
Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:
q Introduction
q Solution Steps
q Examples of Applications and Methods
q Lattice QCD
q Machines

H. Simma, Theoretical Physics on Supercomputers 1

Motivation

Three methodic pillars in natural sciences:

r experimental observation

. . . may be

• too expensive (Me)
• too dangerous (environment, humans)
• too difficult to measure (aerodynamics, astrophysics)
• not practical (cosmology, civil protection)
• controversal (biology)

r theoretical description (by first principles or phenomenological models)

. . . often impossible to solve by “analytic” methods (for realistic/relevant systems)

r numerical simulation . . .

H. Simma, Theoretical Physics on Supercomputers 2

Solution Process in Scientific Computing

Model:
representation of

• the system, e.g.

– classical or quantum
– degrees of freedom

(particles or fields)
– coordinates
– constraints

• and its dynamics, e.g.

– deterministic or stochastic
– local balance (differential) or

global conservation (integral)
– boundary/initial values

Mathematical Problem:

• differential equations
(ODE, PDE)

• extremal conditions

• integration
(multi-dimensional, stochastic)

• algebraic relations

H. Simma, Theoretical Physics on Supercomputers 3

Solution Process in Scientific Computing

Discretisation:

approximation scheme to formulate
mathematical problem in terms of a
finite number of DOF and compute steps

• coordinates (time, space):
“Finite Differences”

• partial solutions (plane waves, multipoles):
“Finite Elements”

• sub-systems (particles, cells, ensembles)

• truncation of series expansions

Numerical Problem:

e.g. formulated as

• recurrence

• minimisation

• integration

• algebraic relations
(implicit, explicit)

• linear systems

H. Simma, Theoretical Physics on Supercomputers 4

Solution Process in Scientific Computing

Algorithm:

method to solve numerical problem

• implicit or explicit

• direct or iterative

• adaptive

• stochastic

often determines

• resource requirements and balance

– data storage
– arithmetic operations
– data transport

• data dependence (parallelisation)

• scaling with problem size
(and machine parameters)

Computational Tasks:

sequence of solution steps

• with different levels of granularity,
e.g.

– evolve (sub-)system by one step
– compute forces
– solve Ax = y
– compute eigenvalues of A
– apply Ax (matrix × vector)
– basic linear algebra, FFT,

random numbers, . . .

• often described by pseudo-code

• without reference to a specific
programming language
or machine architecture

H. Simma, Theoretical Physics on Supercomputers 5

Solution Process in Scientific Computing

Implementation:

• high-level coding (human)

– data representation
– memory layout
– selection and scheduling of

(macro-)operations
– management of communications

• low-level code generation (compiler)

– management of memory accesses
– register allocation
– selection and scheduling of

(micro-)instructions

Computer Code:

• sequence of machine instructions

• hardware dependent

• implementation dependent

H. Simma, Theoretical Physics on Supercomputers 6

Challenges

Fundamental research

] Astrophysics and Cosmology (gravitation, hydrodynamics)

] Climate and Meteorology (hydro- and thermodynamics)

] Chemistry, Biology (classical and quantum mechanics)

] Statistical Physics (critical phenomena, non-equilibrium dynamics)

] High-energy Physics (QCD)

] . . .

] Material Science

] Medicine

] Engineering (electro-, hydro-, thermodynamics)

] Computing (hardware and code optimisation)

Hamming: “The purpose of computing is not numbers but insight”

H. Simma, Theoretical Physics on Supercomputers 7

What makes simulations difficult?

r multiple scales, e.g. in

• time → multiple-time scale integration
• space → adaptive grids
• energy

r coupled systems, e.g.

• stars + gas (discrete + continuum)
• molecules + solvent
• different atoms or molecules
• atoms + electrons (classical + quantum)
• matter + fields (charges + radiation, masses + gravity, quarks + gluons)
• fermions (Pauli principle!)

r problem size (degrees of freedom) e.g. imposed by

• nature of the system (particles, fields)
• numerical accuracy (grid points)

r parameter limits which are NOT directly accessible by simulations

• often related to most interesting phenomena (e.g. phase transitions, singularities)

H. Simma, Theoretical Physics on Supercomputers 8

Limitations of Numerical Simulation

8 costs

• infrastructure: 20. . . 50 Me per Supercomputer (running 4 years)
• operation: > 2000 e/day electricity bill (2.5 W/Gflops)
• environment: > 10 t/day CO2 emission (0.7 kg/kWh)

8 limited processing speed

8 limited storage resources

8 numerical accuracy requires

• well-posed mathematical problem
• consistent discretisation
• stable numerical solution
• precise implementation

H. Simma, Theoretical Physics on Supercomputers 9

Error Sources

Computing the value of a function f : R→ R, we distinguish

• x = true value of input

• x̃ = inexact input actually used

• f(x) = desired result

• f̂ = approximate function exactly computed

• f̃ = approximate function actually computed

Total error:

f(x)− f̃(x̃) = f(x)− f(x̃)︸ ︷︷ ︸ + f(x̃)− f̃(x̃)︸ ︷︷ ︸
propagated data computational

error error

Propagated error: depends on conditioning of problem and stability of algorithm

Computational error: sum of

• Truncation error from approximation (e.g. discretisation) in actual algorithm
(exact arithmetics)

f(x̃)− f̂(x̃)

• Rounding error from inexact arithmetics in actual implementation

f̂(x̃)− f̃(x̃)

H. Simma, Theoretical Physics on Supercomputers 10

Example: Computational error in numerical differentiation

Compute
f(x) = F ′(x)

by finite difference approximation

f̃(x) =
F (x+ h)− F (x)

h

• truncation error is bound by
K

2
h

if |F ′′| ≤ K near x

• rounding error is bound by
2
h
εmach

⇒ total computational error is minimised when

h ≈ 2
√
εmach/K

relative error

H. Simma, Theoretical Physics on Supercomputers 11

How much compute power is needed?

Example:

3-d lattice classical MD
number of sites 10003 = 109 number particles 105

variables per site 20 long-range forces 5× 109

operations per variable 50 operations per force 20
iteration steps 100 000 time steps fs→ ns 106

total operations 1017 total operations 1017

Computer performance:

• 1 Mflops = 106 floating-point operations per second

• 1 Gflops = 109 floating-point operations per second

• 1 Tflops = 1012 floating-point operations per second

• 1 Pflops = 1015 floating-point operations per second

Computer resources:

1017 FP operations = 1.2 Tflops × day = 30 Tflops × hour

H. Simma, Theoretical Physics on Supercomputers 12

How efficient is a Computer?

depends on

r hardware characteristics

• architectural structure
• storage devices: size σ
• processing/transport devices: bandwidth β

r application signature
• information exchange
• storage requirements
• parallelism

Ü Performance analysis and modeling

How much wall-clock time is (expected to be) required
to solve a given task on a given architecture?

algorithm implementation
↓ ↓

T = f
(

task , code , machine
)

H. Simma, Theoretical Physics on Supercomputers 13

Computer Hardware

Comparison: PC vs. Supercomputer

PC Supercomputer factor
processors 2 1000 . . . 10000 > 1’000
performance 30 Gflops 50 . . . 500 Tflops ≥ 1’000
clock frequency 3 GHz 1. . . 3 GHz < 1
memory 10 GB 100 TB ≥ 10’000
disk 500 GB 1000 TB ≥ 2’000
storage — 10 PB (1’000’000 CDs)

Moore’s Law [1965]

Processor complexity at minimal cost doubles every 18. . . 24 months

#gates ∝ 2 t/τ (τ = 18 . . . 24 m)

Scaling of Chip Technology

• transistors/area ∼ 1/L2 (with feature size e.g. L ≈ 65nm)

• clock ∼ V/L (with supply voltage e.g. V ≈ 1.8 V)

• power/transistor ∼ V 2

H. Simma, Theoretical Physics on Supercomputers 14

Examples of Supercomputers

See for instance (but not only): http://www.top500.org

site machine proc net cores Rmax Rpeak
[1000] [Tflops] [Tflops]

1 LANL (US) Roadrunner (IBM) STI InfB 122 1375 1028
2 LLNL (US) BG/L (IBM) IBM 3-D 212 478 560
3 Argonne (US) BG/P (IBM) IBM 3-D 164 450 557
4 U. Texas (US) Blade (SUN) AMD InfB 63 326 503
5 Oak Ridge (US) XT4 (Cray) AMD 3-D 31 205 260
6 FZJ (Germany) BG/P (IBM) IBM 3-D 65 180 222
7 New Mexico (US) Altix (SGI) Intel InfB 14 133 172
8 India Blade (HP) Intel InfB 14 132 172
9 IDRIS (France) BG/P (IBM) IBM 3-D 40 112 139
10 Total (France) Altix (SGI) Intel InfB 10 106 122

• Architecture: MPP / Blade Cluster

• Processor: multi-core (≥ 4)

• Network: Infiniband (switched) or proprieatary (3-d torus)

H. Simma, Theoretical Physics on Supercomputers 15

Usage of Top500 Supercomputers

Segments Pflops Systems
Industry 7.0 297
Research 6.0 91
Academic 3.7 98
Others 0.3 14

Areas Pflops Systems
Not Specified 7.0 134
Research 2.7 53
Finance 1.7 76
Geophysics 1.3 49
Service .56 25
Semiconductor .45 19
Hardware .44 19
Info Service .68 31
Info Processing .30 9
Defense .29 5
Benchmarking .24 7
Energy .24 8
Weather/Climate .21 9
Media .19 8
Telecomm .16 5

Countries Pflops Systems
US 10 257
Germany 1.4 46
UK 1.4 53
France 1.0 34
Japan 0.7 22
Sweden 0.4 9
India 0.3 6
China 0.3 12
Russia 0.2 9
Spain 0.2 7
Italy 0.2 6

H. Simma, Theoretical Physics on Supercomputers 16

Application Examples

system area mathematical numerical

mechanic astro, molecular ODE (Newton N-body) Integrators
Ewald

PDE (MHD, SPH) Fast Multipole

electromagnetic engineering PDE (Maxwell) FD, FE, FI, LinAlg
ODE (time-domain) Integrators
EVP (frequency-domain) FFT

hydrodynamic turbolence, climate PDE (Navier-Stokes, SPH) FD, FE, FI, LinAlg
kinetic (Lattice Boltzmann) Automata

statistical phase transitions stochastic integration (MC) Markov Process
non-equilibrium

quantum mech. nuclei, atoms PDE (Schroedinger) CPMD
(non-relativistic) materials, chemistry Minimisation (DFT) FFT

stochastic integration (QMC)

quantum field HEP, LQCD path integrals MC, MD, LinAlg
(relativistic)

H. Simma, Theoretical Physics on Supercomputers 17

Example: Classical Molecular Dynamics

Mathematical Problem:

Equations of motion for point-like masses (atoms, molecules, stars, . . .) in force field

miẍi = Fi or

q̇ = +

∂H

∂p

ṗ = −∂H
∂q

Numerical Methods:

r time integration
• multi-time steps: separate scales of time evolution
• adaptive time steps

r long-range forces (Coulomb, Gravitation)
• Particle Mesh Ewald

(split short and long distance ranges, summation in x or Fourier space)
• Fast Multipole

r short-range forces
• particle decomposition
• space decomposition

H. Simma, Theoretical Physics on Supercomputers 18

N-body Simulations in Astrophysics

Computational Challenges:

• large number of particles: N = 108...9 (but small for thermodynamic ensemble)

• high accuracy for long-range gravitational forces
(no screening, infinite binding energy)

• different time scales (e.g. 2-body correlations of close binaries)

Computational Methods and Scaling:

• Exact direct N-body integration (PP): O(N2) [+O(NN∗)]
– high-order integration: ri,vi,ai, ȧi

– individual time-steps: ∆t = 2−nt ≈ 0.01|ai|
|ȧi|

– neighbour lists

• Without direct gravitational forces: O(N) +O(nmesh, nlm)
– Particle Mesh (PM): particles → density → Poisson (FFT)
– Fast Multipole

• Mixed codes: O(N logN)
– distance grouping (tree, P3M)
– gas component with Smoothed Particle Hydrodynamics (SPH)
f(r)→

∫
dV ′ f(r′) ·W (|r− r′|, h)

H. Simma, Theoretical Physics on Supercomputers 19

Simulation of Microscopic Systems

Physics Areas:

• material science (solid states, liquids, plasmas)

• quantum chemistry (catalizers, polymers)

• biophysics (macro-molecules with solvent)

Theoretical Descriptions:

• Hydrodynamics:
dynamics of effective parameters

• Brownian Dynamics:
particles in effective media (solvent)

• Classical Molecular Dynamics (MD): N = 103...9, T = ns . . . µs
particles with effective potentials (ab initio or from experiment)

• Quantum Molecular Dynamics: N = O(100), T = 10 ps
solve (approximate) Schrödinger equation

H. Simma, Theoretical Physics on Supercomputers 20

Method: Integration of ODE

Consider n-dimensional system of explicit ODE

y′ = F (t, y(t)) , y(0) = y0 (y ∈ Rn)

r Higher order ODE can be reduced by introducing further variables

y′′ = F (y, y′) ⇔
(
y′0
y′1

)
=
(

y1
F (y0, y1)

)

r Let λi denote eigenvalues of the Jacobian ∂Fi/∂yj, then the (exact) solution is

• stable if Re(λi) ≤ 0 for all λi
• unstable if Re(λi) > 0 for any λi

r Numerical Solution Schemes:

For discrete time steps tk = k · h, iterate an integration scheme, which can be

• explicit
ŷk+1 = g(tk+1, ŷk, ŷk−1, . . .)

• implicit
g(tk+1, ŷk+1, ŷk, ŷk−1, . . .) = 0

Implicit schemes are more stable, but need solution of algebraic equation

H. Simma, Theoretical Physics on Supercomputers 21

Integration of ODE

Truncation Errors from Discretisation

• The exact solution y(t) ≡ φ(t, y0) defines a flow

φ : R× Rn −→ Rn

and a time-evolution map φt(y0) ≡ φ(t, y0)

• Local Truncation Error:
τ lock ≡ ŷk − φ(tk, ŷk−1)

• Global Truncation Error:
τglobk ≡ ŷk − φ(tk, ŷ0)

If τ lock = O(hp+1), then p is called the order of the integrator

H. Simma, Theoretical Physics on Supercomputers 22

Integration of ODE

Examples of Integration Methods

r Explicit Euler Method: p = 1

ŷk+1 = ŷk + h · F (ŷk)

r Implicit Euler Method (Backward Euler): p = 1, stable for any h > 0

ŷk+1 = ŷk + h · F (ŷk+1)

Example:

y′ = −λy with y(0) = y0 and λ > 0 ⇒ φ(t, y0) = y0 · e−λt

• Explicit Euler:

ŷn = (1−λh) · ŷn−1 = (1− λh)n ·y0 →

 +0 if 0 < h ≤ 1/λ (undershooting)
±0 if 1/λ < h ≤ 2/λ (oscillating)
±∞ if 2/λ < h (divergent)

Ü numerical solution ŷ is only stable for |1− λh| < 1

• Implicit Euler:
ŷn = ŷn−1 − λh · ŷn = y0/(1 + λh)n

H. Simma, Theoretical Physics on Supercomputers 23

Properties of Computational Methods

Definitions:

r Well-posed problem: existence of unique solution with continuous
dependence on problem data (e.g. Lifschitz bound, or well-conditioned)

r Consistent method: discretisation becomes exact

max
n
|ŷn − φ(ŷn−1)| −→ 0 (h→ 0)

i.e. local truncation error vanishes (original vs. discrete problem)

r Convergent method: solution becomes exact

max
n
|ŷn − φ(y0)| −→ 0 (h→ 0)

i.e. global truncation error vanishes (original vs. discrete problem)

r Stable method/algorithm: (analogous to well-conditioned problem)

∀ε ∃K : max
n
|ẑn − ŷn| < K

for the solution ẑ of perturbed problem with small perturbation δ < ε

H. Simma, Theoretical Physics on Supercomputers 24

Relations: (for finite difference methods)

• For well-posed problem and consistent method: convergent ⇔ stable

• well-conditioned problem + stable algorithm ⇒ accurate

H. Simma, Theoretical Physics on Supercomputers 25

Integration of ODE

Simple Symplectic Integrators

Consider

y =
(
q
p

)
F (p, q) =

(
f(p)
g(q)

)

r Symplectic Euler (Euler-Cromer): p = 1

ŷk+1 ≡
(
qk+1

pk+1

)
=
(
qk + h · f(pk+1)
pk + h · g(qk)

)
is area preserving (geometric integrator)
i.e. Jacobian Y ≡ ∂yk+1/∂yk of the map yk 7→ yk+1 satisfies

det(Y) = 1

and symplectic

YT · J ·Y = J with J =
(

0 1
−1 0

)

H. Simma, Theoretical Physics on Supercomputers 26

Integration of ODE

Simple Symplectic Integrators (cont.)

r Velocity Verlet: p = 2, and τglobk = O(h2)

rk+1 = rk + vk · h+ h2

2 · ak
vk+1 = vk + 1

2(ak + ak+1) · h

r Equivalent: Leapfrog Implementation

vk+1/2 = vk + h
2ak

rk+1 = rk + vk+1/2 · h
vk+1 = vk+1/2 + h

2ak+1

H. Simma, Theoretical Physics on Supercomputers 27

Integration of ODE

Hamiltonian Systems

For a Hamiltonian system

ẏ = {y,H(y)} with y ≡
(
q
p

)
and {f, g} ≡ ∂f

∂p

∂g

∂q
− ∂g
∂p

∂f

∂q

the time evolution has the exact formal solution

y(t+ h) ≡ EH(h) · y(t) = exp
(
h · LH

)
· y(t)

with the linear Liouville operator LHf ≡ {f,H}

In particular, for a Hamiltonian of the form

H(q, p) =
1
2
p2 + V (q)

we have

LH = Q + P with Q = p · ∂
∂q

and P = −V ′ ∂

∂p
and the associated time evolution operators

EQ(h) ≡ exp(hQ) : f(q, p) 7→ f(q+h · p , p)
EP (h) ≡ exp(hP) : f(q, p) 7→ f(q , p−h · V ′)

are area preserving and symplectic

H. Simma, Theoretical Physics on Supercomputers 28

Integration of ODE

Building Symplectic Integrators

Idea: Repeatedly perform integration steps of size h using a product

S(h) ≡ EP (c1h) · EQ(d1h) · EP (c2h) · · ·EP (cnh) · EQ(dnh)

to approximate the exact time evolution

exp
(
hLH

)
= S(h) +O(hp+1)

r The coefficients can be determined by Baker-Campbell-Hausdorff formula

eAeB = exp(A+B +
1
2
[A,B] + · · ·)

e.g. p = 1 : c1 = d1 = 1 (symplectic Euler)
p = 2 : c1 = c2 = 1/2, d1 = 1 (Leapfrog PQP)

r Leapfrog integrator EP (h/2) · EQ(h) · EP (h/2) is also time-reversible, i.e. satisfies

S(−h) = S−1(h)

r All symplectic integrators have an exactly conserved Hamiltonian, i.e.

∃Kh(p, q) : S(h) = exp
(
hLKh

)
and Kh = H +O(hp)

H. Simma, Theoretical Physics on Supercomputers 29

Integration of ODE

Example: Harmonic Oscillator

h = 0.1

h = 1.0

h = 2.0

H(q, p) =
1
2
(p2 + q2)

Exact solution

EH(h) =
(

cosh sinh
− sinh cosh

)
Generators of individual time-evolution steps

Q(h) =
(

0 h
0 0

)
⇒ ehQ =

(
1 h
0 1

)

P(h) =

(
0 0
−V

′

q h 0

)
⇒ ehP =

(
1 0
−h 1

)
Symplectic Euler Integrator:

ehQ · ehP =
(

1− h2 −h
h 1

)
= EH(h) +O(h2)

Leapfrog Integrator:

e
h
2P · ehQ · eh2P =

(
1− h2/2 h
−h+ h3/4 1− h2/2

)
= EH(h) +O(h3)

N.B.: For h > 2, LF integrator has positive real eigenvalue ⇒ can become instable

H. Simma, Theoretical Physics on Supercomputers 30

Integration of ODE

Multiple Timescales

If Hamiltonian has the form

H(p, q) =
p2

2
+ V1(q) + V2(q)

with

• forces from V1 large (but cheap to compute)

• forces from V2 small (and expensive to compute)

split P = P1 + P2 accordingly

Pi = −V ′
i

∂

∂p

and consider symplectic integrator of the form

S(h, n) =
[
EP1

(
h

2n

)
· EQ

(
h

2n

)]n
· EP2(h) ·

[
EQ
(
h

2n

)
· EP1

(
h

2n

)]n

H. Simma, Theoretical Physics on Supercomputers 31

Example: Classical MD with effective potentials

• Intra-molecular forces:

– stretching

Vs =
∑
bonds

Kb

2
(rb − r0b)2

– bending

Vb =
∑
angles

Ka

2
(θa − θ0a)2

– torsion and non-bond

• Inter-molecular forces: Coulomb or Lennard-Jones

VLJ =
∑
pairs

N∑
i=1

N ′∑
j=1

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

• Multi-time step integration: fast evolution only with Vs + Vb

H. Simma, Theoretical Physics on Supercomputers 32

Classical MD

Computational Cost:

task scaling operations weight∗)

update x or v MNS O(100) 2 %
forces (intra, fast) MNS O(1000) 9 %
forces (intra, slow) MN2 O(1000) 2 %
forces (inter, slow) M2N2P O(2000) 85 %
communication MNP O(10) 1 %

∗) weight in total execution time for M = 64, N = 64, P = 8, S = 8

with

• P = number of processors

• M = number of molecules / P

• N = number of atoms per molecule

• S = number of fast time steps per slow step

Parallelisation Strategies:

r Particle Decomposition: PID = f(i) (→ all-to-all communications)

r Space Decomposition: PID = f(xi) (→ nearest-neighbour communications)

H. Simma, Theoretical Physics on Supercomputers 33

Classical MD

Parallel Computation of long-range Forces

Systolic Algorithm:

r Initialize auxiliary arrays x̂← x and y← f(x,x)

r For k = 1, . . . , P − 1
• move x̂ to next processor in ring (in parallel on each processor)
• compute forces f(x̂,x) and accumulate them in y (in parallel on each processor)

Improvements:

• Avoid redundant force computations

f(xi, xj) = −f(xj, xi)

by moving auxiliary force array
(Half-Orrery Algorithm)

• Avoid redundant communication steps by
storing data which passed
(Hypersystolic Algoritm)

• Exploit all concurrent communication links of
multi-dimensional torus network

H. Simma, Theoretical Physics on Supercomputers 34

Classical MD

Neighbour Lists for Computation of short-range Forces

In multi-particle simulations, like MD or Astrophysics, one may need lists
to keep track of the particles to be taken into account in force computation

r Verlet List:

∀ particles i: Li = {(j, xj) : |xj − xi| < R+ δ}
+ force computation cost N(N∗ − 1)
– update cost O(N2) e.g. each time when ∃∆x > δ/2
– storage O(3N ·N∗)

r Linked Cell List:

Decompose space domain into cells with linear extent R+ δ

∀ cells c: Lc = {j : xj ∈ cell c}
+ force computation only for particles in neighbour cells
+ update O(N) e.g. at each force computation
+ storage O(N)
– inefficient if less than 4 cells in each direction (L < 4R)

H. Simma, Theoretical Physics on Supercomputers 35

Ab initio MD of microscopic systems

Quantum Mechanical Dynamics:

i~
∂

∂t
Φ(RI, ri, t) = HΦ(RI, ri, t)

with

H =
∑
I

TI +
∑
i

Ti + Vn−e(RI, ri)

=
∑
I

TI +He(RI, ri)

Product Ansatz: separation of electronic and nuclear wave functions

Φ(RI, ri, t) ≈ ψ(ri, t) · χ(RI, t) · phase

⇒ time-dependent self-consistent field (TDSCF) method: mean field{
χ(RI, t) : V ∼ 〈ψ|Vn−e|ψ〉 → MD (atoms)
ψ(ri, t) : V ∼ 〈χ|He|χ〉 → QM,DFT (electrons)

H. Simma, Theoretical Physics on Supercomputers 36

Ab initio MD

Strategies for solution of coupled Ion-Electron system

r ∀RI solve electronic structure : Born-Oppenheimer MD
classical MD on global potential energy surface (from time-independent el. structure)
Problem: dimensional bottleneck ∼ 103N−6

→ replace by parametrised effective potential

r ∀t solve both equations on-the-fly: Ehrenfest MD
coupled classical MD + time-dependent electronic structure
Problem: different time scales (1012 steps of 1 fs for 1 ms)

r map both on classical problem: Car-Parrinello MD

L[R,ψ] ∼ µ

2
〈ψ̇|ψ̇〉︸ ︷︷ ︸ +

M

2
Ṙ2
I︸ ︷︷ ︸ − 〈ψ|He|ψ〉︸ ︷︷ ︸ + constraints

Te TI V [RI, ψ]

• conserved energy: Te + TI + V
• physical energy: TI + V
• (fictitious) electronic temperature = thickness of BO surface ∝ Te → 0

H. Simma, Theoretical Physics on Supercomputers 37

Quantum-Mechanical Electronic Structure

Problem: anti-symmetry of many-electron wave functions (Pauli Principle)

Map exact many-body problem with Hamiltonian

H = Te + Vee + Vext

on single-electron problem with suitable approximations to treat anti-symmetry

r Hartree-Fock (HF)

Single Slater determinant (not linear combination)

Ψ(r1, r2, . . . , rN) = det [ψ1(r1) · · ·ψN(rN)]

where each factor (orbital) satisfies single-electron Schrödinger equations with

Hs = −1
2
∇2 +Hee + Vext

and non-local two-electron terms Hee (Coulomb interactions and exchange)

r Configuration Interactions (CI)

Include also correlation effects from linear combinations of Slater determinants

H. Simma, Theoretical Physics on Supercomputers 38

Electronic Structure

Density Functional Theory

Basic Idea: Hohenberg-Kohn Theorems

• ∃ one-to-one mapping between electron density and wavefunction
for GS of many-particle system

• GS density minimizes total electronic energy of system

i.e. electron density that minimizes true energy functional (unknown) describes
all we can know about electronic structure of GS

Vext −→ |ΨGS〉
↖↘ ↓

nGS(r) = |ΨGS|2

Intuitive Argument: “cusp condition” for spherical average 〈n(r)〉

Znucl = − 1
2〈n(0)〉

[
∂〈n(ri)〉
∂ri

]
ri=0

H. Simma, Theoretical Physics on Supercomputers 39

Car Parrinello MD

r Consider density functional of fictitious single-electron system

Es[n] = 〈ψs[n]|(Ts + Vs)|ψs[n]〉

with
Vs = Vions + Vcoulomb[n] + Exc[n]

and a local approximation for exchange energy Exc

r Minimisation by self-consistent solution of Kohn-Sham equations for
orthogonal orbitals (possibly expanded in convenient base)[

−1
2
∇2 + Vs(r)

]
ψi = εi · ψi with n ≡

∑
|ψi|2

r Car-Parrinello evolution:

MI R̈I(t) = − ∂
∂RI

(E + constraints)

µ ψ̈i(t) = − ∂
∂ψ∗

i
(E + constraints)

H. Simma, Theoretical Physics on Supercomputers 40

Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:
q Introduction
q Solution Steps
q Examples of Applications and Methods
q Lattice QCD
q Machines

H. Simma, Theoretical Physics on Supercomputers 1

PDE: Discretisation Techniques

r Finite differences (FD)

DOF = values of solution on mesh points
Ü solve equations from FD approximation of derivatives

• simple to derive and effective
• limited to (block-)structured meshes
• moderate accuracy

r Finite volumes/integrals (FI)

DOF = integrals of solution over mesh links/surfaces
Ü solve equations from integral of PDE on mesh cells (local)

• conservation laws by construction
• arbitrary meshes

r Finite elements (FE)

DOF = basis functions on mesh cells (elements)
Ü solve equations from minimisation of a functional (global)

• very flexible and general
• arbitrary meshes

H. Simma, Theoretical Physics on Supercomputers 2

FD Method

FD approximations:

∂u

∂x
−→ u(x+ h)− u(x)

h
+O(h)

∂2u

(∂x)2
−→ u(x− h)− 2u(x) + u(x+ h)

h2
+O(h2)

Example: Laplace operator with Dirichlet BC

∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · · = 0 (x ∈ D)

u(x) = f(x) (x ∈ ∂D)

yields linear equation system with symmetric matrix:0BBBBBBBBBBBBB@

−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 1 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

1CCCCCCCCCCCCCA

0BBBBBBBBBBBBB@

u11

u12

u13

u21

u22

u23

u31

u32

u33

1CCCCCCCCCCCCCA
=

0BBBBBBBBBBBBB@

f01 + f10

f02

f14 + f03

f20

0

f24

f30 + f41

f42

f43 + f34

1CCCCCCCCCCCCCA

H. Simma, Theoretical Physics on Supercomputers 3

FD Methods for 2nd order quasi-linear PDE

a ∂x∂x u+ b ∂x∂y u+ c ∂y∂y u+ = f(u, ∂x u, ∂y u)

r Elliptic: b2 − 4ac < 0 (e.g. Laplace Equation)

• BV on all boundaries (steady states)
• implicit five-point difference formula

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0
yields linear equation system with symmetric matrix

r Parabolic: b2 − 4ac = 0 (e.g. Heat Equation)

• IV + BV
• explicit solution of recursion

ui,j+1 = (1− 2r)ui,j + r(ui+1,j + ui−1,j)
stable for r ≡ ht/h2

x ≤ 1/2
• implicit methods (Crank-Nichelson)

r Hyperbolic: b2 − 4ac > 0 (e.g. Wave Equation)

• IV for u and ∂tu + BV
• explicit solution of recursion

ui,j+1 = (2− 2r2)ui,j + r2(ui+1,j + ui−1,j)− ui,j−1

stable for r ≡ ht/hx ≤ 1

H. Simma, Theoretical Physics on Supercomputers 4

Krylov Subspace Methods for Iterative Solvers

General Projection Method to solve
Ax = b

• Find approximation xn in subspace x0 +Kn(A, r0) with Krylov-subspace

Kn(A,v) ≡ span{v,Av,A2v, . . . ,Am−1v}

such that residual rn ≡ b−Axn satisfies (Petrov-Galerkin condition)

rn ⊥ Ln

for some other subspace Ln of dimension n, e.g. Ln = Kn, or AKn

• If A symmetric positive definite use L = Kn:

orthogonal projection ⇔ x minizes ‖x− x∗‖A with x∗ = A−1b

• Perform iteration
xk+1 = xk + αk · sk

with αk deterimed by minimisation of f(x) = 1
2(x,Ax)− (x, b) along search directions sk

• xk and sk can be built up such that xk+1 minimises f(x) also over whole space of
previous directions {s1, . . . , sk}

H. Simma, Theoretical Physics on Supercomputers 5

Krylov-Subspace Methods

Illustration in 2 dimensions:

A =
(

2 1
1 1

)
, b =

(
0.1

1

)
, x0 =

(
0
1

)
, x∗ ≡ A−1b =

(
−0.9

1.9

)

Algorithm K L Minimisation Iterations ‖r‖
Steepest Descend K1(rn) K1(rn) ‖x− x∗‖A 43 2.3× 10−6

Minimal Residual K1(rn) K1(Arn) ‖b−Ax‖2 33 2.3× 10−6

Conjugate Gradient Kn(r0) Kn(r0) ‖x− x∗‖A 2 2.1× 10−16

H. Simma, Theoretical Physics on Supercomputers 6

Example: FI Method in Electrodynamics

Mathematical Problem: Maxwell Equations

∂µF
µν = jν or

rotE = −Ḃ
rotH = +Ḋ + Je
div B = 0
div D = ρe

Computational Method: Finite Integration Technique (FI)

• Discretisation on dual grids

G G̃

volumes G = ∪Vi Vi ↔ P̃i
areas Ai = ∩Vi Ai ↔ L̃i
links Li = ∩Ai Li ↔ Ãi
points Pi = ∩Li Pi ↔ Ṽi

• Basic variables:

ei ≡
∫
Li

E · ds bi ≡
∫
Ai

B · dA

electric voltage along links Li magnetic flux through areas Ai

H. Simma, Theoretical Physics on Supercomputers 7

FI Method in Electrodynamics

• matrices of difference operators

S ↔ div
C ↔ rot

exactly preserve algebraic relations, like

SC = S̃C̃ = 0 (div rot = 0)

CS̃T = C̃ST = 0 (rot grad = 0)

• Maxwell Grid Equations

∫
E · ds = −

∫
Ḃ · dA Ce = −ḃ∫

H · ds =
∫

(Ḋ + je) · dA C̃h = ḋ+ ie∫
B · dA = 0 Sb = 0∫
D · dA =

∫
ρdV S̃d = qe

• Can be coupled to dynamics of charges (PIC)

• Time-dependence can be treated in time or frequency domain

• Cost: O(1013) FP operations for 109 grid points

H. Simma, Theoretical Physics on Supercomputers 8

Example: Hydrodynamics

Navier-Stokes Equations

Governing (differential) equations (NSE):

∂ρ
∂t +∇ · (ρv) = 0

∂(ρv)
∂t +∇ · (ρv ⊗ v) = −∇p+∇τ + ρf
∂(ρe)
∂t +∇ · (ρev) = ∇ · (κ∇T) + ρq − p∇ · v +∇v : τ

• variables: ρ, v, e = E − |v|2/2, p, τ , T

Constitutive (algebraic) relations:

• Newtonian stress tensor: τ = τ(v, µ)

• Thermodynamic: p = ρRT and E = cvT ⇒ p, T

Simplification for incompressible flows: (ρ = const, µ = const)

∇ · v = 0
∂v
∂t + v · ∇v = −∇p̃+ ν∆v + f

with kinematic viscosity ν = µ/ρ

H. Simma, Theoretical Physics on Supercomputers 9

Example: Hydrodynamics from LBE

• simplest microscopic (particle, kinetic) approach to model macroscopic dynamics

• can be derived from Boltzmann equation

• yields Navier-Stokes equations (long wavelength and low frequencies)

• discrete coordinates and velocities

fi(x + ei, t+ ∆t) = fi(x, t) + Ωi[f(x, t)]

with particle velocity distribution fi along directions i = 1, . . . , q

Bhatnagar-Gross-Krook (BGK) collision operator

fi(x + ei, t+ ∆t) = fi(x, t)−
fi − f (eq)

i

τ

Macroscopic quantities:

ρ =
∑
i

fi , ρv =
∑
i

fiei ,

H. Simma, Theoretical Physics on Supercomputers 10

Implementation: two-step update

(1) collision step:

f̃i(x, t) = (1− ω) · fi(x, t) + ω · f (eq)
i

(2) streaming (displace, diffuse) step:

fi(x + ei, t+ ∆t) = f̃i(x, t)

Properties:

• O(200. . . 400) Flop in step (1)
Ü 1014 Flop for 10000 steps on 2563 mesh

• intrinsically parallel

• may need temporal and spatial averaging (to eliminate noise)

• needs comparable or finer mesh resolution than Navier-Stokes solvers

• can easily incorporate complex boundary conditions (e.g. porous materials)

H. Simma, Theoretical Physics on Supercomputers 11

Stochastic Methods

Stochastic methods are required for physical or numerical problems if

r basic numerical problem is too difficult for direct methods
e.g. complicated phase-space integration

r deterministic physical system is very complex and only stochastic description is practical
e.g. partition function in statistical physics

Z(β, p) ∼
∑
states

e−βH(s,p)

r theory of physical system has an intrinsical stochastic nature
e.g. path-integral in (eucidean) quantum field theory

Z(J) ∼
∫
fields

e−S(φ,J)Dφ

H. Simma, Theoretical Physics on Supercomputers 12

Stochastic Methods

Stochastic Integration

Basic computational task is an integral

I =
∫
D
f(x) dnx

which may have

• high dimension of integration domain, e.g. n = O(108)

• irregular integration domain D

• irregular behaviour of integrand f(x)

Sochastic integration exploits interpretation of I as a measurement on a stochastic system

I ∼ 1
N

N∑
i=1

f(xi) +

{
O

(
1/Nm/d

)
xi ∈ regular grid

O
(
1/
√
N

)
xi ∈ stochastic choice

Ü numerical simulation of stochastic system
(stochastic simulation, Monte Carlo simulation)

Ü stochastic analysis of measured data from (numerical) experiment

H. Simma, Theoretical Physics on Supercomputers 13

Stochastic Methods

Probability Theory

Given a probability density function (PDF)

ρ : Ω −→ R+ with
∫
ρ(x) dx = 1

one can compute exact (analytic) expectation values

E[f] ≡ 〈f〉 :=
∫

Ω

f(x) ρ(x) dx

of arbitrary functions
f : Ω −→ V

Examples:

• mean value of the PDF: E[x] =: µ (f(x) = x)

• variance of the PDF: E[(x− µ)2] = E[x2]− µ2 =: σ2 (f(x) = (x− µ)2)

• probability of a specific value: E[δ(x− ξ)] = ρ(ξ) (f(x) = δ(x− ξ))

• cumulants of f
C1 = E[f]
C2 = E[(f − C1)2]

· · ·

H. Simma, Theoretical Physics on Supercomputers 14

Stochastic Methods

Stochastic Samples

Independent measurements of a stochastic system (described by the PDF ρ)
provide a sample of uncorrelated values

ρ −→ ξ1

ρ −→ ξ2

· · ·
ρ −→ ξN

Sample is described by the PDF

ρN
(
ξ1, ξ2, . . . , ξN

)
= ρ(ξ1) · ρ(ξ2) · · · ρ(ξN)

r Expectation values are predictions for primary observables of measurements

r Sample averages

f ≡ 1
N

N∑
i=1

f(ξi)

are estimators for the expectation values of primary observables

r Functions of the expectation values are called secondary observables

H. Simma, Theoretical Physics on Supercomputers 15

Stochastic Methods

Correlated Samples

In practice, it is often too expensive to generate an uncorrelated sample!

Instead, one uses a stochastic process to generates a correlated sample

ρ1
P−→ ρ2

P−→ · · · P−→ ρN

↓ ↓ ↓
ξ1 ξ2 ξN

according to a joint PDF
ρN

(
ξ1, ξ2, . . . , ξN

)
with determines the autocorrelation function

Γij ≡ E
[
(xi − E[xi])(xj − E[xj])

]
For a Markov Process, the PDF for successive elements of the ensemble (Markov Chain)
is defined by a stochastic mapping between PDFs on Ω

P : ρn 7→ ρn+1

N.B.: By restarting the process several times, one may generate a (small) uncorrelated
sample of ensambles (but with the elements within each ensemble being correlated)

H. Simma, Theoretical Physics on Supercomputers 16

Markov Processes

The stochastic mapping of a Markov chain can be written as

ρn+1(y) =
∫

Ω

P (y ← x) · ρn(x) dx

with
P (x← y) ≥ 0 (∀x, y)∫

P (y ← x) dy = 1 (∀x)

To use the Markov Process for Monte Carlo simulation of a system with PDF ρ∗ we want:

• ρ∗ to be the unique fixed point of the process

Pρ∗ = ρ∗

• convergence from an arbitrary start distribution ρ1 to the fixed point distribution

lim
n→∞

Pnρ1 = ρ∗

Sufficient, but not necessary condition:

• strong ergodicity
P (y ← x) > 0 (∀x, y)

• detailed balance
P (y ← x) · ρ∗(x) = P (x← y) · ρ∗(y) (∀x, y)

H. Simma, Theoretical Physics on Supercomputers 17

Markov Processes

Examples

If Ω is finite (not only finite dimensional):

r ρi ≡ ρ(i) is a stochastic vector, i.e. ρi ≥ 0 and
∑
i ρi = 1

r Pfi ≡ P (f ← i) is a stochastic matrix, i.e. Pfi ≥ 0 and
∑
f Pfi = 1

N.B.: Every stochastic matrix has at least one fixed point

Stochastic matrices with detailed balance:

• Non-ergodic process: P 2n = 1 6= P 2n+1 = P (∀n)

P =

0@ 1 0 0

0 0 1

0 1 0

1A ρ
∗
=

0@ 1

0

0

1A ,

0@ 0

1/2

1/2

1A
• Heatbath-like process: Pfi = ρ∗f (∀i) ⇒ P 2 = P and Pnρ1 = ρ∗ (∀n ≥ 1,∀ρ1)

P =

0@ α α α

1−α 1−α 1−α
0 0 0

1A ρ
∗
=

0@ α

1−α
0

1A
but strong ergodicity condition is not satisfied if ∃f : ρ∗f = 0

• Metropolis-like process:

Pfi =

8<: min
“
1,

ρ∗f
ρ∗
i

”
(f 6= i)

1−
P

j 6=f Pji (f = i)

H. Simma, Theoretical Physics on Supercomputers 18

Markov Processes

Implementation

Generate sequence of states x ∈ Ω (rather than probability distributions ρ on Ω)
by a stochastic update process

U : xn −→ xn+1

with transition probabilities P (xn+1 ← xn) of the Markov chain

Example: Metropolis Update

(1) Proposal Step: Generate a new (trial-) state with probability

PS(f ← i)

(2) Metropolis Step: Accept new state with probability

PA(f ← i) = min
(
1,
ρ∗f · PS(i← f)
ρ∗i · PS(f ← i)

)
e.g. by comparing PA with a (pseudo-)random number r ∈ [0, 1]

Remarks:

• Transition probability of process is PS(f ← i) · PA(f ← i)

• Process satisfies detailed balance

• Metropolis-step simplifies for symmetric (e.g. flat) proposal, i.e. PS(f ← i) = PS(i← f)

• In case of rejected update, xi is kept in sample more than once

H. Simma, Theoretical Physics on Supercomputers 19

Stochastic Methods

Integration (cont.)

r Integration with a normalised (stochastic) measure ρ(x) is an expextation value
and can be estimated by the mean over a sample S with distribution ρ (e.g. flat)

I ≡
∫
f(x) ρ(x) dx = E[f] ≈ 1

N

∑
xi∈S

f(xi)

r Can choose different distributions to improve measurement on S: importance sampling

I =
∫
f(x) dx = Z[1] ·

∫
f(x) · dx

Z[1]
= Z[g] ·

∫
f(x)
g(x)

· g(x)
Z[g]

dx

with normalisation factors

Z[g] ≡
∫
D
g(x) dx

r Ratios of integrals do not depend on pre-factor Z

r Sample from Markov chain does not depend on normalisation factor 1/Z

r However, Z is needed to obtain absolute value of the integral
and must be determined by other method (e.g. analytical or hit-and-miss)

H. Simma, Theoretical Physics on Supercomputers 20

Stochastic Methods

Example: Integration with Importance Sampling

Consider a strongly peaked integrand

f(x) = (1 + β · x) · e−α·x

r Flat sample: ρ ∼ 1
• bad sampling (noisy, many small contributions to mean)
• cheap generation of sample

r Importance sampling: ρ ≈ f
• good importance sampling (small variance of mean)
• expensive generation of sample (small acceptance in Metropolis or slow Heatbath)

r Not a clever choice: ρ = f

• exact mean: 1
N

∑
1 = 1

• expensive generation of sample if needed for integral of other functions
• computation of Z is original integral

H. Simma, Theoretical Physics on Supercomputers 21

Lattice QCD

QCD = Relativistic Quantum Field Theory of Strong Interactions
↓ ↓

4-d space-time non-perturbative

LQCD(g0,m
(f)
0) =

1
4
GµνGµν +

Nf∑
f=1

ψ(i 6D −m(f)
0)ψ

Parameters: 1 gauge coupling + Nf quark masses

Experiment︷ ︸︸ ︷
Fπ
mπ

mK

mD

mB

(
LQCD(g0,m0)

=⇒

)
parameters (RGI)︷ ︸︸ ︷

ΛQCD

M̂ = (Mu +Md)/2
Ms

Mc

Mb

 +

Predictions︷ ︸︸ ︷
ξ
FB
BB
...

H. Simma, Theoretical Physics on Supercomputers 22

Lattice QCD

Physics Challenges

r Verify or falsify QCD at low energies

r Determine fundamental parameters

r Compute basic hadron properties
(spectroscopy, hadronic matrix elements)

r Make contact with Chiral Perturbation Theory (ChPT)

r Study exotic forms of matter
(quark-gluon plasma)

r . . .

H. Simma, Theoretical Physics on Supercomputers 23

Lattice QCD

Euclidean n-point functions:

〈φ(x) . . . φ(0)〉 := 〈0|φ(xM) . . . φ(0)|0〉
∣∣∣
x0=−ixM0

(xM0 > 0)

Path Integral Quantisation:

〈
φ1(x1) . . . φn(xn)

〉
∼

∫
φ1(x1) . . . φn(xn) · e−S[U,ψ,ψ] D[ψ]D[ψ] D[U]

well-defined (only) if space-time is discrete and finite

Ü 4-dimensional lattice: V = L3 × T = O(106 · · · 107)

Ü integration space has finite number of dimensions: d ∼ V

stochastic here
integration

i ←→ x sites
xi ←→ U,ψ fields
ρ ←→ e−S action
f ←→ O observables

H. Simma, Theoretical Physics on Supercomputers 24

Lattice QCD

Lattice Action

LQCD(g0,m
(u)
0 , . . .) = 1

4GµνGµν +
Nf∑
f=1

ψ(i 6D −m(f)
0)ψ

↓ ↓ ↓
Slat = Sg(U)︸ ︷︷ ︸ + Sf(U,ψ)︸ ︷︷ ︸ + O(a)

plaquettes ψM(U)ψ

β ≡ 6/g2
0 κ ≡ 2/(m0 + 8)

Dynamical Fermions (Nf = 2)

∫
e−S(U,ψ) D[ψ] ∼ e−Sg(U) · detM(U) ∼ e−Sg(U) ·

∫
D[φ] e−φ̄(M†M)−1φ

quenched ↓
fermionic ψ const bosonic φ

H. Simma, Theoretical Physics on Supercomputers 25

Lattice QCD

Wilson-Dirac Operator:

[Mφ]x ∼ φx − κ
±4∑

µ=±1

Uµ,x ⊗ (1− γµ) · φx+µ̂ + O(a)

Ü 1320 floating-point operations per lattice site

Alternative Fermion Actions:

Action Properties Truncation Erros CPU Cost
action operators

Staggered 1/4 non locality O(a2) “taste” mixing low

Wilson χ recoverable O(a) O(a) moderate

Clover χ recoverable O(a2) O(a) moderate

Twisted χ recoverable O(a) O(a2) moderate

Domain-Wall χ for L5 →∞ O(a) O(a) high

Overlap χ exact O(a2) O(a2) very high

O(1)

↓
O(10)
↓

O(1000)

H. Simma, Theoretical Physics on Supercomputers 26

Lattice QCD

Monte Carlo Simulation

• Generate sample of gauge configurations U from ensemble with distribution

ρ(U) ∼ e−Sg(U)−Sf(U)

• Estimate observables from ensemble average

〈O〉 → 1
N

∑
U

O[U] + O(N−1/2)

Algorithms for Gauge Updates (quenched):

• overrelaxation Ü fast decorrelation

• heatbath Ü ergodicity

Measurement of observables is dominant computational cost (inversion of M)

H. Simma, Theoretical Physics on Supercomputers 27

Lattice QCD

Fermion Algorithms

Hybrid Monte-Carlo:

Consider (classical) Hamiltonian

H =
1
2
π2 + Sg(U) + φ ·

[
M†(U)M(U)

]−1

· φ

• Generate gaussian η and set φ = M−1η

• Generate gaussian conjugate momenta π of U fields

• Molecular-Dynamics evolution of (U, π) reversibility

– possibly useing multiple step-size (in Monte Carlo time)
– each forces computation requires inversion(s) of M

• Metropolis accept/reject with probability acceptance

max(1, e−∆H)

H. Simma, Theoretical Physics on Supercomputers 28

Lattice QCD

Domain Decomposition / Schwarz Alternating Procedure

Decompose lattice into regular grid of equal blocks Ωi

To solve
Mφ = η

repeatedly update fields on each block Ωi by solving

Mφ(k+1) = η(x) (x ∈ Ωi)
φ(k+1) = φk (x 6∈ Ωi)

• update can be performed in parallel on all blocks with same checkerboard colour

• procedure is a Neumann series, which converges (slowly) to full solution M−1η

• use as preconditioner for suitable Krylov-space solver

Simulation Cost: (for 100 statistically independent configurations with DD-HMC)

cost ∼ 0.05 Tflops× year
(

L

3 fm

)5 (
0.1 fm
a

)6 (
mq

20 MeV

)1

H. Simma, Theoretical Physics on Supercomputers 29

Lattice QCD

Measurement of Observables

• Consider local products of operators with suitable quantum numbers
e.g. pion

P (x) = φ(x)γ5φ(x)

• Interpretation of correlation functions by Transfer Matrix formalism

〈P (x)P (y)〉 ∼ e−(x0−y0)·mπ + aπ′ · e−(x0−y0)·mπ′

(no rotation back to Minkowski space required)

• Suppression of excited states requires large time-extent (x0 − y0 →∞)

Nf = 2

[ETMC]

Nf = 2 + 1
mπ = 296 MeV
[Kuramashi, PACS-CS]

H. Simma, Theoretical Physics on Supercomputers 30

Lattice QCD

Extrapolation to Physical Limits

8 Continuum Limit: a −→ 0
discretisation effects

8 Thermodynamic Limit: V −→∞
finite size effects and excited states

8 Chiral Limit: mq −→ 0
chiral symmetry breaking: 〈ψψ〉 6= 0

stability:

mq >
3a

Z
√
V

8 Heavy Quarks: a . mB

H. Simma, Theoretical Physics on Supercomputers 31

Lattice QCD

Energy Scales

a−1 � µPT � mH � L−1

(0.08 fm)−1 O(10) GeV 4.5 . . . 0.14 GeV (2 fm)−1

H. Simma, Theoretical Physics on Supercomputers 32

Lattice QCD

Renormalisation

r At high energies: PT and MS

Φ(q, r) = C0(q, r) + C1(q, r, µ) · αMS(µ) + C2(q, r, µ) · α2
MS

(µ) + · · ·

• complicated but automatised computation (algebraic and numerical)

• αMS(µ) ≡ g2
MS

/4π depends on Φ, choice of µ ≈ q, and order of PT

• mMS(µ) may require additional assumptions (e.g. QCD sum rules)

• unique procedure (also for composite operators)

r At low energies: LQCD with Hadronic Scheme

mexp
H = lim

a→0

(amH)
a(g0)

• depends on choice of mH

• need to compute Nf ratios mH′/mH

and kept them fixed at physical values for a −→ 0
• different choices of non-perturbative renormalisation conditions

with ambiguities from discretisation effects

H. Simma, Theoretical Physics on Supercomputers 33

Lattice QCD

Renormalization Group and Λ-Parameter

RGE for mass-independent scheme: g ≡ g(µ)

µ
∂g

∂µ
= β(g)

ḡ→0∼ −ḡ3
{
b0 + b1ḡ

2 + b2ḡ
4 + . . .

}
• exact equation for “integration constant” Λ

Λ = µ (b0g
2
)
−b1/2b

2
0e
−1/2b0g

2
exp

(
−

Z g

0

dg

»
1

β(g)
+

1

b0g3
−

b1

b20g

–)

• trivial scheme dependence

αa = αb + cabα
2
b +O(α3

b) ⇒ Λa/Λb = ecab/(4πb0)

• use a suitable physical coupling (scheme) and non-perturbative β(g)

H. Simma, Theoretical Physics on Supercomputers 34

Lattice QCD

Connecting Hadronic and High-Energy Physics

e.g. using Schrödinger functional to

• define and compute NP renormalisation and running

• implement and test Symanzik improvement

• perform reliable continuum limit

• verify that systematic errors are under control

H. Simma, Theoretical Physics on Supercomputers 35

Lattice QCD

Definition of Schrödinger Functional

time

space
(LxLxL box with periodic b.c.)

L

0

C’

C

• finite physical volume L4, T = L

• Dirichlet b.c. C(η), C ′(η) at x0 = 0, T

• periodic b.c. in space (up to phase θ)

ZSF (C,C ′) = e−Γ(η) =
∫

fields

e−S(η)

• renormalised coupling

∂Γ(η)
∂η

∣∣∣∣
η=0

≡ k

g2
SF (L)

• mass-independent scheme

mPCAC = 0

• renormalisation scale

µ = 1/L

H. Simma, Theoretical Physics on Supercomputers 36

Lattice QCD

Step Scaling Function (SSF)

• “discrete” β-function
σ(g2(L)) ≡ g2(2L)

• determines NP running
uk = g2

(
Lmax/2k

)
l

u0 = g2
(
Lmax

)
• computation on the lattice

Σ(u, a/L) = σ(u) +O(a/L)

u=0.9793
u=1.1814

u=1.5031

u=1.7319

u=2.0142

u=2.4792

u=3.3340

LPHAA
Collaboration

H. Simma, Theoretical Physics on Supercomputers 37

Lattice QCD

Conversion of SSF to Beta Function

by solving (with parametrized SSF)

−2ln2 =
∫ σ(u)

u

dx√
xβ(
√
x)

• clear effect of Nf

• strong deviation from 3-loop PT for αSF ≥ 0.25

• without indication from within PT

H. Simma, Theoretical Physics on Supercomputers 38

Lattice QCD

Running of αs

Nf = 2, NP + PT, SF scheme

error bars smaller than symbol size

Experiment + PT, MS scheme

Bethke 2000

H. Simma, Theoretical Physics on Supercomputers 39

Lattice QCD

Example: Charm Quark Mass (Nf = 0)

• large mass renders O(a) improvement essential

• different definitions of m
(c)
0 differ by O(a2m2

c) errors

• difficult continuum extrapolation

H. Simma, Theoretical Physics on Supercomputers 40

Lattice QCD

Example: Hadronic Matrix Elements (semi-leptonic)

E.g.
dΓ(B → π`ν̄)

dq2
∼ |Vub|2 · |M(q2)|2

with q ≡ pK − pπ
0 ≤ q2/m2

K = 1− 2
Eπ
mK
≤ 1

requires HME

M(q2) = 〈π(pπ)|Vµ|K(pK)〉 = f+(q2) · (pK + pπ)µ + · · ·

Kinematical range with best experimental sensitivity at low q2 (phase space) is not
accessible by LQCD calculations

H. Simma, Theoretical Physics on Supercomputers 41

Lattice QCD

Example: Hadronic Matrix Elements K → ππ

Aim:

] ∆I = 1/2 rule

] ε′/ε ↔ direct CP violation

Problems:

8 Complicated mixings in renormalisation of ∆S = 2 four-fermi operators

8 HME with 2-hadron final states has FSI (strong phases)
but only average of in and out states can be determined in Euclidian space

8 Contribution of intermediate c̄c states?

Strategies:

r Compute HME for K → 0, K → π (K → ππ) at unphysical kinematics
↓

determine low energy constants of ChPT at LO (NLO)

r Compute in finite volume HME for K → ππ
l

related to infinite volume HME by (elastic) ππ scattering phase shifts in finite volume

H. Simma, Theoretical Physics on Supercomputers 42

Theoretical Physics on Supercomputers

Hubert Simma

Università Milano Bicocca

Plan:
q Introduction
q Solution Steps
q Examples of Applications and Methods
q Lattice QCD
q Machines

H. Simma, Theoretical Physics on Supercomputers 1

Computational Tasks of LQCD

Run-time Profile:

useful (if not yet known from theoretical analysis) to determine

• algorithmic cost (how often is each computational tasks needed)

• CPU cost (how much time is spent for each computational tasks)

1 HMC trajectory, 243 × 32 lattice

routine calls time

Dirac operator (3 variants) 80844 58 %

Linear algebra (3 routines) 60736 26 %

Gauge forces + update 320 8 %

Global sum (4× 8× 8 nodes, 128 bit) 83554 0.4 %

Others (≈ 70 routines) 7 %

Ü Dominant Task: Wilson-Dirac Operator

φ′ ≡ [Dφ]x =
4∑

µ=1

{U(x, µ)(1− γµ)φ(x+ µ̂) + · · ·}

H. Simma, Theoretical Physics on Supercomputers 2

LQCD on Parallel Computers

Data Storage:

ψ(x): 12 complex/site

U(x, µ): 9 complex/link

Lattice size V = L3 × T
e.g. 643 × 128 ⇒ 3 · 107 sites (10 GB for gauge field U)

Processor grid: P0 × P1 × P2 × P3 = P

Ü Trivial parallelisation by data distribution (uniform, static)

Communications:

• mainly nearest neighbour

• bandwidth requirements depends on implementation, algorithm, and physics choices

Number of remote neighbour sites (i.e. on different processor):

A+ =
V

P

∑
i

1
Li

(Pi > 1)

H. Simma, Theoretical Physics on Supercomputers 3

Analysis of Computational Tasks

Total Computing Cost

Nops ≡ # FP operations = 1320

Computing vs. Memory Access

Rops ≡
arithmetic operations

memory accessess
≈ 7

Communication Requirement

Rrem ≡ # remote accesses
memory accessess

∼ A+/V

H. Simma, Theoretical Physics on Supercomputers 4

Hardware Characteristics

Memory System

ρmem ≡ flops
bandwidth

[flop/byte]

Communication Network

ρnet ≡
network bandwidth
memory bandwidth

Balance: Application vs. Hardware

Rops ≈ ρmem and Rrem ≈ ρnet

N.B.: Depending on (and to be taken into account in) various steps of the solution process

H. Simma, Theoretical Physics on Supercomputers 5

Example: APE Machines

History:

• mid 80’s: APE1 idea for “Array Processor Experiment”
by theoretical physicists at INFN

→ 1 GFlops APE1 prototypes

• 1989–1994: APE100 full-custom development by INFN
→ O(200) GFlops installations (Quadrics)

• 1995–2000: APEmille development by INFN (+DESY)

→ O(2) Tflops installations (Eurotech) CP-PACS/Hitachi

QCDSP/Columbia

• 2001–2006: apeNEXT collaboration by INFN, DESY, Orsay
→ O(15) Tflops installations (Eurotech) QCDOC/Columbia

BlueGene/IBM

APE has provided major computing resources for LQCD in Europe

H. Simma, Theoretical Physics on Supercomputers 6

Optimization of APE Architectures for LQCD

• 3D torus network

• slow clock, but many FP operations (complex) per cycle
⇒ low power consumption

• integrated memory and communication interface
⇒ compact design

• Very Long Instruction Word (VLIW) architecture
⇒ optimized scheduling at compile-time

• large register file instead of cache
⇒ predictable and synchronous execution

• global syncronisation (mechanisms)

• RAS (ECC, status registers, . . .)
⇒ duration of single program execution O(days)

• SIMD programming model + communications by address mapping

H. Simma, Theoretical Physics on Supercomputers 7

APE1 — APE100 — APEmille — apeNEXT

H. Simma, Theoretical Physics on Supercomputers 8

Example: BlueGene/L and P

Characteristics: [QCDOC]

• PowerPC 440 core @ 850 MHz [500 MHz]

• MIMD distributed memory

• on-chip L1, L2, L3 caches (8 MB) [4 MB]

Node:

• 4 cores [1 core]

• 2 GB DDR

• 3-d torus network (6 links at 425 MB/s = 0.5 B/clock) [6-d at 65 MB/s]

• tree network (850 MB/s)

H. Simma, Theoretical Physics on Supercomputers 9

BlueGene/P

H. Simma, Theoretical Physics on Supercomputers 10

BlueGene/P

System

H. Simma, Theoretical Physics on Supercomputers 11

Example: Cell / QPACE

• Idea: Combine enhanced Cell BE (PowerXCell 8i) with APE-like torus network

– 200 GFlop/s single precision (peak)
– 100 GFlop/s double precision (peak)
– DDR2 memory controller
– ∼ 25% sustained performance (performance model)

• Collaboration between academic partners (Uni Regensburg, Jülich, DESY, Milano,
Ferrara) and IBM Research Lab Böblingen

• Funded as part of SFB/TR-55 by Deutsche Forschungsgemeinschaft (DFG)

• Design work started ≈ Jan 2008

• Running Board Jul 2008

• Production of 2048-node machine early 2009

H. Simma, Theoretical Physics on Supercomputers 12

Cell/QPACE

SPE:

• In-order execution

• 4 MulAdd/clk = 25.6 Gflops (SP)

• Local Store (LS) 256 k

• Data transport memory↔ LS can
(and must) be controlled by SW

H. Simma, Theoretical Physics on Supercomputers 13

Cell/QPACE

Network
PHYs

PowerXCell 8i
Processor

Network
Processor

(FPGA)Memory

H. Simma, Theoretical Physics on Supercomputers 14

Example: GRAPE

History:
1989 Idea by physicists at Tokyo University to implement N-body computation in HW

GRAPE-1 prototype

1991 GRAPE-1A, GRAPE-2

discrete commercial chips, 40 MFlops

1993 GRAPE-3

first custom LSI chip

1996 MD-GRAPE

1997 GRAPE-4

19 flop/3 × 32 MHz = 203 Mflops

2000 GRAPE-5

2001 Gordon Bell Prize for GRAPE-6 prototype

2003 GRAPE-6

6 pipelines × 57 flop × 90 MHz = 30 Gflops

2005 MD-GRAPE-3

20 pipelines × 36 flop × 250 MHz = 180 Gflops

N.B.: Odd series have low accuracy, even series have high accuracy

H. Simma, Theoretical Physics on Supercomputers 15

GRAPE-6

• Pipeline = 60 arithmetic units

• FPGA = 6 pipelines

• PCI module (123 Gflops) = 4 chips + FPGA + SRAM

• Mother board (1 Tflops) = 8 modules

• Full system (64 Tflops) = 64 mother boards

H. Simma, Theoretical Physics on Supercomputers 16

Example: IANUS

History:

• 1991: RTN with transputers (Zaragoza)

• 2000: SUE “Spin Update Engine” with FPGA (Zaragoza)
→ 217 ps/update on full machine

• 2006: IANUS “Spin Update Engine” with FPGA (Zaragoza + Ferrara)
→ 1 ps/update on one PB

Architecture:

• FPGA (62.5 MHz)

– 512 update engines (RNG+LUT)
– on-chip memory
– links for 2-d network

• PB = 16 FPGA (4× 4)

H. Simma, Theoretical Physics on Supercomputers 17

IANUS

Simulations of Edward-Anderson Spin Glas

H = −
∑
〈i,j〉

Jij · xi · xj (Jij = ±1 random)

allows 1011 MC steps on L3 = 803 with ∆t = 10−12 sec → 0.1 sec

H. Simma, Theoretical Physics on Supercomputers 18

Comparison of Machines used for LQCD

unit apeNEXT BG/P Cell PC
2006 2008 2009 2009

Arithmetics
fclk [GHz] 0.13 0.85 3.2 2.8
FP word [bits] 64 64 64 (32) 64 (32)
FP/core [flop/clk] 8 4 4 2× 2
core/chip 1 4 8 4
FP/chip [Gflops] 1 13.6 100 50
power (overall) [W/Gflops] 9 3 1.5 2.5
Cache — L3 LS L3
size [word] — 1 M 8× 32 K 1 M
Memory
bandwidth [word/flop] 1/4 1/8 1/32 1/12.5
latency [clk] ≈ 20 ≥ 30 ≥ 200 ≥ 100
Network 3d 3d + tree 3d —
bandwidth [word/flop] 1/24 1/64 < 1/16 —
latency [clk] ≈ 40 ≈ 700 ≈ 3000 —

H. Simma, Theoretical Physics on Supercomputers 19

Simplified Hardware Model

Distinction between devices/units for:

r control (of data and program flow)

r storage of data (and code)

• memory
• cache(s)
• registers
• internal buffers, fifos, flip-flops, ...

σx = storage size

r processing/transport of data

• arithmetic pipelines
• storage access (hopefully pipelined)
• combinatorical logics
• buses?

βxy = bandwidth (data throughput/time)
λxy = latency (delay between input and first output)
ISA = instruction set architecture

H. Simma, Theoretical Physics on Supercomputers 20

Implementation of Computational Tasks

Three inter-related problems:

(1) translation of the computational task into hardware operations

(2) allocation of the hardware resources for data storage and transport

(3) scheduling of the operations

N.B.: (2) and (3) are NP-hard

. . . need to be tackled at various abstraction levels:

• development or selection of algorithm

• development of a high-level code

• code generation by the compiler
(code selection, register allocation, and instruction scheduling)

• out-of-order execution by hardware (micro-instructions)

DAG of computational task:

• vertices: operations

• edges: variables

↔

↔

Model of hardware architecture:

• edges: transport devices

• vertices: storage devices

H. Simma, Theoretical Physics on Supercomputers 21

