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General introduction
• So far, the SM of EP appears to work extremely well (see 
MM’s lectures) at least at scales below 100 GeV

• CGR also works very well in a vast range of scales (see TD’s 
lectures)
• There are problems with GR at very short scales 
(singularities) and possibly also at very large scales (dark 
energy) 

• CGR is bound to fail in extreme-curvature regimes
•Wide-spread belief that a consistent theory of QG may avoid 
the short-distance problems of CGR (BTW: having a consistent 
theory of QG is not just a theoretical luxury if LSS does 
originate from primordial quantum fluctuations)



• When appied to GR, QM appears to bring new problems 
instead of new solutions (UV divergences, information 
paradox, a huge cosmological constant).
• Although a serious candidate for a quantum theory of 
gravity does exists, ST, we still lack a full understanding of 
how it provides answers to the abovementioned questions 
• QG today reminds us (me?) of the early days of QM about a 
century ago: trying to learn its basic rules and to extract its 
physical consequences
•A century ago much progress was made (both in QM and in 
R) by considering gedanken experiments. Will history repeat 
itself?
• This is the question I will try to adress in the context of 
superstring theory, using QM and SR, but without appealing to 
any GR prejudice: 
•Class. and Quant. Gravity not an input, hopefully an output!



TPE collisions as a GE
   Trans-Planckian-Energy (TPE => E >> MP, or Gs/h >> 1) 
collisions represent a very rich theoretical laboratory for 
addressing the physics of Black Holes (BH).

The need for TPE comes from our wish to understand the 
physics of semiclassical -rather than Planck size- BH’s

There are many classical results on whether and how 
smooth initial data can either lead to black-hole formation 
or to a completely dispersed final state (Christodoulou & 
Kleinermann, Christodoulou..., Choptuik,... CTS criteria, ... 
Christodoulou ‘08)
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Figure 1: Phase space picture of the critical gravitational collapse.

Space-times with CSS are very interesting from various points of view (see [11] for a com-

prehensive rewiew). Although DSS is a remarkable phenomenon in gravity, it seems to be a

disadvantage when trying to establish a holographic correspondence with the Regge region in

QCD, where no echo behavior is to be found. However, the so-called leading (log s)-behavior

of the amplitudes does indeed show scale invariance (see Section 4). This is a fundamental

reason to abandon the construction of the holographic map using collapsing massless scalar

fields and to use instead a system where the critical solution exhibits scale invariance. The

archetypical system of this kind is the spherical collapse of a perfect fluid.

One of the main (technical) difficulties in the original computation of the Choptuik exponent

[9] is that it requires a very involved numerical solution of the Einstein equations. In [10, 12]

an alternative procedure to compute γ was proposed based on a renormalization group analysis

of critical gravitational collapse. In this picture, the surface p = p∗ represents a critical surface

in the space of solutions separating the basins of attraction of two fixed points, corresponding

respectively to Minkowski and the black hole space-times (see Fig. 1). The critical solution

with DSS or CSS has a single unstable direction normal to the critical surface.

In this approach, the critical solution is characterized by having a single growing mode for

perturbations around it. We can characterize it by the corresponding Lyapunov exponent. If
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In general, one expects to find a critical hypersurface 
Scr(Cl) (in the parameter space P(Cl) of the initial state) 
separating the two phases 

The approach to criticality looks like that of phase 
transitions in Stat. Mech. (order of transition, crit. exp’s,..) 
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R ≥ k −O(δ) (provided R > 0)

If M(θ,φ, δ) =
∫ δ

0
dv

dM(v, φ, δ)
dv dcosθ dφ

≥ k

8π
for all θ,φ

v=0
v=δ

then a CTS forms with 

incoming energy (G=1) per unit 
advanced time & solid angle 

?



At the quantum level we can prepare pure initial states 
that correspond, roughly, to the classical data. They 
define a parameter space P(Q). We may ask:
• Is there a unitary S-matrix (unitary evolution operator) 

describing the evolution of the system?
• If yes, does such an S-matrix develop singularities as 

one approaches a critical surface Scr(Q) in P(Q)?
• If yes, what happens in the vicinity of this critical 

surface? Does the nature of the final state change as 
one goes through it? Is there any connection between   
Scr(Cl) and Scr(Q)? 

• What happens to the final state deep inside the BH 
region? Does it resemble at all Hawking’s thermal 
spectrum for each initial pure state?



A phenomenological motivation?
(from gedanken to real experiments!)

Finding signatures of string/quantum gravity @ LHC:
 In KK models with large extra dimensions;
 In brane-world scenarios; in general:
 If the true Quantum Gravity scale is O(few TeV)

NB: In the most optimistic situation the LHC will be very 
marginal for producing BH, let alone semiclassical ones

Q: Can there be some precursors of BH behaviour even below 
the expected production threshold? 



1st talk (12/09)

•  3 scales & 3 regimes in TPE string collisions
•  The small-angle regime
•Leading eikonal
•Tidal excitations
•s-channel production of heavy strings

•  The “stringy” regime and precocious BH behaviour

Outine of the two talks



2nd talk (13/09)

• Classical corrections in the large-angle regime
• Identification of the relevant diagrams
• Resumming classical corrections via an eff. action
• The axisymmetric case: critical lines and comparison 

with CTS criteria
•Two-body scattering at b ≠ 0: critical point
• Graviton spectra below and near criticality 
• What happens above criticality?

• Summary and outlook



Part 1



Classical expectations
based on the construction of 

Closed Trapped Surfaces 
in two-body scattering

(DC’s criterion not so useful for this problem)



CTS (sufficiency) criteria => bounds
 Point-particle collisions:
1. b=0: Penrose (‘74) :

D’Eath & Payne (‘92), Pretorius (’08):
2. b≠0: Eardley and Giddings, gr-qc/0201034, Yoshino & 

Nambu, hep-th/0209003: one example:

 Extended sources: 
• Yurtsever (‘88) gave arguments for critical size O(R)
• Kohlprath and GV, gr-qc/0203093: one example:

for central collision of 2 homogeneous null 
beams of radius L

(
R

L

)

cr

≤ 1 , D = 4

(
R

b

)

cr

≤ 1.25 , D = 4

MBH ∼ 0.86 E

(R = 2G
√

s = 4GE1 = 4GE2)

MBH > E/
√

2 ∼ 0.71E



3 broad-band regimes in trans-Planckian 
superstring scattering

1) Small angle scattering (b >> R, ls )
2) Large angle scattering (b ~ R > ls), collapse (b, ls < R)
3) Stringy (ls  > R, b)

The string length parameter ls plays the role of the beam size!

3 length scales: b, R and ls =>

They will become 6 narrow-band regimes



R(E)

b

ls 

ls 

lP

2

3

1

BH

lP

Critical line?

NB: we take the string coupling gs very small so that ls  >> lP  

E= Eth ~ Ms/gs2E = MP



1. Gross-Mende, Mende-Ooguri (‘87-’90)
2. ‘t-Hooft; Muzinich & Soldate; ACV; Verlinde2; 

FPVV…, Arcioni, de Haro, ‘t-Hooft; …(‘87-’05); 
Giddings; Giddings, Gross, Maharana Jr. (‘07); 
Giddings and Srednicki (‘07);ACV07, Marchesini & 
Onofri (08), GV & Wosiek (08), Ciafaloni & Colferai 
(08)

************
  Two very different approaches; agree incredibly well in the 

region of ph. sp. where they can be both justified.

Two complementary approaches
Reconsidered recently within AdS/CFT (AM, CCP, BPST)



ACV  approach (1987-2007)

 Work in energy-impact parameter space, A(E,b)
 Go to arbitrarily high energy while increasing b 

(NB: R=RS)
 

 Go over to A(E, q ~ θ E) by FT and reach the regime 
of fixed θ << 1 by picking up contributions from 
saddle point in the above region of b (bs ~ R/θ >> R)  

 Extend to large angle (collapse) i.e. to b ~ R (b < R)
 Cross fingers throughout! 

b > RS(E) ∼ (GNE)
1

D−3



The semiclassical S-matrix
General arguments as well as string-loop calculations 

suggest the following form for the TPE S-matrix:

NB: For Im Acl some terms may be more than just corrections...

Leading eikonal diagrams (crossed ladders included)

S(E, b) ∼ exp

(
i
Acl

!

)
;

Acl

! ∼ Gs

! cDb4−D
(
1 + O((R/b)2(D−3)) + O(l2s/b2) + O((lP /b)D−2) + . . .

)



exchanged gravi-reggeons

1. Diffractively(tide)-excited strings  => Im Acl

2. Heavy strings
 produced in s-ch. 
=> Im Acl 
(cut gravi-reggeons)

Two examples of string corrections (controlled by ls )

Classical corrections (controlled by R/b) to be discussed later



I) Small-angle elastic scattering (leading eikonal)
II) Small-angle inelastic scattering (a.string excitation) 
III) Small-angle inelastic scattering (b.string formation)
IV) Small-angle inelastic scattering (c.graviton emission)
V) Large-angle inelastic scattering 
VI) Classical Collapse 

The existence of these corrections complicates the previous 
diagram with new regions appearing in our parameter space. 
We may roughly distinguish 6 (increasingly difficult) regimes:



R(E)/lP

b/lP

ls/lP 

 IV:grav. 
rad.

critical line?

I: leading 
eikonal 

ls/lP 

1
1

II:diffr. 
str. exc.

III: s-channel 
 string prod.

(ls/lP)2 

(ls/lP)1/2 

VI: black hole 
production/evaporation 

V: large angle 

log-log plot
D=4 



I: Small-angle elastic scattering 
(leading eikonal)

Leading eikonal diagrams (crossed ladders included)

S(E, b) ∼ exp

(
i
Acl

!

)
;

Acl

! ∼ Gs

! cDb4−D
(
1 + O((R/b)2(D−3)) + O(l2s/b2) + O((lP /b)D−2) + . . .

)



Imδ ∼ GD s l2s
(Y ls)D−2

e−b2/b2I , b2
I ≡ l2sY

2 , Y =
√

log(α′s)

δ(E, b) =
∫

dD−2q
Atree(s, t)

4s
e−iqb , s = E2, t = −q2

Reδ ∼ Gsb4−D

Recovering CGR expectations @ large distance

For b >> lsY (Region I), we can forget about Im δ

Going over to scattering angle θ, we find a saddle point at 

corresponding precisely to the relation between impact 
parameter and deflection angle in the (emerging!) AS metric 

generated by a relativistic point-particle of energy E.

bD−3
s ∼ G

√
s

θ
; θ ∼

(
RS

b

)D−3

S = e2iδ



Note that at fixed θ, larger E probe larger b
The reason is quite simple: because of eikonal exponentiation, 

Re δ also gives the average loop-number. The total (huge) 
momentum transfer q = θ E is shared among many many 
exchanged  gravitons to give:

meaning that the process is soft at large s

qind. ∼
q

Gsb4−D
∼ θ

RD−3
S b4−D

∼ b−1
s



θ1 ∼ GD E2 b3−D ⇒ ∆θ1 ∼ GD E2 ls b2−D

II: Small-angle inelastic scattering 
(a. diffractive/tidal string excitation)

When a string moves in an AS metric it suffers tidal 
forces as a result of its finite size (Giddings 0604072) 
Grav. counterpart to diffractive excitation?
When does DE kick-in? Tidal-force argument (SG/GV): 

This angular spread provides an invariant mass: 

strings get excited if  

... as in ACV ‘87  

M1 ∼ E1∆θ1 ∼ GD s ls b2−D = M2

M1,2 ∼Ms = !l−1
s ⇒ b = bD ∼

(
Gsl2s

!

) 1
D−2

σel ∼ exp(−S(M)) ∼ exp(−M/Ms) ∼ exp(−Gs

!
l2s

bD−2
)→ exp(−Gs

! l4−D
s )



bb+ΔX

Xu

Xd

(E, p)

(E, -p)

27



σel ∼ exp(−4Imδ) = exp
[
− GD s l2s

(Y ls)D−2

]
≡ exp

[
− s

M2
∗

]

M∗ =
√

MsMth ∼Msg
−1
s

Because of Im δ≠0, Sel is suppressed as exp(-2 Im δ):

At E= Eth = Ms/gs2 
σel ∼ exp(−g−2

s ) ∼ exp(−Ssh) (Ssh = entropy of a BH/string of M=Eth)

III: Small-angle inelastic scattering  
(b. string formation @ b, R < ls)

M∗ =
√

MsMth ∼Msg
−1
s

〈NCGR〉 = 4Imδ =
GD s l2s
(Y ls)D−2

= O

(
s

M2
∗

)

〈E〉CGR =
√

s

〈NCGR〉
∼ MsY

D−2

(
ls
RS

)D−3

∼ Teff ≡
M2
∗

E
=

M2
s

g2
sE

Also: and thus:

NB: same as DE abs. @ b = ls!



E

Ms 
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Mth=Ms/gs
2

<E>CGR
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2

E ~E-1

BH?

window

TH ∼ E−
1

D−3



Classical and quantum gravity from 
(gedanken?) string collisions  

Gabriele Veneziano
(Collège de France & CERN)

International School of Theoretical Physics,
 (Parma, 8-13 Sept. 2008)



1st talk (12/09)

•  3 scales & 3 regimes in TPE string collisions
•  The small-angle regime

•Leading eikonal
•Tidal excitations

***********************
•  The “stringy” regime and precocious BH behaviour

•s-channel production of heavy strings

Outine of the two talks



σel ∼ exp(−4Imδ) = exp
[
− GD s l2s

(Y ls)D−2

]
≡ exp

[
− s

M2
∗

]

M∗ =
√

MsMth ∼Msg
−1
s

Because of Im δ≠0, Sel is suppressed as exp(-2 Im δ):

At E= Eth = Ms/gs2 
σel ∼ exp(−g−2

s ) ∼ exp(−Ssh) (Ssh = entropy of a BH/string of M=Eth)

III: Small-angle inelastic scattering  
(b. string formation @ b, R < ls)

M∗ =
√

MsMth ∼Msg
−1
s

〈NCGR〉 = 4Imδ =
GD s l2s
(Y ls)D−2

= O

(
s

M2
∗

)

〈E〉CGR =
√

s

〈NCGR〉
∼ MsY

D−2

(
ls
RS

)D−3

∼ Teff ≡
M2
∗

E
=

M2
s

g2
sE

Also: and thus:

NB: same as DE abs. @ b = ls!



E

Ms 

MD M* =Ms/gs

Ms/gs 

Mth=Ms/gs
2

<E>CGR

Ms

Ms/gs
2

E ~E-1

BH?

window

TH ∼ E−
1

D−3



2nd talk (13/09)

• Classical corrections in the large-angle regime
• Identification of the relevant diagrams
• Resumming classical corrections via an eff. action
• The axisymmetric case: critical lines and comparison 

with CTS criteria
•Two-body scattering at b ≠ 0: critical point
• Graviton spectra below and near criticality 
• What happens above criticality?

• Summary and outlook



Part 2



R(E)/lP

b/lP

ls/lP 

 IV:grav. 
rad.

critical line?

I: leading 
eikonal 

ls/lP 

1
1

II:diffr. 
str. exc.

III: s-channel 
 string prod.

(ls/lP)2 

(ls/lP)1/2 

VI: black hole 
production/evaporation 

V: large angle 

log-log plot
D=4 



S(E, b) ∼ exp

(
i
Acl

!

)
∼ exp

(
−i

Gs

! (logb2 + O(R2/b2) + O(l2s/b2) + O(l2P /b2) + . . . )
)

IV: Small-angle inelastic scattering 
(ACV-90’s) 

=> Classical corrections to leading eikonal

=> Resumming classical corrections 
(ACV, hep/th-0712.1209, MO, VW, CC...’08)

V: Large-angle inelastic scattering 
VI: Collapse? 

D=4 hereafter



Power counting for connected trees:

When considering the exponent (the “phase”) one 
should restrict to connected trees 

δ(E, b) ∼ G2n−1sn ∼ Gs R2(n−1) → Gs (R/b)2(n−1)

Not surprisingly, they are related to tree diagrams 
once the coupling to the external energetic particles is 
replaced by a classical source 

Classical corrections characterized by absence of h.



Next to leading order: the H diagram

One of the produced graviton’s polarizations (“TT”) is IR-safe 
the other (“LT”) is not

∼ G3s2 = Gs G2s = GsR2 → Gs (R/b)2



NNL-order

∼ G5s3 = Gs G4s2 = GsR4 → Gs (R/b)4



Reduced effective action & field equations

 There is a simple D=2 effective action generating the 
leading diagrams (Lipatov, ACV ‘93)

Neglecting the IR-unsafe (LT) polarization, it contains: 
a and a, representing the longitudinal (++ and --) 
components of the gravitational field, coupled to the 
corresponding components of the EMT;
φ, representing the TT graviton-emission field. Besides 
source and kinetic terms there is a trilinear derivative 
coupling of a, a and φ



∇2a + 2δ(x) = 2(πR)2(∇2a ∇2φ−∇i∇ja ∇i∇jφ), ā(x) = a(b− x)

The action

and the corresponding eom

The semiclassical approximation corresponds to
solving the eom and computing the classical action on 
the solution. This is why we took Gs/h >> 1! 

out a possible connection with Choptuik’s scaling [10] near critical collapse. Section 6
presents some conclusions and an outlook.

2 The axisymmetric case: general considerations

Our starting point is the effective two-dimensional action of [1] (see their equation (2.22)):

A
2πGs

= a(b) + ā(0) − 1

2

∫

d2
x∇ā∇a +

(πR)2

2

∫

d2
x(−(∇2φ)2 + 2H∇2φ)

−∇2H ≡ ∇2a ∇2ā −∇i∇ja ∇i∇j ā , (1)

where a, ā and φ are three real fields representing the two longitudinal and the (IR-safe)
transverse component of the gravitational field, respectively. Equation (1) can be easily
generalized in order to deal with two extended sources:

A
2πGs

=

∫

d2x

[

a(x)s̄(x) + ā(x)s(x) − 1

2
∇iā∇ia

]

+
(πR)2

2

∫

d2x
(

−(∇2φ)2 + 2φ∇2H
)

, (2)

where the center of mass energy
√

s provides the overall normalization factor 2πGs =
π

2GR2, while the two sources s(x), s̄(x) are normalized by
∫

d2x s(x) =
∫

d2x s̄(x) = 1.
Let us now specialize to the case of two extended axisymmetric sources moving in

opposite direction with the speed of light and undergoing a central collision. Using the
conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

2.1 Simplifications

One advantage of considering the axisymmetric case is that there is simply no dependence
of the physics upon the azimuthal angle, hence no need to take averages over it. This is
a useful technical simplification that allows us to reduce the problem to solving ODE.

The second more important advantage comes from the observation that the IR-singular
“LT” graviton polarization is not produced in that case. Thus the problem is completely
IR-finite even in D = 4. In order to see this, let us recall from [1] that the LT polarization
is produced with an amplitude proportional to sin θ12 cos θ12. In the notations of [1]:

ALT = Aµνε
µν
LT ∼ k

−2 sin θ12 cos θ12 , (3)

where θ12 is the angle between the two transverse momenta k1, k2 that combine to give a
physical graviton of momentum k. The angular factor can be expressed in terms of the
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∇4φ = −(∇2a ∇2ā−∇i∇ja ∇i∇j ā)

Still too hard for analytic study!



 Axisymmetric Solutions
(ACV07, J. Wosiek & G.V. 08/1 & 08/2)

Equations can be studied (ACV, 07121209) but 
are unreliable: lesson unclear

I. Particle-particle collisions @ b=0

II. Central beam-beam collisions
One example in ACV07, more systematically 
explored in VW (0804.3321 & 0805.2973) 



Central beam-beam collisions
In spite of its restrictive symmetry it is a very rich 

problem:
1. The two beams contain several parameters (total 
intensity, shape; same or different) & we can look for 
critical surfaces in their multi-dim.al space
2. The CTS (KV) criterion is simple (see below)
3. Numerical results should be next on line (see recent 
talks by Choptuik & Pretorius)

Two major simplifications occur in ACV eqns:
1. PDEs become ODEs
2. The IR-singular polarization is just not produced



Axisymmetric action and eqns 
(t=r2)

conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

It is straightforward to rewrite the action (4) for the axisymmetric case as a one
dimensional integral over the variable r2 = x2 ≡ t. Using

∫

d2x = π
∫

dt we find:

A
2π2Gs

=

∫

dt [a(t)s̄(t) + ā(t)s(t) − 2ρ ˙̄aȧ]

− 2

(2πR)2

∫

dt(1 − ρ̇)2 (5)

where a dot means d/dt and, as in [1], we have introduced the field:

ρ = t
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and therefore reduce to a closed 2nd order equation for ρ. We want to look for solutions
of that equation with the following boundary conditions [1]:

ρ(0) = 0 , ρ(r2) → r2 as r → ∞ (9)

Given the finite support of the sources the latter condition can be replaced by the
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1 − R2/ρ for r > Max(L1, L2). (10)

For given source profiles Ri(r2) a possible strategy for solving the problem is to reduce
it to a first order system:

ρ̇ =
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σ − R1(r2)R2(r2)

ρ
i.e. σ ≡ ρ̇2 +

R1(r2)R2(r2)

ρ

σ̇ =
(R1R2).

ρ
, (11)
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− 2

(2πR)2

∫

dt(1 − ρ̇)2 (5)

where a dot means d/dt and, as in [1], we have introduced the field:

ρ = t
(

1 − (2πR)2φ̇
)

(6)

Integrating by parts and using π
∫ t

dt′si(t′) = Ri(t)/R we arrive at the following
convenient form of the action:

A
!

= − 1

4l2P

∫

dt

[

(1 − ρ̇)2 − 1

ρ
R1(t)R2(t) + (2πR)2ρ

(
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ȧ2 +
R2(t)

2πRρ

)]

(7)

The equations of motion that follow from (7) read:
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2nd order ODE w/ Sturm-Liouville-like b. conditions 



CTS criterion (KV gr-qc/0203093)
 If there exists an rc such that

with initial conditions
ρ(0) = 0 , σ(0) = σ0, , (12)

and to find a σ0 such that σ(Max(L1, L2)) = 1. For sufficiently large Ri/Li one expects
to find that the latter condition cannot be imposed on real-valued solutions.

2.2 MCTS-criteria and critical points in the ACV equations: a

general result

In the general axisymmetric case, one can construct explicitly a MCTS [6] provided that
an rc exists such that (see eq. (4.4) of [6] for D = 4):

R1(rc)R2(rc) = r2
c (13)

We will now argue that such a condition implies the absence of real solutions to eqns.
(8) with ρ(0) = 0. Proof: Let us first note that, because of (11) and the fact that the Ri

are non-decreasing functions of r, the quantity σ, as well as ρ̇, are increasing functions of
t. Therefore, for any t:

σ(t) ≤ σ(∞) = 1 , i.e. ρ̇(t) ≤

√

1 − R1(t)R2(t)

ρ(t)
(14)

Assuming that the KV criterion (13) can be met let us write:

ρ(0) = ρ(tc) −
∫ tc

0

dt′ρ̇(t′) > ρ(tc) − tcρ̇(tc) > ρ(tc) − tc

√

1 − tc
ρ(tc)

(15)

where we have used eqs. (13) and (14). At this point it is easy to check that the rhs of
(15) cannot vanish for any (positive) value of ρ(tc) thus proving that we cannot impose
the condition ρ(0) = 0 when the criterion (13) is satisfied.

2.3 Momentum space formulation

In order to go to momentum space we start from eq. (5.2) of ACV generalized to extended
sources:

πA

Gs
=

∫

d2k

k2
[β1(k)s2(−k) + β2(k)s1(−k) − β1(k)β2(−k)]

− (πR)2

2

∫

d2
k

[

1

2
h(k)h(−k) − h(−k)H(k)

]

(16)

where the FT of the sources are normalized by requiring si(0) = 1 and

β1(k) =
k2a(k)

2
; β2(k) =

k2ā(k)

2
, h(k) = −k2φ(k) (17)

5

we can construct a CTS and therefore expect a BH to form.

Theorem (VW08):  whenever the KV criterion holds*) the 
ACV field equations do not admit regular (at r=0) real 
solutions. Thus:

KV criterion ==> ACV criterion
but of course not the other way around!

*) actually the r.h.s. can be replaced by 2
3
√

3
r2
c



R1(r)R2(r) ≤
8
27

r4

(1 + r2)2

[
1 +

1
2

(
1− log(1 + r2)

r2

)]2

R1(r)R2(r)

A sufficient criterion for dispersion 
(P.-L. Lions, private comm.)

 the ACV eqns do admit regular, real solutions. 
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ρ = ρ(0) + r2ρ̇(0) , (r < b)

ρ̇ =
√

1−R2/ρ , (r > b)ρ̈ =
R2

2ρ2
Θ(r2 − b2)

Can be dealt with analytically: 

Example 1: particle-scattering off a ring

b

ρ(b2) = b2ρ̇(b2) = b2
√

1−R2/ρ(b2)

b2 >
3
√

3
2

R2 ≡ b2
c

Since ρ(0) =0:

This (cubic) equation has
positive real solutions iff

(b/R)c ~ 1.61
CTS: (b/R)c > 1 



Amusing analogy with turning
point in Schwarzschild metric

phys
sln

R

b
= x− x3, x ≡ r∗

b
⇒ b > bc =

3
√

3
2

R



ρ̈(r2) =
R2

2ρ2
Θ(r − L) +

R2r4

2L4ρ2
Θ(L− r)

The equation for ρ  becomes

Example 2: Two hom. beams of radius L. 

We can compute the critical value numerically:

It is compatible with (and close to) the CTS upper bound 
of KV: 

(
R

L

)

cr

∼ 0.47

(
R

L

)

cr

< 1.0



We took two extended sources (beams) with the same 
fixed total energy and two Gaussian profiles centered at 
r=0 and characterized by two widths L1 and L2

We determined the critical line in the (L1 , L2) plane and 
compared it with the one coming from the CTS criterion. 

Example 3:
Two different Gaussian Beams

(GV&J.Wosiek ‘08)

parameter b. And indeed, from (8), we recover in this case the approximation used in [1]
to describe the latter process i.e.

ρ̈ =
1

2

R1(r)R2(r)

ρ2
=

1

2

R2

ρ2
Θ(t − b2) (31)

If we require ρ(0) = 0 this equation leads to the condition on ρ(b2):

ρ(b2) = b2ρ̇(b2) = b2

√

1 − R2

ρ(b)
(32)

which has a real solution only if R
b < (R

b )c = 21/23−3/4 ∼ 0.62. Such a result has to
be compared with the upper limit given by (13) which, in this case, simply becomes
(R/b)CTS

c < 1.
It is interesting to notice that exactly the same (R

b )c will apply to the situation in
which the point-like source is replaced by an arbitrary source “contained” inside the ring-
shaped one. Physically this makes sense since, by Gauss’ theorem, the compact source
should propagate undisturbed while the more extended source is only affected by the total
energy of the more compact one.

3.3 Gaussian sources

Point-like sources are difficult to deal with numerically, especially in momentum space.
Therefore we also introduce Gaussian-smeared versions of the above point and ring-like
sources.

s1(x) =
1

N1
exp

(

− r2

2σ2

)

Θ(L1 − r), N1 = 2πσ2(1 − exp

(

−L2
1

2σ2

)

), (33)

s2(x) =
1

N2
exp

(

−(r − L2)2

2σ2

)

Θ(L2 − r), N2 = 2π

(

σ2(exp

(

−L2
2

2σ2

)

− 1) + σL2

√

π

2
Erf

L2√
2σ

)

;

and their Fourier transforms

si(k) = 2π

∫ Li

0

rdrJ0(kr)si(x) (34)

When σ −→ 0 (∞) the problem reduces to the one of the point-ring (two homogeneous
beams) case.

Another interesting example is the one of gaussian sources concentrated at r = 0.
They correspond to:

si(t) =
1

2πL2
i

exp

(

− t

2L2
i

)

,
Ri(t)

R
= 1 − exp

(

− t

2L2
i

)

(35)

which in momentum space corresponds to

si(k
2) = exp

(

−k2L2
i

2

)

(36)

8
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Figure 3: Two gaussian sources at the origin. The critical line in the (L1, L2) plane. The
BH phase lies below this line. We also show (dash-dotted line) a lower bound on the curve
from the CTS criterion (13).
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0.8
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1

1.1

!’

Figure 4: The maximal solution, in the dispersive phase, also for t > 1.(two identical
ACV sources, d = 1, R/L = .44)

All above calculations required solving Eqs.(11) for t ≤ 1. Next we look for the
maximal solution in the larger domain t ≤ tmax. To this end it suffices to use the value σ0

found above and extend the profile Ri(t) beyond L2: Ri(t) = R, t > L2. The rest is again
done by Mathematica. As an example, we show in Fig.4 the derivative of the solution
ρ(t). It interpolates smoothly around t = 1 and, as expected, tends to 1 at large t. We
have also verified that for t > 1, ρ(t) obtained above is identical to the analytic solution
for the constant profiles

ρan(t) = R2F−1
[

F (ρ0/R
2) + t/R2 − t0/R

2
]

, (38)

11
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Two extended sources with fixed total energy and a 
profile characterized by the overall size L and a shape-
parameter d:

We determined the critical line in the (d, L) plane and 
compared it with the one coming from KV’s CTS 
criterion.

Example 4:
two identical non-hom. beams 

(GV&Wosiek ‘08/1)3 Examples of source profiles

3.1 Two identical two-parameter sources

Let us consider a class of finite-size sources characterized by the following profiles:

s1(t) = s2(t) =
d

π (d + (1 − d)t2)3/2
Θ(1 − t) (26)

where, without lack of generality we have fixed the sizes of the two identical beams to be
1. One can easily verify that these sources satisfy our normalizations and, furthermore,
that

π

∫ t

0

dt′s(t′) = R(t)/R =
t

(d + (1 − d)t2)1/2
, π

∫ 1

0

s(t)dt = 1 (27)

Inserting these expressions in our differential equation (11) leads to the equations:

ρ̇ =

√

σ − R2(t)

ρ
, σ̇ =

(R2).

ρ

R2(t) =
R2t2

d + (1 − d)t2
, t < 1 (28)

while for t > 1 we should impose σ = 1.
This system can be easily studied numerically. In particular one can find how the

critical value of R, Rc, depends on the parameter d. This parameter gives (for fixed total
extent L ≡ 1) the “shape” of the extended sources: d = 1 corresponds to the case of
constant-density sources considered in [1] , d < 1 to sources roughly concentrated around
r ∼

√
dL, and d > 1 to sources picked around r = L = 1.

The above sources, once Fourier transformed to momentum space and normalized
according to section 2.3, become:

s1(k
2) = s2(k

2) =

∫ 1
0 dtJ0(kr)s(t)

∫ 1

0 dts(t)
=

∫ 1

0

dtJ0(kr)
d

(d + (1 − d)t2)3/2
(29)

In particular, for two homogeneous beams (d = 1) we have (t = r2):

s1(k
2) = s2(k

2) =

∫ 1

0

dtJ0(kr) =
2

k
J1(k) (30)

3.2 Central scattering of a particle off a ring

In this, very asymmetric case R1 = R while R2 = RΘ(t − b2). The notation anticipates
that we can view this case as an approximation to the scattering of two particles at impact

7



bound on Rc coming from the CTS criterion (13). It is easy to check that this reads:

RCTS
c = (4d(1 − d))1/4 Θ(1/2 − d) + Θ(d − 1/2) (37)

0 1 2 3 4

d

0.3

0.35

0.4

0.45

0.5

0.55

Rc

Figure 2: The critical line in the (R, d) plane having set L = 1. We also show (dash-dotted
line) the upper bound on Rc from the CTS criterion (13). The BH phase is above the
line.

Note that, at d = 1, we recover the value Rc ∼ 0.47 already reported in [1]. We have
also checked that, to a good approximation, Rc roughly varies as d1/4 for small d in nice
(though not necessary) agreement with (37).

As a second example consider the scattering of two Gaussian sources , concentrated at
x = 0 with transverse sizes L1, L2, as in (35). Strictly speaking, the sources do not have a
finite support, however they vanish quickly for t # Li. Therefore we replace the condition
σ(1) = 1 with σ(#Max(L1, L2)) = 1. In practice taking # = 10 is more than sufficient.
This time we set R = 1 and examine the transition in the (L1, L2) plane. The result is
shown in Fig.3. Obviously, the critical line is symmetric with respect to L1 ↔ L2. It’s
shape corresponds roughly to a straight line L1 +L2 = const, suggesting that this variable
controls the effective concentration of the total energy. Once more we can ask how this
critical line compares with the lower bound one would find using the CTS criterion (13).
This can be asily done numerically and the result is shown again in Fig.3. Amusingly, also
the CTS criterion gives a curve which roughly corresponds to L1 + L2 = const. besides a
typical factor 2 difference (but remember: CTS criteria oly give bounds!) the two curves
start to diverge when the two Li are very different. In fact, while to CTS-curve goes to
the point L1 = 0, L2 = 1√

2
, our result indicated that this point moves to infinity as L1 → 0

i.e. one is always in the BH regime in that limit.

10
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Figure 3: The critical line in the (R, d) plane having set L = 1. We also show (dash-dotted
line) the upper bound on Rc from the CTS criterion (13). The BH phase is above the
line.

found above and extend the profile Ri(t) beyond L2: Ri(t) = R, t > L2. The rest is again
done by Mathematica. As an example, we show in Fig.5 the derivative of the solution
ρ(t). It interpolates smoothly around t = 1 and, as expected, tends to 1 at large t. We
have also verified that for t > 1, ρ(t) obtained above is identical to the analytic solution
for the constant profiles

ρan(t) = R2F−1
[

F (ρ0/R
2) + t/R2 − t0/R

2
]

, (38)

with ρ0 = ρ(t0), t0 > 1, and

F (x) =
√

x(x − 1) + Log(
√

x +
√

x − 1). (39)

4.2 Solutions in momentum space

First, we introduce the new variables

x =
1

1 + k1
, y =

1

1 + k2
, v =

1

1 + k
(40)

which span unit intervals, hence are convenient for the discretization. Equations (24)
transform into

h(v) =
1

π2

∫

T

dxdy

x(1 − x)y(1 − y)

v2

(1 − v)2

√

λ(x, y, v)β1(x)β2(y) ,

βi(v) = si(v) +
R2

2

∫

T

dxdy

x(1 − x)y(1 − y)

√

λ(x, y, v)h(x)βi(y) (41)
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bound on Rc coming from the CTS criterion (13). It is easy to check that this reads:

RCTS
c = (4d(1 − d))1/4 Θ(1/2 − d) + Θ(d − 1/2) (37)
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Figure 2: The critical line in the (R, d) plane having set L = 1. We also show (dash-dotted
line) the upper bound on Rc from the CTS criterion (13). The BH phase is above the
line.

Note that, at d = 1, we recover the value Rc ∼ 0.47 already reported in [1]. We have
also checked that, to a good approximation, Rc roughly varies as d1/4 for small d in nice
(though not necessary) agreement with (37).

As a second example consider the scattering of two Gaussian sources , concentrated at
x = 0 with transverse sizes L1, L2, as in (35). Strictly speaking, the sources do not have a
finite support, however they vanish quickly for t # Li. Therefore we replace the condition
σ(1) = 1 with σ(#Max(L1, L2)) = 1. In practice taking # = 10 is more than sufficient.
This time we set R = 1 and examine the transition in the (L1, L2) plane. The result is
shown in Fig.4. Obviously, the critical line is symmetric with respect to L1 ↔ L2. It’s
shape corresponds roughly to a straight line L1 +L2 = const, suggesting that this variable
controls the effective concentration of the total energy. Once more we can ask how this
critical line compares with the lower bound one would find using the CTS criterion (13).
This can be asily done numerically and the result is shown again in Fig.4. Amusingly, also
the CTS criterion gives a curve which roughly corresponds to L1 + L2 = const. besides a
typical factor 2 difference (but remember: CTS criteria oly give bounds!) the two curves
start to diverge when the two Li are very different. In fact, while to CTS-curve goes to
the point L1 = 0, L2 = 1√

2
, our result indicated that this point moves to infinity as L1 → 0

i.e. one is always in the BH regime in that limit.
All above calculations required solving Eqs.(11) for t ≤ 1. Next we look for the

maximal solution in the larger domain t ≤ tmax. To this end it suffices to use the value σ0
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 Particle-particle collisions 
at finite b

Analytic approach by ACV07 
(using an azimuth-average approximation) 

gave bc ~ 1.61R



Numerical solutions 
 (G. Marchesini & E. Onofri, 0803.0250)

Solve directly PDEs by FFT methods in Matlab
Result: real solutions only exist for

Compare with EG’s CTS lower bound on bc

b > bc ∼ 2.28R

bc > 0.80R
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Fig. 2: Rcrit vs. b in the dipole model.

which presents the same pattern as in Fig. 2 and reproduces the exact slope to an

accuracy of 0.5%; this check makes us confident on the accuracy of our code and
allows us to estimate the error in Eq. (4.2) to less than 1%.

4.1 Critical behaviour

In order to better understand the nature of the transition at R = Rcrit we shall now
present some results about the critical behaviour of certain observables. The main

fact we derive from our numerical data is that all observables that we examined have
a scaling behaviour near the transition which can be reproduced very accurately by
a square root singularity. This fact supports the conclusion that we are in presence

of a genuine transition and not simply a breakdown of the iteration scheme. The
argument is as follows: the iteration scheme represents an efficient way to sum up

the perturbative expansion in the parameter K = 2(πR)2; as such the iteration’s con-
vergence radius is regulated by the nearest singularity in the complex K plane. Our

analysis shows that the divergence of the iteration scheme is caused by a singularity
on the real line, which must then correspond to a physical singularity.

Spectral properties. Let’s start with the spectrum of the linearized equation
which is used in monitoring the convergence of the iteration algorithm. From the

data a scaling property emerges which appears to be rather robust against variations
of other parameters, namely the dependence of the spectral radius against R. Let λ0

denote the spectral radius of the linearized equation: the plot of 1−λ0 as a function
of

√

1 − R/Rcrit is reported in the next picture (Fig. 3) and it suggests a relation of

– 8 –
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  Particle Spectra
(ACV07, VW08/2, & Ciafaloni GV in progress)

We can study the spectrum of the produced particles by 
looking at various contributions to the imaginary part of 
the elastic amplitude at fixed E & b (E-cons. important)

 The final spectrum is roughly as follows (for extended 
sources b--> beam size):

1
σ

dσ

d2kdy
=

Gs

! R2 exp
(
− |k||b|

! (1 + cosh y R3/b3)
)

This shows that, while for b >> R gravitons are produced 
at small angles, as b -> bc ~ R their distribution becomes 
more and more spherical w/ <n> ~ Gs and characteristic 
energy O(1/R ~TH)



A−Ac

Gs
=
√

3
(

1− b2

b2
c

)
+

2
√

2
3

(
b2

b2
c

− 1
)3/2

Near & beyond bc 
Approach to bc can be studied. Leaving aside the 
imaginary part due to graviton production, for b-->bc

+ 

the on-shell action behaves as follows 

The elastic amplitude picks up an extra damping below bc 

meaning that some new channels must have opened up.
Q: Do these correspond to the formation of BHs?

Ciafaloni and Colferai (see next talk) have formulated 
this as a QM tunnelling problem (r2 having role of time)



Just below bc the new imaginary part of the action 
behaves like 

Q: Can we make the identification: σel ~ exp(-SBH) ?
A: We can if the mass of the BH goes to zero as 
b->bc (Type-II critical collapse)
In order to recover our result we would need: 

fixing the value of Choptuik’s exponent to about 
twice his 0.37 (depends on w = p/ρ and kinematics)

Clearly our understanding of the physics below bc

is still far from complete (to say the least)!

ImA ∼ Gs(1− J/Gs)3/2 , σel ∼ exp(−ImA)

MBH ∼
√

s(1− b/bc)3/4



Conclusions
• Gedanken HE collisions (e.g. ππ->πω) have played an 
important role in the early developments of ST. 

•Superstring theory in flat space-time (and in other 
consistent backgrounds) offers a concrete framework 
where the quantum scattering problem is well-posed.

•The problem simplifies by considering Gs/h >> 1 so that 
a suitable semiclassical approximation can be justified. 
Within that kinematical constraint we have considered 
various regimes, roughly classified as follows:

•After the 1984 revolution TPE collisions may well play 
a similar role for understanding whether & how QM & 
GR are mutually compatible in a string theory 
framework



• A large impact parameter regime, where an eikonal 
approximation w/ small corrections holds and GR 
expectations are recovered (AS effective metric..) 

• A stringy regime, where one finds an approximate  S-
matrix with some characteristics of BH-physics as the 
expected BH threshold is approached from below

• A strong-gravity (large R) regime where an effective 
action approach can be (partly) justified and tested



•Critical points (lines) have emerged matching well CTS-
based GR criteria

•Progress was made towards constructing a unitary S-
matrix and understanding the physics of the process as 
the critical surface is reached and possibly crossed 

•Much more work remains to be done, but an 
understanding of the quantum analog/replacement of 
GR’s gravitational collapse does no-longer look 
completely out of reach...

•

•As the critical line is approached, the final state 
starts resembling a Hawking-like spectrum: a fast 
growth (~ E2) of multiplicity w/ a related softening of 
the final state.
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Lessons from accelerator physics

• The SM of PP works extremely well: a great achievement of 
20th-century physics

• Is this a confirmation of LQFT?
• QM + SR => LQFT as an effective low-E approximation      
(S. Weinberg). 

•Is the validity of the SM just a confirmation of QM & SR?
• Yes, modulo a crucial new point:the effective LQFT is a 
gauge theory!



Lessons from gravity and cosmology
• GR works very well on scales at which it has been tested

• GR, perhaps with a small cosmological constant, is the 
effective classical theory of gravity
• GR appears to be badly behaved at short scales (singularity 
theorems). Is QM the cure to those problems?

•QM appears to make things worse (UV divergences, induced 
cosmological constant, ...)!



The mystery of quantum corrections
• Radiative corections to marginal and irrelevant perators in 
the SM have been seen in precision experiments (e.g. LEP)

• running of gauge couplings
• effective 4-fermi interactions
• anomalies

• Radiative corrections to relevant operators have not been 
seen (w/ exception of Newton’s constant?):

• scalar masses
•cosmological constant

• Because of a (well-known?) IR-UV connection this may tell 
us something. The SM and GR are not the full story: they need 
an ultraviolet completion!



Why GT and GR?
• GTs are the only consistent way to deal with massless J=1 
particles in a quantum-relativistic theory

• GR is the only consistent way to deal with massless J=2 
particles in a Lorentz invariant way
• The question then becomes: Why does Nature like massless 
J=1, 2 particles?

•The answer could very well be: because She likes String 
Theory! 



Does Quantum Gravity need a cutoff?

• Some people have still some hope to cure the deseases 
of QGR. I will give some arguments towards the opposite 
conclusion...

• They are based on invoking a bound on Newton’s constant in 
terms of the UV cutoff. Then GN-->0 as we remove the cutoff
• Old model-dependent arguments (GV, Dvali & Gabadaze, ’02) 

• More recently model-independent arguments (Dvali et al.,..., 
Dvali & GV to appear?)



A robust bound (?) .....
Let us make two assumptions in QG 

w/ UV cutoff = ΛUV =1/λUV

1. A BH of radius R > λUV can be treated semiclassically 
using the standard formulae, for S, T, ev. rate etc
2. At least one of the following inequalities is satisfied by 
a semiclassical evaporating BH (c=1):

−d(2GM)
dt

≤ 1 ;
!
T 2

dT

dt
≤ 1 ;

Γ
M
≤ 1

λD−2
UV ≥ Neff (ΛUV )lD−2

PThen:

Proof: If opposite true, take a BH of radius between λUV and Nγ lP ...



...and its implications

If one accepts above argument there two important 
consequences

1. A lower bound on MP/ΛUV implying that QG becomes 
trivial if cutoff is sent to infinity
2. The infinite bare coupling (Sakharov) limit of QG is non-
singular 

Too good to be true?



Farewell


