs for 1 ms)

□ map both on classical problem: Car-Parrinello MD

$$\mathcal{L}[R,\psi] \sim \underbrace{\frac{\mu}{2} \langle \dot{\psi} | \dot{\psi} \rangle}_{T_e} + \underbrace{\frac{M}{2} \dot{R}_I^2}_{T_I} - \underbrace{\langle \psi | H_e | \psi \rangle}_{V[R_I,\psi]} + \text{ constraints}$$

- conserved energy: $T_e + T_I + V$
- physical energy: $T_I + V$
- (fictitious) electronic temperature = thickness of BO surface $\propto T_e \rightarrow 0$

Quantum-Mechanical Electronic Structure

Problem: anti-symmetry of many-electron wave functions (Pauli Principle)

Map exact many-body problem with Hamiltonian

 $H = T_e + V_{ee} + V_{ext}$

on single-electron problem with suitable approximations to treat anti-symmetry

□ Hartree-Fock (HF)

Single Slater determinant (not linear combination)

$$\Psi(\mathbf{r_1}, \mathbf{r_2}, \dots, \mathbf{r_N}) = det \left[\psi_1(\mathbf{r_1}) \cdots \psi_N(\mathbf{r_N})\right]$$

where each factor (orbital) satisfies single-electron Schrödinger equations with

$$H_s = -\frac{1}{2}\nabla^2 + H_{ee} + V_{ext}$$

and non-local two-electron terms H_{ee} (Coulomb interactions and exchange)

Configuration Interactions (CI)

Include also correlation effects from linear combinations of Slater determinants

Density Functional Theory

Basic Idea: Hohenberg-Kohn Theorems

- ∃ one-to-one mapping between electron density and wavefunction for GS of many-particle system
- GS density minimizes total electronic energy of system

i.e. electron density that minimizes true energy functional (unknown) describes all we can know about electronic structure of GS

$$V_{ext} \longrightarrow |\Psi_{GS}\rangle$$

$$\searrow \qquad \downarrow$$

$$n_{GS}(r) = |\Psi_{GS}|^2$$

Intuitive Argument: "cusp condition" for spherical average $\langle n(r) \rangle$

$$Z_{nucl} = -\frac{1}{2\langle n(0)\rangle} \left[\frac{\partial \langle n(r_i)\rangle}{\partial r_i} \right]_{r_i=0}$$

Car Parrinello MD

□ Consider density functional of fictitious single-electron system

$$E_s[n] = \langle \psi_s[n] | (T_s + V_s) | \psi_s[n] \rangle$$

with

$$V_s = V_{ions} + V_{coulomb}[n] + E_{xc}[n]$$

and a local approximation for exchange energy E_{xc}

Minimisation by self-consistent solution of Kohn-Sham equations for orthogonal orbitals (possibly expanded in convenient base)

$$\left[-\frac{1}{2}\nabla^2 + V_s(r)\right]\psi_i = \epsilon_i \cdot \psi_i \quad \text{with} \quad n \equiv \sum |\psi_i|^2$$

□ Car-Parrinello evolution:

$$M_{I}\ddot{R}_{I}(t) = -\frac{\partial}{\partial R_{I}}(E + \text{constraints})$$

$$\mu \ddot{\psi}_{i}(t) = -\frac{\partial}{\partial \psi_{i}^{*}}(E + \text{constraints})$$

Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:

Introduction
Solution Steps
Examples of Applications and Methods
Lattice QCD
Machines

PDE: Discretisation Techniques

□ Finite differences (FD)

- $\mathsf{DOF} = \mathsf{values} \ \mathsf{of} \ \mathsf{solution} \ \mathsf{on} \ \mathsf{mesh} \ \mathsf{points}$
- \rightarrow solve equations from FD approximation of derivatives
- simple to derive and effective
- limited to (block-)structured meshes
- moderate accuracy

□ Finite volumes/integrals (FI)

- DOF = integrals of solution over mesh links/surfaces
- → solve equations from integral of PDE on mesh cells (local)
- conservation laws by construction
- arbitrary meshes

□ Finite elements (FE)

DOF = basis functions on mesh cells (elements)

- → solve equations from minimisation of a functional (global)
- very flexible and general
- arbitrary meshes

FD Method

FD approximations:

$$\frac{\partial u}{\partial x} \longrightarrow \frac{u(x+h) - u(x)}{h} + O(h)$$
$$\frac{\partial^2 u}{(\partial x)^2} \longrightarrow \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} + O(h^2)$$

Example: Laplace operator with Dirichlet BC

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots = 0 \quad (\underline{x} \in \mathcal{D})$$
$$u(x) = f(x) \quad (\underline{x} \in \partial \mathcal{D})$$

yields linear equation system with symmetric matrix:

(-4	1	0	1	0	0	0	0	0	$\left(\begin{array}{c} u_{11}\end{array}\right)$		$(f_{01} + f_{10})$
	1	-4	1	0	1	0	0	0	0	u_{12}		f_{02}
	0	1	-4	1	0	1	0	0	0	u_{13}		$f_{14} + f_{03}$
	1	0	0	-4	1	0	1	0	0	$\overline{u_{21}}$		f_{20}
	0	1	0	1	-4	1	0	1	0	u_{22}	=	0
	0	0	1	0	1	-4	0	0	1	u_{23}		f_{24}
	0	0	0	1	0	0	-4	1	0	u_{31}		$f_{30} + f_{41}$
	0	0	0	0	1	0	1	-4	1	u_{32}		f_{42}
$\left(\right)$	0	0	0	0	0	1	0	1	-4 /	$\left(\begin{array}{c} u_{33} \end{array} \right)$	1	$\int f_{43} + f_{34} /$

FD Methods for 2nd order quasi-linear PDE

$$a \,\partial_x \partial_x \, u + \frac{b}{b} \,\partial_x \partial_y \, u + \frac{c}{b} \,\partial_y \partial_y \, u + \frac{c}{b} \,\partial_y \partial_y \, u = f(u, \partial_x \, u, \partial_y \, u)$$

- **Elliptic**: $b^2 4ac < 0$ (e.g. Laplace Equation)
 - BV on all boundaries (steady states)
 - implicit five-point difference formula

 $u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} = 0$

yields linear equation system with symmetric matrix

D Parabolic: $b^2 - 4ac = 0$ (e.g. Heat Equation)

- IV + BV
- explicit solution of recursion

 $u_{i,j+1} = (1-2r)u_{i,j} + r(u_{i+1,j} + u_{i-1,j})$ stable for $r \equiv h_t/h_x^2 \leq 1/2$

• implicit methods (Crank-Nichelson)

Hyperbolic: $b^2 - 4ac > 0$ (e.g. Wave Equation)

- IV for u and $\partial_t u + \mathsf{BV}$
- explicit solution of recursion

$$u_{i,j+1} = (2 - 2r^2)u_{i,j} + r^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}$$

stable for $r \equiv h_t/h_x \le 1$

1	•	•	•	•	•	-1
ł	C	Э	0	C	О	+
ł	Ô	О	0	С	O	+
+	0	•	٠	•	0	+
+	C	C	•	C	0	+
+	C	С	0	C	0	+
	()	0	0	Ċ.	30	

Krylov Subspace Methods for Iterative Solvers

General Projection Method to solve

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

• Find approximation \mathbf{x}_n in subspace $\mathbf{x}_0 + \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0)$ with Krylov-subspace

$$\mathcal{K}_n(\mathbf{A}, \mathbf{v}) \equiv span\{\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \dots, \mathbf{A}^{m-1}\mathbf{v}\}$$

such that residual $\mathbf{r}_n \equiv \mathbf{b} - \mathbf{A}\mathbf{x}_n$ satisfies (Petrov-Galerkin condition)

 $\mathbf{r}_n \perp \mathcal{L}_n$

for some other subspace \mathcal{L}_n of dimension n, e.g. $\mathcal{L}_n = \mathcal{K}_n$, or $\mathbf{A}\mathcal{K}_n$

• If A symmetric positive definite use $\mathcal{L} = \mathcal{K}_n$:

orthogonal projection $\Leftrightarrow x \text{ minizes } ||x - x_*||_{\mathbf{A}}$ with $x_* = A^{-1}b$

• Perform iteration

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \cdot \mathbf{s}_k$$

with α_k deterimed by minimisation of $f(x) = \frac{1}{2}(x, \mathbf{A}x) - (x, b)$ along search directions \mathbf{s}_k

x_k and s_k can be built up such that x_{k+1} minimises f(x) also over whole space of previous directions {s₁,..., s_k}

Illustration in 2 dimensions:

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 0.1 \\ 1 \end{pmatrix} , \quad \mathbf{x}_{\mathbf{0}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} , \quad \mathbf{x}_{*} \equiv \mathbf{A}^{-1}\mathbf{b} = \begin{pmatrix} -0.9 \\ 1.9 \end{pmatrix}$$

Algorithm	${\cal K}$	${\cal L}$	Minimisation	Iterations	$\ r\ $
Steepest Descend	$\mathcal{K}_1(r_n)$	$\mathcal{K}_1(r_n)$	$\ x - x_*\ _{\mathbf{A}}$	43	2.3×10^{-6}
Minimal Residual	$\mathcal{K}_1(r_n)$	$\mathcal{K}_1(\mathbf{A}r_n)$	$\ b - \mathbf{A}x\ _2$	33	$2.3 imes 10^{-6}$
Conjugate Gradient	$\mathcal{K}_n(r_0)$	$\mathcal{K}_n(r_0)$	$\ x - x_*\ _{\mathbf{A}}$	2	2.1×10^{-16}

H. Simma, Theoretical Physics on Supercomputers

Example: FI Method in Electrodynamics

Mathematical Problem: Maxwell Equations

$$\partial_{\mu}F^{\mu\nu} = j^{\nu} \quad \text{or} \quad \begin{cases} rot E = -\dot{B} \\ rot H = +\dot{D} + J_e \\ div B = 0 \\ div D = \rho_e \end{cases}$$

Computational Method: Finite Integration Technique (FI)

• Discretisation on dual grids

		G		\widetilde{G}
volumes	$G = \cup V_i$	V_i	\leftrightarrow	\widetilde{P}_i
areas	$A_i = \cap V_i$	A_i	\leftrightarrow	\widetilde{L}_i
links	$L_i = \cap A_i$	L_i	\leftrightarrow	\widetilde{A}_i
points	$P_i = \cap L_i$	P_i	\leftrightarrow	\widetilde{V}_i

• Basic variables:

$$e_i \equiv \int_{L_i} E \cdot ds$$

electric voltage along links L_i magnetic flux through areas A_i

$$b_i \equiv \int_{A_i} B \cdot dA$$

• matrices of difference operators

$$\begin{array}{rrrr} S & \leftrightarrow & div \\ C & \leftrightarrow & rot \end{array}$$

exactly preserve algebraic relations, like

$$\begin{array}{rcl} SC = \widetilde{S}\widetilde{C} &=& 0 & (div \ rot = 0) \\ C\widetilde{S}^T = \widetilde{C}S^T &=& 0 & (rot \ grad = 0) \end{array}$$

• Maxwell Grid Equations

$$\int E \cdot ds = -\int \dot{B} \cdot dA \qquad Ce = -\dot{b} \int H \cdot ds = \int (\dot{D} + j_e) \cdot dA \qquad \tilde{C}h = \dot{d} + i_e \int B \cdot dA = 0 \qquad Sb = 0 \int D \cdot dA = \int \rho dV \qquad \tilde{S}d = q_e$$

- Can be coupled to dynamics of charges (PIC)
- Time-dependence can be treated in time or frequency domain
- Cost: $O(10^{13})$ FP operations for 10^9 grid points

Example: Hydrodynamics

Navier-Stokes Equations

Governing (differential) equations (NSE):

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) &= -\nabla p + \nabla \tau + \rho \mathbf{f}\\ \frac{\partial (\rho e)}{\partial t} + \nabla \cdot (\rho e \mathbf{v}) &= \nabla \cdot (\kappa \nabla T) + \rho q - p \nabla \cdot \mathbf{v} + \nabla \mathbf{v} : \tau \end{aligned}$$

• variables:
$$ho$$
, ${f v}$, $e=E-|{f v}|^2/2$, p , au , T

Constitutive (algebraic) relations:

- Newtonian stress tensor: $\tau = \tau(\mathbf{v}, \mu)$
- Thermodynamic: $p = \rho RT$ and $E = c_v T \Rightarrow p, T$

Simplification for incompressible flows: ($\rho = const$, $\mu = const$)

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \widetilde{p} + \nu \Delta \mathbf{v} + \mathbf{f}$$

with kinematic viscosity $\nu=\mu/\rho$

Example: Hydrodynamics from LBE

- simplest microscopic (particle, kinetic) approach to model macroscopic dynamics
- can be derived from Boltzmann equation
- yields Navier-Stokes equations (long wavelength and low frequencies)
- discrete coordinates and velocities

$$f_i(\mathbf{x} + \mathbf{e}_i, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i[f(\mathbf{x}, t)]$$

with particle velocity distribution f_i along directions $i = 1, \ldots, q$

Bhatnagar-Gross-Krook (BGK) collision operator

$$f_i(\mathbf{x} + \mathbf{e}_i, t + \Delta t) = f_i(\mathbf{x}, t) - \frac{f_i - f_i^{(eq)}}{\tau}$$

Macroscopic quantities:

$$\rho = \sum_{i} f_i, \quad \rho \mathbf{v} = \sum_{i} f_i \mathbf{e}_i,$$

Implementation: two-step update

(1) collision step:

$$\tilde{f}_i(\mathbf{x}, t) = (1 - \omega) \cdot f_i(\mathbf{x}, t) + \omega \cdot f_i^{(eq)}$$

(2) streaming (displace, diffuse) step:

$$f_i(\mathbf{x} + \mathbf{e}_i, t + \Delta t) = \tilde{f}_i(\mathbf{x}, t)$$

Properties:

- O(200... 400) Flop in step (1)
 → 10¹⁴ Flop for 10000 steps on 256³ mesh
- intrinsically parallel
- may need temporal and spatial averaging (to eliminate noise)
- needs comparable or finer mesh resolution than Navier-Stokes solvers
- can easily incorporate complex boundary conditions (e.g. porous materials)

Stochastic Methods

Stochastic methods are required for physical or numerical problems if

- basic numerical problem is too difficult for direct methods e.g. complicated phase-space integration
- deterministic physical system is very complex and only stochastic description is practical e.g. partition function in statistical physics

$$Z(\beta, p) \sim \sum_{states} e^{-\beta H(s, p)}$$

theory of physical system has an intrinsical stochastic nature e.g. path-integral in (eucidean) quantum field theory

$$Z(J) \sim \int_{fields} e^{-S(\phi,J)} D\phi$$

Stochastic Integration

Basic computational task is an integral

$$I = \int_{\mathcal{D}} f(x) \ d^{n}x$$

which may have

- high dimension of integration domain, e.g. $n = O(10^8)$
- \bullet irregular integration domain ${\cal D}$
- irregular behaviour of integrand f(x)

Sochastic integration exploits interpretation of I as a measurement on a stochastic system

$$I \sim \frac{1}{N} \sum_{i=1}^{N} f(x_i) + \begin{cases} O(1/N^{m/d}) & x_i \in \text{regular grid} \\ O(1/\sqrt{N}) & x_i \in \text{stochastic choice} \end{cases}$$

- → numerical simulation of stochastic system (stochastic simulation, Monte Carlo simulation)
- → stochastic analysis of measured data from (numerical) experiment

Stochastic Methods

Probability Theory

Given a probability density function (PDF)

$$\rho: \Omega \longrightarrow \mathbb{R}^+ \quad \text{with} \quad \int \rho(x) \, dx = 1$$

one can compute exact (analytic) expectation values

$$E[f] \equiv \langle f \rangle := \int_{\Omega} f(x) \ \rho(x) \ dx$$

of arbitrary functions

$$f:\Omega\longrightarrow \mathbb{V}$$

Examples:

- mean value of the PDF: $E[x] =: \mu$
- variance of the PDF:
- probability of a specific value: $E[\delta(x \xi)] = \rho(\xi)$
- cumulants of f

$$C_1 = E[f]$$

$$C_2 = E[(f - C_1)^2]$$

...

 $E[x] =: \mu \qquad (f(x) = x)$ $E[(x - \mu)^2] = E[x^2] - \mu^2 =: \sigma^2 \qquad (f(x) = (x - \mu)^2)$ $E[\delta(x - \xi)] = \rho(\xi) \qquad (f(x) = \delta(x - \xi))$

Stochastic Samples

Independent measurements of a stochastic system (described by the PDF ρ) provide a sample of uncorrelated values

Sample is described by the PDF

$$\rho_N(\xi_1,\xi_2,\ldots,\xi_N) = \rho(\xi_1) \cdot \rho(\xi_2) \cdots \rho(\xi_N)$$

D Expectation values are predictions for primary observables of measurements

□ Sample averages

$$\overline{f} \equiv \frac{1}{N} \sum_{i=1}^{N} f(\xi_i)$$

are estimators for the expectation values of primary observables

I Functions of the expectation values are called secondary observables

Correlated Samples

In practice, it is often too expensive to generate an uncorrelated sample!

Instead, one uses a stochastic process to generates a correlated sample

according to a joint PDF

$$\rho_N(\xi_1,\xi_2,\ldots,\xi_N)$$

with determines the autocorrelation function

$$\Gamma_{ij} \equiv E\left[(x_i - E[x_i])(x_j - E[x_j])\right]$$

For a Markov Process, the PDF for successive elements of the ensemble (Markov Chain) is defined by a stochastic mapping between PDFs on Ω

$$P:\rho_n\mapsto\rho_{n+1}$$

N.B.: By restarting the process several times, one may generate a (small) uncorrelated sample of ensambles (but with the elements within each ensemble being correlated)

Markov Processes

The stochastic mapping of a Markov chain can be written as

$$\rho_{n+1}(y) = \int_{\Omega} P(y \leftarrow x) \cdot \rho_n(x) \, dx$$

with

$$P(x \leftarrow y) \ge 0 \qquad (\forall x, y)$$

$$\int P(y \leftarrow x) \, dy = 1 \qquad (\forall x)$$

To use the Markov Process for Monte Carlo simulation of a system with PDF ρ^* we want:

• ρ^* to be the unique fixed point of the process

$$P\rho^* = \rho^*$$

• convergence from an arbitrary start distribution ρ_1 to the fixed point distribution

$$\lim_{n \to \infty} P^n \rho_1 = \rho^*$$

Sufficient, but not necessary condition:

• strong ergodicity

$$P(y \leftarrow x) > 0 \qquad (\forall x, y)$$

• detailed balance

$$P(y \leftarrow x) \cdot \rho^*(x) = P(x \leftarrow y) \cdot \rho^*(y) \quad (\forall x, y)$$

Markov Processes Examples

If Ω is finite (not only finite dimensional):

- $\Box \ \rho_i \equiv \rho(i) \text{ is a stochastic vector, i.e.} \qquad \rho_i \ge 0 \quad \text{ and } \quad \sum_i \rho_i = 1$
- $\square P_{fi} \equiv P(f \leftarrow i) \text{ is a stochastic matrix, i.e.} \qquad P_{fi} \geq$

$$\rho_i \ge 0 \quad \text{and} \quad \sum_i \rho_i = 1$$

 $P_{fi} \ge 0 \quad \text{and} \quad \sum_f P_{fi} = 1$

N.B.: Every stochastic matrix has at least one fixed point

Stochastic matrices with detailed balance:

• Non-ergodic process: $P^{2n} = 1 \neq P^{2n+1} = P$ ($\forall n$)

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \rho^* = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$$

• Heatbath-like process: $P_{fi} = \rho_f^* (\forall i) \implies P^2 = P$ and $P^n \rho_1 = \rho^* (\forall n \ge 1, \forall \rho_1)$

$$P = \begin{pmatrix} \alpha & \alpha & \alpha \\ 1-\alpha & 1-\alpha & 1-\alpha \\ 0 & 0 & 0 \end{pmatrix} \qquad \rho^* = \begin{pmatrix} \alpha \\ 1-\alpha \\ 0 \end{pmatrix}$$

but strong ergodicity condition is not satisfied if $\exists f: \rho_f^*=0$

• Metropolis-like process:

$$P_{fi} = \begin{cases} \min\left(1, \frac{\rho_f^*}{\rho_i^*}\right) & (f \neq i) \\ 1 - \sum_{j \neq f} P_{ji} & (f = i) \end{cases}$$

Markov Processes

Implementation

Generate sequence of states $x \in \Omega$ (rather than probability distributions ρ on Ω) by a stochastic update process

 $U: x_n \longrightarrow x_{n+1}$

with transition probabilities $P(x_{n+1} \leftarrow x_n)$ of the Markov chain

Example: Metropolis Update

(1) Proposal Step: Generate a new (trial-) state with probability

$$P_S(f \leftarrow i)$$

(2) Metropolis Step: Accept new state with probability

$$P_A(f \leftarrow i) = min\Big(1, \frac{\rho_f^* \cdot P_S(i \leftarrow f)}{\rho_i^* \cdot P_S(f \leftarrow i)}\Big)$$

e.g. by comparing P_A with a (pseudo-)random number $r \in [0,1]$

Remarks:

- Transition probability of process is $P_S(f \leftarrow i) \cdot P_A(f \leftarrow i)$
- Process satisfies detailed balance
- Metropolis-step simplifies for symmetric (e.g. flat) proposal, i.e. $P_S(f \leftarrow i) = P_S(i \leftarrow f)$
- In case of rejected update, x_i is kept in sample more than once

Stochastic Methods

Integration (cont.)

Integration with a normalised (stochastic) measure $\rho(x)$ is an expextation value and can be estimated by the mean over a sample S with distribution ρ (e.g. flat)

$$I \equiv \int f(x) \ \rho(x) \ dx = E[f] \approx \frac{1}{N} \sum_{x_i \in S} f(x_i)$$

 \square Can choose different distributions to improve measurement on S: importance sampling

$$I = \int f(x) \, dx = Z[1] \cdot \int f(x) \cdot \frac{dx}{Z[1]} = Z[g] \cdot \int \frac{f(x)}{g(x)} \cdot \frac{g(x)}{Z[g]} \, dx$$

with normalisation factors

$$Z[g] \equiv \int_{\mathcal{D}} g(x) \, dx$$

 $f \Box$ Ratios of integrals do not depend on pre-factor Z

 \Box Sample from Markov chain does not depend on normalisation factor 1/Z

However, Z is needed to obtain absolute value of the integral and must be determined by other method (e.g. analytical or hit-and-miss)

Example: Integration with Importance Sampling

Consider a strongly peaked integrand

$$f(x) = (1 + \beta \cdot x) \cdot e^{-\alpha \cdot x}$$

 \square Flat sample: $\rho \sim 1$

- bad sampling (noisy, many small contributions to mean)
- cheap generation of sample

 \square Importance sampling: $\rho\approx f$

- good importance sampling (small variance of mean)
- expensive generation of sample (small acceptance in Metropolis or slow Heatbath)

 \square Not a clever choice: $\rho=f$

- exact mean: $\frac{1}{N}\sum 1 = 1$
- expensive generation of sample if needed for integral of other functions
- computation of Z is original integral

QCD = Relativistic Quantum Field Theory of Strong Interactions4-d space-time non-perturbative

$$\mathcal{L}_{\text{QCD}}(g_0, m_0^{(f)}) = \frac{1}{4} G_{\mu\nu} G_{\mu\nu} + \sum_{f=1}^{N_f} \overline{\psi}(i \ D - m_0^{(f)}) \psi$$

<u>Parameters</u>: 1 gauge coupling $+ N_f$ quark masses

Physics Challenges

 $\hfill\square$ Verify or falsify QCD at low energies

D Determine fundamental parameters

 Compute basic hadron properties (spectroscopy, hadronic matrix elements)

□ Make contact with Chiral Perturbation Theory (ChPT)

Study exotic forms of matter (quark-gluon plasma)

Ο...

Euclidean n-point functions:

$$\langle \phi(x) \dots \phi(0) \rangle := \langle 0 | \phi(x^M) \dots \phi(0) | 0 \rangle \Big|_{x_0 = -ix_0^M} \qquad (x_0^M > 0)$$

Path Integral Quantisation:

$$\left\langle \phi_1(x_1)\dots\phi_n(x_n)\right\rangle \sim \int \phi_1(x_1)\dots\phi_n(x_n)\cdot e^{-S[U,\overline{\psi},\psi]} D[\overline{\psi}]D[\psi] D[U]$$

well-defined (only) if space-time is discrete and finite

- → 4-dimensional lattice: $V = L^3 \times T = O(10^6 \cdots 10^7)$
- \clubsuit integration space has finite number of dimensions: $d \sim V$

stochastic		here	
integration			
i	\longleftrightarrow	x	sites
x_i	\longleftrightarrow	U,ψ	fields
ho	\longleftrightarrow	e^{-S}	action
f	\longleftrightarrow	\mathcal{O}	observables

Lattice Action

Dynamical Fermions $(N_f = 2)$

$$\int e^{-S(U,\psi)} D[\psi] \sim e^{-S_g(U)} \cdot \det M(U) \sim e^{-S_g(U)} \cdot \int D[\phi] e^{-\bar{\phi}(M^{\dagger}M)^{-1}\phi}$$
quenched \downarrow
fermionic ψ const bosonic ϕ

Wilson-Dirac Operator:

$$[\mathbf{M}\phi]_x \sim \phi_x - \kappa \sum_{\mu=\pm 1}^{\pm 4} \mathbf{U}_{\mu,\mathbf{x}} \otimes (1-\gamma_{\mu}) \cdot \phi_{x+\hat{\mu}} + \mathbf{O}(\mathbf{a})$$

→ 1320 floating-point operations per lattice site

Alternative Fermion Actions:

Action	tion Properties		ncation Erros	CPU Cost	
		action	operators		
Staggered	1/4 non locality	$O(a^2)$	"taste" mixing	low	O(1)
Wilson	χ recoverable	O(a)	O(a)	moderate	\downarrow
Clover	χ recoverable	$O(a^2)$	O(a)	moderate	O(10)
Twisted	χ recoverable	O(a)	$O(a^2)$	moderate	\downarrow
Domain-Wall	χ for $L_5 ightarrow \infty$	O(a)	O(a)	high	O(1000)
Overlap	χ exact	$O(a^2)$	$O(a^2)$	very high	

Monte Carlo Simulation

• Generate sample of gauge configurations U from ensemble with distribution

$$\rho(U) \sim e^{-S_g(U) - S_f(U)}$$

• Estimate observables from ensemble average

$$\langle \mathcal{O} \rangle \rightarrow \frac{1}{N} \sum_{U} \mathcal{O}[U] + O(N^{-1/2})$$

Algorithms for Gauge Updates (quenched):

- overrelaxation
- heatbath

→ fast decorrelation

→ ergodicity

Measurement of observables is dominant computational cost (inversion of M)

Fermion Algorithms

Hybrid Monte-Carlo:

Consider (classical) Hamiltonian

$$H = \frac{1}{2}\pi^2 + S_g(U) + \overline{\phi} \cdot \left[M^{\dagger}(U)M(U)\right]^{-1} \cdot \phi$$

- Generate gaussian η and set $\phi = M^{-1}\eta$
- Generate gaussian conjugate momenta π of U fields
- Molecular-Dynamics evolution of (U, π)
 - (π) reversibility

acceptance

8

- possibly useing multiple step-size (in Monte Carlo time)
- each forces computation requires inversion(s) of M
- Metropolis accept/reject with probability

Domain Decomposition / Schwarz Alternating Procedure

Decompose lattice into regular grid of equal blocks Ω_i

To solve

$$\mathbf{M}\phi = \eta$$

repeatedly update fields on each block Ω_i by solving

$$\mathbf{M}\phi^{(k+1)} = \eta(x) \quad (x \in \Omega_i) \\ \phi^{(k+1)} = \phi^k \quad (x \notin \Omega_i)$$

- update can be performed in parallel on all blocks with same checkerboard colour
- procedure is a Neumann series, which converges (slowly) to full solution ${f M}^{-1}\eta$
- use as preconditioner for suitable Krylov-space solver

Simulation Cost: (for 100 statistically independent configurations with DD-HMC)

$$cost \sim 0.05 \ Tflops \times year \left(\frac{L}{3 \ fm}\right)^5 \left(\frac{0.1 \ fm}{a}\right)^6 \left(\frac{\overline{m}_q}{20 \ MeV}\right)^1$$

Measurement of Observables

 Consider local products of operators with suitable quantum numbers e.g. pion

 $P(x) = \overline{\phi}(x)\gamma_5\phi(x)$

• Interpretation of correlation functions by Transfer Matrix formalism

$$\langle P(x)P(y)\rangle \sim e^{-(x_0-y_0)\cdot m_{\pi}} + a_{\pi'} \cdot e^{-(x_0-y_0)\cdot m_{\pi'}}$$

(no rotation back to Minkowski space required)

• Suppression of excited states requires large time-extent $(x_0 - y_0 \rightarrow \infty)$

Extrapolation to Physical Limits

- **X** Continuum Limit: $a \longrightarrow 0$ discretisation effects
- **X** Thermodynamic Limit: $V \longrightarrow \infty$ finite size effects and excited states
- **X** Chiral Limit: $m_q \longrightarrow 0$ chiral symmetry breaking: $\langle \overline{\psi}\psi \rangle \neq 0$ stability:

$$m_q > \frac{3a}{Z\sqrt{V}}$$

X Heavy Quarks: $a \lesssim m_B$

Energy Scales

Renormalisation

 $\hfill\square$ At high energies: PT and \overline{MS}

$$\Phi(q,r) = C_0(q,r) + C_1(q,r,\mu) \cdot \alpha_{\overline{MS}}(\mu) + C_2(q,r,\mu) \cdot \alpha_{\overline{MS}}^2(\mu) + \cdots$$

- complicated but automatised computation (algebraic and numerical)
- $\alpha_{\overline{MS}}(\mu) \equiv g_{\overline{MS}}^2/4\pi$ depends on Φ , choice of $\mu \approx q$, and order of PT
- $\overline{m}_{\overline{MS}}(\mu)$ may require additional assumptions (e.g. QCD sum rules)
- unique procedure (also for composite operators)

At low energies: LQCD with Hadronic Scheme

$$m_H^{exp} = \lim_{a \to 0} \frac{(am_H)}{a(g_0)}$$

- depends on choice of m_H
- need to compute N_f ratios $m_{H'}/m_H$ and kept them fixed at physical values for $a \longrightarrow 0$
- different choices of non-perturbative renormalisation conditions with ambiguities from discretisation effects

Renormalization Group and $\Lambda\text{-}\mathsf{Parameter}$

RGE for mass-independent scheme: $\overline{g} \equiv \overline{g}(\mu)$

$$\mu \frac{\partial \overline{g}}{\partial \mu} = \beta(\overline{g})$$
$$\stackrel{\overline{g} \to 0}{\sim} -\overline{g}^3 \left\{ b_0 + b_1 \overline{g}^2 + b_2 \overline{g}^4 + \dots \right\}$$

α

different schemes

 $\log(\mu)$

 \bullet exact equation for "integration constant" Λ

$$\Lambda = \mu \left(b_0 \overline{g}^2 \right)^{-b_1/2b_0^2} \mathrm{e}^{-1/2b_0 \overline{g}^2} \, \exp\left\{ -\int_0^{\overline{g}} \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

• trivial scheme dependence

$$\alpha_a = \alpha_b + c_{ab} \alpha_b^2 + O(\alpha_b^3) \quad \Rightarrow \quad \Lambda_a / \Lambda_b = e^{c_{ab} / (4\pi b_0)}$$

• use a suitable physical coupling (scheme) and non-perturbative $\beta(\overline{g})$

- implement and test Symanzik improvement
- perform reliable continuum limit
- verify that systematic errors are under control

Definition of Schrödinger Functional

- finite physical volume L^4 , T = L
- Dirichlet b.c. $C(\eta)$, $C'(\eta)$ at $x_0 = 0, T$
- periodic b.c. in space (up to phase θ)

$$Z_{SF}(C,C') = e^{-\Gamma(\eta)} = \int_{\text{fields}} e^{-S(\eta)}$$

• renormalised coupling

$$\left. \frac{\partial \Gamma(\eta)}{\partial \eta} \right|_{\eta=0} \equiv \frac{k}{\overline{g}_{SF}^2(L)}$$

$$m_{PCAC} = 0$$

• renormalisation scale

$$\mu = 1/L$$

(LxLxL box with periodic b.c.)

Step Scaling Function (SSF)

• "discrete" β -function

$$\sigma(\overline{g}^2(\underline{L})) \equiv \overline{g}^2(\underline{2L})$$

• determines NP running

$$u_k = \overline{g}^2 \left(L_{max} / 2^k \right)$$
$$\uparrow \\ u_0 = \overline{g}^2 \left(L_{max} \right)$$

• computation on the lattice

$$\Sigma(u, a/L) = \sigma(u) + O(a/L)$$

H. Simma, Theoretical Physics on Supercomputers

Conversion of SSF to Beta Function

by solving (with parametrized SSF)

$$-2ln2 = \int_{u}^{\sigma(u)} \frac{\mathrm{d}x}{\sqrt{x}\beta(\sqrt{x})}$$

- clear effect of N_f
- strong deviation from 3-loop PT for $\alpha_{SF} \geq 0.25$
- without indication from within PT

Running of α_s

Example: Charm Quark Mass ($N_f = 0$ **)**

- large mass renders O(a) improvement essential
- different definitions of $m_0^{(c)}$ differ by ${\cal O}(a^2m_c^2)$ errors
- difficult continuum extrapolation

Example: Hadronic Matrix Elements (semi-leptonic)

E.g.

$$\frac{d\Gamma(B \to \pi \ell \bar{\nu})}{dq^2} \sim |V_{ub}|^2 \cdot |\mathcal{M}(q^2)|^2$$

with $q \equiv p_K - p_\pi$

$$0 \le q^2 / m_K^2 = 1 - 2 \frac{E_\pi}{m_K} \le 1$$

$$\langle \rangle$$

$$\mathcal{M}(q^2) = \langle \pi(p_\pi) | V_\mu | K(p_K) \rangle = f_+(q^2) \cdot (p_K + p_\pi)_\mu + \cdots$$

Kinematical range with best experimental sensitivity at low q^2 (phase space) is not accessible by LQCD calculations

H. Simma, Theoretical Physics on Supercomputers

Example: Hadronic Matrix Elements $K \rightarrow \pi \pi$

Aim:

* $\Delta I = 1/2$ rule * $\varepsilon'/\varepsilon \leftrightarrow \text{direct CP violation}$

Problems:

- \bigstar Complicated mixings in renormalisation of $\Delta S=2$ four-fermi operators
- ✗ HME with 2-hadron final states has FSI (strong phases) but only average of *in* and *out* states can be determined in Euclidian space
- **X** Contribution of intermediate $\bar{c}c$ states?

Strategies:

Compute HME for $K \to 0$, $K \to \pi$ ($K \to \pi\pi$) at unphysical kinematics \downarrow determine low energy constants of ChPT at LO (NLO)

Compute in finite volume HME for $K \to \pi \pi$ \uparrow related to infinite volume HME by (elastic) $\pi \pi$ scattering phase shifts in finite volume

Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:

Introduction
 Solution Steps
 Examples of Applications and Methods
 Lattice QCD
 Machines

Computational Tasks of LQCD

Run-time Profile:

useful (if not yet known from theoretical analysis) to determine

- algorithmic cost (how often is each computational tasks needed)
- CPU cost (how much time is spent for each computational tasks)

routine	calls	time
Dirac operator (3 variants)	80844	58 %
Linear algebra (3 routines)	60736	26 %
Gauge forces $+$ update	320	8 %
Global sum $(4 imes 8 imes 8$ nodes, 128 bit)	83554	0.4 %
Others ($pprox$ 70 routines)		7 %

1 HMC trajectory, $24^3\times 32$ lattice

→ Dominant Task: Wilson-Dirac Operator

$$\phi' \equiv [D\phi]_x = \sum_{\mu=1}^4 \{ U(x,\mu)(1-\gamma_\mu)\phi(x+\hat{\mu}) + \cdots \}$$

LQCD on Parallel Computers

Data Storage:

 $\psi(x)$: 12 complex/site $U(x,\mu)$: 9 complex/link

Lattice size $V = L^3 \times T$ e.g. $64^3 \times 128 \Rightarrow 3 \cdot 10^7$ sites (10 GB for gauge field U)

Processor grid: $P_0 \times P_1 \times P_2 \times P_3 = P$

→ Trivial parallelisation by data distribution (uniform, static)

Communications:

- mainly nearest neighbour
- bandwidth requirements depends on implementation, algorithm, and physics choices

Number of remote neighbour sites (i.e. on different processor):

$$A^+ = \frac{V}{P} \sum_i \frac{1}{L_i} \quad (P_i > 1)$$

Analysis of Computational Tasks

Total Computing Cost

$$N_{ops} \equiv \#$$
 FP operations = 1320

Computing vs. Memory Access

 $R_{ops} \equiv \frac{\# \text{ arithmetic operations}}{\# \text{ memory accessess}} \approx 7$

 $\sim A^+/V$

Communication Requirement

$$R_{rem} \equiv \frac{\# \text{ remote accesses}}{\# \text{ memory accessess}}$$

Hardware Characteristics

Memory System

 $\rho_{mem} \equiv \frac{\text{flops}}{\text{bandwidth}} \quad [flop/byte]$

Communication Network

 $\rho_{net} \equiv \frac{\text{network bandwidth}}{\text{memory bandwidth}}$

Balance: Application vs. Hardware

 $R_{ops} \approx \rho_{mem}$ and $R_{rem} \approx \rho_{net}$

N.B.: Depending on (and to be taken into account in) various steps of the solution process

Example: APE Machines

History:

- mid 80's: APE1 idea for "Array Processor Experiment" by theoretical physicists at INFN
 → 1 GFlops APE1 prototypes
- 1989–1994: APE100 full-custom development by INFN $\rightarrow O(200)$ GFlops installations (Quadrics)
- 1995–2000: APEmille development by INFN (+DESY) \rightarrow O(2) Tflops installations (Eurotech)

CP-PACS/Hitachi QCDSP/Columbia

• 2001–2006: apeNEXT collaboration by INFN, DESY, Orsay \rightarrow O(15) Tflops installations (Eurotech)

QCDOC/Columbia BlueGene/IBM

APE has provided major computing resources for LQCD in Europe

Optimization of APE Architectures for LQCD

- 3D torus network
- slow clock, but many FP operations (complex) per cycle \Rightarrow low power consumption
- integrated memory and communication interface \Rightarrow compact design
- Very Long Instruction Word (VLIW) architecture
 ⇒ optimized scheduling at compile-time
- large register file instead of cache
 ⇒ predictable and synchronous execution
- global syncronisation (mechanisms)
- RAS (ECC, status registers, . . .)
 ⇒ duration of single program execution O(days)
- SIMD programming model + communications by address mapping

APE1 — **APE100** — **APEmille** — **apeNEXT**

apeNEXT (2004) 800GF, DP, Complex

Example: BlueGene/L and P

Characteristics:	[QCDOC]
• PowerPC 440 core @ 850 MHz	[500 MHz]
 MIMD distributed memory 	
 on-chip L1, L2, L3 caches (8 MB) 	[4 MB]
Node:	
• 4 cores	[1 core]
• 2 GB DDR	
• 3-d torus network (6 links at 425 MB/s = 0.5 B/clock)	[6-d at 65 MB/s]

• tree network (850 MB/s)

BlueGene/P

BlueGene/P

System

Example: Cell / QPACE

- Idea: Combine enhanced Cell BE (PowerXCell 8i) with APE-like torus network
 - 200 GFlop/s single precision (peak)
 - 100 GFlop/s double precision (peak)
 - DDR2 memory controller
 - $\sim 25\%$ sustained performance (performance model)
- Collaboration between academic partners (Uni Regensburg, Jülich, DESY, Milano, Ferrara) and IBM Research Lab Böblingen
- Funded as part of SFB/TR-55 by Deutsche Forschungsgemeinschaft (DFG)
- Design work started \approx Jan 2008
- Running Board Jul 2008
- Production of 2048-node machine early 2009

Cell/QPACE

SPE:

- In-order execution
- 4 MulAdd/clk = 25.6 Gflops (SP)
- Local Store (LS) 256 k
- Data transport memory \leftrightarrow LS can (and must) be controlled by SW

Cell/QPACE

Example: GRAPE

History:

- 1989 Idea by physicists at Tokyo University to implement N-body computation in HW GRAPE-1 prototype
- 1991 GRAPE-1A, GRAPE-2 discrete commercial chips, 40 MFlops
- 1993 GRAPE-3 first custom LSI chip
- 1996 MD-GRAPE
- 1997 GRAPE-4 19 flop/3 \times 32 MHz = 203 Mflops
- 2000 GRAPE-5
- 2001 Gordon Bell Prize for GRAPE-6 prototype
- 2003 GRAPE-6

6 pipelines \times 57 flop \times 90 MHz = 30 Gflops

2005 MD-GRAPE-3

20 pipelines \times 36 flop \times 250 MHz = 180 Gflops

N.B.: Odd series have low accuracy, even series have high accuracy

- Pipeline = 60 arithmetic units
- FPGA = 6 pipelines
- PCI module (123 Gflops) = 4 chips + FPGA + SRAM
- Mother board (1 Tflops) = 8 modules
- Full system (64 Tflops) = 64 mother boards

Example: IANUS

History:

- 1991: RTN with transputers (Zaragoza)
- 2000: SUE "Spin Update Engine" with FPGA (Zaragoza) \rightarrow 217 ps/update on full machine
- 2006: IANUS "Spin Update Engine" with FPGA (Zaragoza + Ferrara) \rightarrow 1 ps/update on one PB

Architecture:

- FPGA (62.5 MHz)
 - 512 update engines (RNG+LUT)
 - on-chip memory
 - links for 2-d network
- $PB = 16 FPGA (4 \times 4)$

IANUS

Simulations of Edward-Anderson Spin Glas

$$H = -\sum_{\langle i,j \rangle} J_{ij} \cdot x_i \cdot x_j \quad (J_{ij} = \pm 1 \text{ random})$$

allows $10^{11}~{\rm MC}$ steps on $L^3=80^3$ with $\Delta t=10^{-12}~{\rm sec} \rightarrow 0.1~{\rm sec}$

Comparison of Machines used for LQCD

	unit	apeNEXT	BG/P	Cell	PC
		2006	2008	2009	2009
Arithmetics					
f_{clk}	[GHz]	0.13	0.85	3.2	2.8
FP word	[bits]	64	64	64 (32)	64 (32)
FP/core	[flop/clk]	8	4	4	2×2
core/chip		1	4	8	4
FP/chip	[Gflops]	1	13.6	100	50
power (overall)	[W/Gflops]	9	3	1.5	2.5
Cache			L3	LS	L3
size	[word]		1 M	8×32 K	1 M
Memory					
bandwidth	[word/flop]	1/4	1/8	1/32	1/12.5
latency	[clk]	≈ 20	≥ 30	≥ 200	≥ 100
Network		3d	3d + tree	3d	
bandwidth	[word/flop]	1/24	1/64	< 1/16	
latency	[clk]	≈ 40	≈ 700	≈ 3000	

Simplified Hardware Model

Distinction between devices/units for:

□ control (of data and program flow)

- □ storage of data (and code)
 - memory
 - cache(s)
 - registers
 - internal buffers, fifos, flip-flops, ...

 $\sigma_x = \text{storage size}$

□ processing/transport of data

- arithmetic pipelines
- storage access (hopefully pipelined)
- combinatorical logics
- buses?

 $\beta_{xy} = bandwidth (data throughput/time)$

- $\lambda_{xy} =$ latency (delay between input and first output)
- ISA = instruction set architecture

Implementation of Computational Tasks

Three inter-related **problems**:

- (1) translation of the computational task into hardware operations
- (2) allocation of the hardware resources for data storage and transport
- (3) scheduling of the operations
- N.B.: (2) and (3) are NP-hard
- ... need to be tackled at various abstraction levels:
 - development or selection of algorithm
 - development of a high-level code
 - code generation by the compiler (code selection, register allocation, and instruction scheduling)
 - out-of-order execution by hardware (micro-instructions)

