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Where is our Universe
coming from ?
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What is the fate
of the Universe ?
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What is the geometry 
of the Universe ?
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What is our Universe made of?



US decadal Survey (Astro 2010)







Collisions at CERN



Plan of the lectures

• Introduction to the Standard Big-Bang 
cosmology and to Inflationary cosmology

• The cosmological perturbations and the 
CMB anisotropy

• The DE and DM puzzles 



Lecture one: 
the standard Big-Bang cosmology

and 
the inflationary cosmology





The Universe has structure



The structure in the Universe
Perturbing around the average energy density

we may define the density contrast

δ(x, t) ≡ ρ(x, t)− ρ

ρ
=

�
d3k

(2π)3
δk(t) e−i k·x

The power spectrum is defined by

�δk δk�� = (2π)3 Pδ(k) δ(k− k�)

∆δ(k) =
k3 Pδ(k),

2π2
, Pδ = A kn T (k)

n � 1, T (k) = transfer function





The Universe is homogeneous and isotropic
on sufficiently large scales



The Universe is homogeneous and isotropic
on sufficiently large scales



Cosmic Microwave Background  

1964

Nobel
1978



The Cosmic Microwave Background Radiation

• 2.725 K above absolute zero

• mm-cm wavelength

• 410.4 photons per cubic cm

• Perfect black-body spectrum

• Nobel prize 1978: Penzias & Wilson

• Nobel Prize 2006: Mather & Smoot

• Nbel Prize 2006: Mather & Smooth



The Cosmological Principle:

The Universe is 
homogeneous and isotropic

(ON LARGE SCALES)



The Universe is homogeneous and isotropic:
Friedmann-Robertson-Walker metric

dl2 =
dr2

1− kr2
+ r2

�
dθ2 + sin2 θdφ2

�



The geometry of space

k = 0k = +1 k = −1

Sphere Plane Hyperboloid

k = 1 k = −1k = 0



Example: geometry of a sphere

x2 + y2 + z2 = 1⇒ z2 = 1− x2 − y2

x = r cos θ, y = r sin θ ⇒ dl2 =
dr2

1− r2
+ r2dθ2





Space and time are linked (1905)

Space and time are dynamical (1915)



Spacetime Geometry 
= 

Distribution of 
Energy (and Pressure) density 



A. Einstein
 (1916)

The 
Universe 
should 
expand



Implication: Hubble’s Law (1929)

�x = a(t)�l0 ⇒ �v =
d�x

dt
= H(t)�x

Recession velocities are proportional to distance

H(t) ≡ ȧ

a



Hubble’s law





It is space which is expanding



How is the Universe expanding?



The scale factor in the Friedman-Robertson-Walker 
metric satisfies Einstein equations   

Space-time geometry = energy



The Cosmological Principle imposes that the
energy momentum tensor is of the form

Tµ
ν = Diag (ρ,−P,−P,−P )

Einstein equations take  the form

ρ̇ + 3H(ρ + P ) = 0

Energy momentum conservation takes the form

Energy density Pressureρ = P =

H
2 =

8πGN

3
ρ− k

a2

ä

a
= −4πGN

3
(ρ + 3P )



Physics behind:

Take a test particle of unit mass immersed in a 
pressureless fluid of given energy density 

r = ar0, M =
4π

3
ρr3

1
2
ṙ2 − GNM

r
= −kr2

0

2

Energy conservation of a test particle:
the value of the binding energy  tells if the Universe 

will recollapse or expand for ever



The Golden Rule of the expansion

is equivalent to 

H
2 =

8πGN

3
ρ− k

a2

Today ρc � 104 eV cm−3

Ω− 1 =
k

a2H2

Ω =
ρ

ρc
, ρc =

3H
2

8πGN

(3)
R =

6k

a2
⇒ Rcurv ∼

H
−1

|Ω− 1|



The Geometry of space

Ω > 1 Ω = 1 Ω < 1

A measurement of the total energy
density of the Universe implies a 

measurement of the geometry of space

Ω > 1 Ω < 1Ω = 1



Various types of fluids:

Suppose P = wρ ⇒ ρ ∝ a−3(1+w)

w = 1/3⇒ ρR ∝ a−4 = a−3 × a−1

w � 0⇒ ρNR ∝ a−3

w � −1⇒ ρ ∝ a0

Relativistic

Nonrelativistic

Cosmological
constant

w = −1/3⇒ ρ ∝ a−2Curvature term



Dynamics is determined by energy content

H
2 +

k

a2
=

8πGN

3
ρ, ρ =

�

i

ρi(a)

a(t) andH(t)

a(t)

1 + z = a0/a

depend on energy content

measurable by redshift

is a proxy for the scale factor

H
2(z) = H

2
0

�
ΩR(1 + z)4 + ΩNR(1 + z)3 + Ωw(1 + z)3(1+w) + (1− Ωtotal)(1 + z)2

�



In HEP units:

H
−1
0 ∼ 1028 cm ∼ 1042 GeV−1

h0 ≡ (H0/Km/sec/Mpc) = 0.75

h
2
0 =

1
2

T0 ∼ 10−4 eV
ρc � 10−66 GeV4



Time evolution

a ∝ t
2
3 (1+w)

H =
2
3
(1 + w)

1
t

a ∝ t
1
2 a ∝ t

2
3

RD MD

The expansion is decelerated







The past





Brief History of the Universe



At high temperatures, the Universe is expected
to be Radiation Dominated

IF equilibrium holds, then 

ρR =
π2

30
g∗T

4 (T � m)

g∗ =
�

bosons

gb +
7
8

�

fermions

gf

H � 1.66 g
1/2
∗

T
2

Mp
, Mp � 1.2× 1019 GeV

8πGN =
1

M2
p



t

sec
∼

�
MeV

T

�2

tLHC ∼ 10−14 sec

No Big Bang at the LHC



Entropy Density

s =
ρR + PR

T
=

4
3

ρR

T
=

2π2

45
g∗T

3

If expansion is adiabatic:

S ≡ s× V = constant⇒ g∗(Ta)3 = constant

T ∝ 1

g1/3
∗ a





Equilibrium holds only if the time-scale for
interaction is smaller than the time of the Universe 

τint � (1/nσv)� tU ∼ H
−1 ∼ t ∼ (Mp/g

1/2
∗ T

2)

n ∼ T 3, σ ∼ α2/T 2, v ∼ 1⇒ T � (α2/g1/2
∗ )Mp

T � 1014 GeV



Shortcomings 
of the standard 

Big-Bang 
 cosmology



Flatness Problem

Ω− 1 =
k

a
2
RH

2
R

∝
kM

2
p

a
2
RρR

∝
kM

2
p

a
2
RT 4

∝ k a
2
R

|Ω− 1|T=Mp

|Ω− 1|T=T0

�
�

T0

Mp

�2

� 10−64

Going back in time



Flatness Problem = Entropy Problem

Ω− 1 =
kM2

p

a2
RT 4

=
kM2

p

(aRT )2T 2
∼

kM2
p

S2/3T 2

S = S0 ∼ (T0H
−1
0 )3 ∼ 1090 ⇒ |Ω− 1|T=Mp

∼ 10−64

IF entropy is conserved

The flatness problem is equivalent to 
ask why there is so much entropy in 

our visible Universe

Educated guess: break adiabaticity



The flateness problem is more a 
fine-tuning problem 

about the initial conditions



The Particle Horizon

It is the maximum distance travelled by light in an 
expanding Universe within a given time t

ds = 0⇒ dl =
dt

a
RH(t) = a(t)

�
t

0

dt�

a(t�)

a(t) ∝ t
n ⇒ RH(t) � 1

1− n
t
−1 ∼ H

−1(t)



Standard Cosmology and the Horizon Problem

RH(t) = a(t)
�

t

0

dt
�

a(t�)
� a(t)

ȧ(t)
= H

−1(t)



Hydrogen Recombination & Last Scattering Surface

Matter is ionized at temperatures higher than
the hydrogen ionization energy of 13.6 eV

  

nenp

nH

=
�

meT

2π

�3/2

e−Eion/T

The Universe becomes transparent to photons when 

  

(σeγne)−1 ∼ t, σeγ = 8πα2/3m2
e, TLS � 0.26 eV







CMB anisotropy

∆T

T
(x0, τ0,n) =

�

�m

a�m(x0)Y�m(n)

�a�ma��m�� = δ���δmm�C�

�∆T

T
(n)

∆T

T
(n�)� =

�

�

(2� + 1)
4π

C�P�(n · n�)

(ensemble averages)



Horizon at Last Scattering

dτ = dt/a

� t0

tLS

dt

a
=

� τ0

τLS

dτ = (τ0 − τLS)

Comoving distance between us 
and the last scattering surface

θ � λ

(τ0 − τLS)

Angle subtended by a given 
comoving length scale

θHOR � cs
τLS

(τ0 − τLS)
� cs

τLS

τ0
� cs

�
T0

TLS

�1/2

� 1o

H
−1
LS

Sound Horizon



Super-Horizon mode detected
in the CMB anisotropy

�HOR =
π

θHOR
∼ 200



Why is the Universe so 
homogeneous and isotropic

if, back in time, it was a collection 
of separated Universes?



The Inflationary Cosmology



Alan Guth



Inflationary Cosmology

�
λ

H−1

�·
= ä > 0⇔ Inflation



Suppose there is a period during which the Hubble rate is 
constant (pure de Sitter epoch)

H = constant =
ȧ

a
⇒ a = aie

H∗(t−ti) ≡ aie
N

In conformal time a(τ) = − 1
Hτ

(τ < 0)

N = number of efolds



Flatness Problem

Ω− 1 =
k

a2H2
∼ 1

a2

|Ω− 1|end

|Ω− 1|in
=

�
ain

aend

�2

= e−2N � 10−64 ⇒ N > O(60)



Flatness Problem = Entropy Problem

Adiabaticity is broken when the inflation energy 
density  is released under the form of 

relativistic degrees of freedom
=

phase transition

Send

Sin
∼

�
aendTend

ainTin

�3

∼ 1090

1
∼ e3N ⇒ N > O(60)



Inflation does NOT change the global structure of space, 
but LOCALLY it makes it flat

IF N � 60⇒ Ω0 = 1 +O
�
e60−N

�



For a review,see

D.H. Lyth and A.R.,

Phys. Rept. 314

 (1999) 1

How to get Inflation



How to get Inflation



Slow-Roll parameters are small and vary slowly with time

�̇ ∼
�

φ̇φ̈

H2
− φ̇2

H3
Ḣ

�
1

M2
p

∼ H(�δ − �2)



The total number of efolds

N =
� tf

ti

dt H(t)

=
� φf

φi

dφ
dt

dφ
H(φ)

=
� φf

φi

dφ
H

φ̇

= (slow − roll)

= −3
� φf

φi

dφ
H

2

V �

= (slow − roll)

= 8πGN

� φi

φf

dφ
V

V �



Example: V (φ) =
m2

2
φ2

V (φi) ∼M4
p ⇒ φi ∼ (M2

p /m)

N ∼ 4πGNφ2
i ∼ (Mp/m)4

In fact it turns out that (Mp/m) ∼ 106



The number of efolds
till the end of inflation 

∆N � 8πGN

� φ∆N

φf

dφ
V

V �

φ∆N



1. large field 

e.g. chaotic inflation

2. small field

e.g. new or natural inflation

3. hybrid inflation

e.g., Susy or Sugra models

Standard scenario = one-single field (slow-roll) models

V ∼ V0 − µ4−pφp

V ∼ µ4−pφp

V ∼ V0 + µ4−pφp



Lecture two: 
the cosmological perturbations 

and CMB anisotropy



The Universe is NOT
homogeneous and isotropic





From Quantum Fluctuations to the Large Scale Structure





The Millenium Simulation Project:  
http://www.mpa-garching.mpg.de/galform/virgo/millennium/



Particle production in 
an expanding Universe





Take now perturbations of the  inflaton field:
heuristic explanation of why the inflaton field is perturbed 

φ(x, t) = φ0(t) + δφ(x, t)

δφ̈ + 3Hδφ̇ − ∇2δφ

a2
+ V

��δφ = 0

φ̈0 + 3Hφ̇0 + V
�(φ0) = 0⇒

...
φ0 + 3Hφ̈0 + V

��φ̇0 = 0

δφ = φ̇0τ(x)
φ(x, t) = φ0(t + τ(x))

The inflaton field has different classical values at 
different points in space 



All massless scalar fields are excited during Inflation

Oscillator with time-dependent frequency

Linear Theory

σ(x, τ) = σ0(τ) + δσ(x, τ),
uk(τ) = a(τ)δσk(τ),

dτ =
dt

a

u��
k +

�
k2 − a��

a

�
uk = 0

(δσ̈k + 3Hδσ̇k +
k

2

a2
δσk = 0)



a)  For modes with wavelengths inside the horizon:  

λphys � H
−1 ⇒ k/a� H ⇒ (−kτ)� 1

u��k + k2uk = 0⇒ uk = A(k)
e−ikτ

√
2k

+ B(k)
eikτ

√
2k

Set of independent plane waves: locally Minkowski, 
no curvature seen by the waves 

a��/a = 2/τ2 ⇒ (−kτ)� 1⇒ k2 � a��/a



λphys � H
−1 ⇒ k/a� H ⇒ (−kτ)� 1

b)  For modes with wavelengths outside the horizon:  

a��/a = 2/τ2 ⇒ (−kτ)� 1⇒ k2 � a��/a

u��
k −

a��

a
uk = 0⇒ uk = C(k)a(τ)⇒ δσk = C(k)

Superhorizon perturbations do not evolve in time 



Exact solution exists:

uk(τ) = A(k)
e−ikτ

√
2k

�
1− i

kτ

�
+ B(k)

eikτ

√
2k

�
1 +

i

kτ

�
+

Choose the boundary conditions in the far UV such that the solution
is a plane wave propagating with positive frequency (Bunch-Davies vacuum) 

(−kτ)� 1 ⇒ A(k) = 1, B(k) = 0

uk(τ) =
e
−ikτ

√
2k

�
1− i

kτ

�
,

δσk =
uk

a
= (−Hτ)

e
−ikτ

√
2k

�
1− i

kτ

�



Power Spectrum

�0
��(δσ(x, t))2

��� =
�

d3k

(2π)3
|δσk|2

≡
�

dk

k
Pδσ(k)

Pδσ(k) =
k3

2π2
|δσk|2

Pδσ(k) = A2

�
k

aH

�n−1



Perturbations of a (nearly) massless scalar field
are born as plane waves with wavelengths below the horizon.  

As inflation proceeds, their wavelenghts are stretched 
outside the horizon and get frozen 

Pδσ =
k

3

2π2
|δσk|2 =

�
H

2π

�2 �
k

aH

�n−1



All massless scalar fields during a period of exponential
inflation (pure de Sitter) are quantum mechanically
excited with a power spectrum which is constant

and flat on superhorizon scales 
(independent from the wavelength)

Perturbations are GAUSSIAN:
it is linear perturbation theory

and all oscillators evolve independently from each other





Einstein equations

Klein-Gordon 
equation

Have to include gravity



Counting degrees of freedom

gµν

xµ → xµ + δxµ
1)        is a symmetric tensor, has 10 degrees of freedom, but we can 
perform a coordinate transformation                            and there 

remain 10-4=6 physical degrees of freedom

2) Helmholtz’s theorem:
                                                  there remain 2 vector degrees of freedom 

ui = ∂iv + vi, ∇ · �v = 0, v[i,j] = 0

3) Tensor perturbations have 6 degrees of freedom, but they are traceless and       
transverse,                            , there remain 2 physical degrees of freedom hi

j = 0, ∂ihij = 0

6-2-2=2 scalar degrees of freedom 



We are only interested in slicings: 

Take a scalar perturbation:  

t→ t + δt ≡ t̃

f̃(t̃) = f(t), f̃0(t̃) = f0(t̃)

δ̃f(t̃) = f̃ − f̃0(t̃)
= f(t)− f0(t̃)
= f(t)− ḟ0(t)δt− f0(t)
= δf − ḟ0δt

δf → δf − ḟ0δt



Take the  gravitational potential  in the metric:  

d̃s
2

= ds2 ⇒ ã2(t̃)(1− 2ψ̃) = a2(t)(1− 2ψ)

ã
2(t̃) � a

2(t) + 2ȧaδt⇒ ψ̃ = ψ + Hδt

ψ → ψ + Hδt

Φ→ Φ−Hδt− (δt)·

ds2 =
�
(1 + 2Φ)dt2 − a2(1− 2ψ)dx2

�



Including gravity

Need to define a gauge invariant quantity
upon general coordinate transformations

ζ = −ψ −H
δρ

ρ̇
Gravitational

potential

Comoving curvature
 perturbation

t → t + δt,

ψ → ψ + H δt,

δρ → δρ− ρ̇ δt

ds2 =
�
(1 + 2Φ)dt2 − a2(1− 2ψ)dx2

�



Physical significance of the 
comoving curvature perturbation

ζ = −ψ −H
δρ

ρ̇

1) The curvature perturbation on slices of uniform energy density

ζ = − ψ|δρ=0 , (3)R =
4
a2
∇2ψ

ζ = −H
δρ

ρ̇

����
ψ=0

= H
δρ

3(ρ + P )

����
ψ=0

2) The energy density  perturbation on flat slices 



For a review,see

D.H. Lyth and A.R.,

Phys. Rept. 314

 (1999) 1

How to get Inflation



How to get Inflation



Slow-Roll parameters are small and vary slowly with time

�̇ ∼
�

φ̇φ̈

H2
− φ̇2

H3
Ḣ

�
1

M2
p

∼ H(�δ − �2)



Comoving curvature perturbation generated by 
the one-single (slow-roll) field driving inflation 

Quantum fluctuations on spatially flat 
  hypersurfaces during inflation

Pζ =
1
2

�
H

2πMP �1/2

�2 �
k

aH

�nζ−1

,

nζ = 1 + 2η − 6�

ζ
ζ

ζ

Curvature perturbation generated 
during inflation

ζ = −
�

H
δρ

ρ̇

�

k=aH

= −
�

H
δφ

φ̇

�

k=aH

nζ − 1 =
d lnPζ

d ln k
=

d lnH
4
k

d ln k
− d ln φ̇2

k

d ln k
= −4� + (2η − 2�) = 2η − 6�



Example: V (φ) =
1
2
m2φ2

N = 8πGN

� φN

φend

dφ
V

V � ⇒ φN ∼
√

NMp

3Hφ̇ = −V
� ⇒ φ̇ ∼ mMp, � ∼ 1/N

ζ ∼ H√
�Mp

∼ m

Mp
∼ 10−5 ⇒ m ∼ 1012 GeV



Tensor perturbations

Lh =
M2

P

2

�
d4x
√
−g

1
2
∂σhij∂

σhij

ds2 = dt2 − a2(δij + hij)dxidxj

PT (k) =
8

M
2
P

�
H

2π

�2 �
k

aH

�nT

nT = −2�

Massless scalar
field

vk =
aMP√

2
hk

v��
k +

�
k2 − a��

a

�
vk = 0



Comments:

1) The amplitude of the tensor modes is 
                             proportional to the energy density of the inflaton field

2) For one-single field models of inflation
           there exists a CONSISTENCY RELATION

r ≡
1

100PT
4
25Pζ

= � = −nT

2



The standard slow-roll 
scenario predicts:

• A (nearly) exact power law

• spectrum of (nearly) Gaussian

• super-Hubble radius

• scalar perturbations (seeds of structure) &

• tensor perturbations (gravitational waves)

• in their growing mode

• in a spatially flat universe





The comoving curvature perturbation is constant
on superhorizon scales if the fluid is adiabatic

IT FOLLOWS FROM ENERGY CONSERVATION 

Go to a uniform energy density slice: δρ = 0, ζ = −ψ

δ (∇µT
µν) = 0 ⇒ δρ̇ + 3H(δρ + δP )− 3ψ̇(ρ + P ) = 0

δP = δPnonad +
Ṗ

ρ̇
δρ

ζ̇ = − H

(ρ + P )
δPnonad

If the fluid is adiabatic, then  P = P (ρ) and δPnonad = 0



Adiabatic vs isocurvature perturbations

Curvature (adiabatic) perturbations are there if: 

Sij = −3H

�
δρi

ρ̇i
− δρj

ρ̇j

�
= 3(ζi − ζj)

δρ

ρ̇
=

δP

Ṗ
⇒ P = P (ρ)

Isocurvature perturbations are present if 
some of the following combination is 

nonvanishing:

δρi

ρ̇i
=

δρj

ρ̇j
for every i and j

Hδργ

ρ̇γ
=

Hδρm

ρ̇m
= −δργ

4ργ
= −δρm

3ρm



Example: take two fluids

ζ =
�

i

ρ̇i

ρ̇
ζi

ζ̇ =
�

ρ̈2

ρ̇
− ρ̇2ρ̈

ρ̇2

�
(ζ2 − ζ1)

The comoving curvature perturbation is not conserved on superhorizon 
scale if an isocurvature component is present



B

Lyth,  A.R. (2006)

A.R.

The curvature perturbation may come from fields 
different from the  inflaton



Curvature perturbation from 
isocurvature fields during inflation (curvaton) 

• Take a scalar field σ(x, t) other than the inflaton field; it does not dominate
the energy density during inflation

• Its potential is V (σ) = 1
2m2σ2

• During inflation it is quantum mechanically excited: δρσ ∼ m2σ̄δσ and
δρσ

ρσ
∼ δσ

σ̄

• When it decays into radiation, its fluctuations are transferred to radiation

ζ ∼ δσ

σ̄
∼ H

σ̄



Inflation provides 
the initial seeds 

for the cosmological perturbations 
we see in the Universe



Inflation provides the initial conditions 
for the gravitational potential

 Einstein equations indicate that, on superhorizon scales,

ψ = Φ, δρ = −2Φ

ζ = −ψ +
δρ

3(ρ + P )
= −ψ +

δρ

3(1 + w)ρ
= − 5 + 3w

3(1 + w)
Φ

=
�
− 3

2Φ (RD)
− 5

3Φ (MD)

 The gravitational potential inherits the 
flat spectrum generated during inflation



Hydrogen Recombination & Last Scattering Surface

Matter is ionized at temperatures higher than
the hydrogen ionization energy of 13.6 eV

  

nenp

nH

=
�

meT

2π

�3/2

e−Eion/T

The Universe becomes transparent to photons when 

  

(σeγne)−1 ∼ t, σeγ = 8πα2/3m2
e, TLS � 0.26 eV





CMB anisotropy

∆T

T
(x0, τ0,n) =

�

�m

a�m(x0)Y�m(n)

�a�ma��m�� = δ���δmm�C�

�∆T

T
(n)

∆T

T
(n�)� =

�

�

(2� + 1)
4π

C�P�(n · n�)

(ensemble averages)





The total CMB anisotropy

∆(k,n, η) = (∆0 + 4Φ + 4v · n) + 4
� η0

0
(Φ + ψ)�

Sachs-Wolfe
effect

Doppler
effect

Integrated 
Sachs-Wolfe

effect

Φ and ψ are gravitational potentials

∆ =
1
4

δργ

ργ



CMB anisotropy
at 

scales larger than
the horizon 

at last scattering



log aLS



Horizon at Last Scattering

dτ = dt/a

� t0

tLS

dt

a
=

� τ0

τLS

dτ = (τ0 − τLS)

Comoving distance between us 
and the last scattering surface

θ � λ

(τ0 − τLS)

Angle subtended by a given 
comoving length scale

θHOR � cs
τLS

(τ0 − τLS)
� cs

τLS

τ0
� cs

�
T0

TLS

�1/2

� 1o

H
−1
LS

Sound Horizon



Last scattering us



Sachs-Wolfe Plateau
For modes beyond the horizon at last scattering and adiabatic conditions:

δT (n)
T

=
∆(n)

4
=

�
∆
4

+ Φ
�

(ηLS)

=
�

1
4

δργ

ργ
+ Φ

�
(ηLS) =

�
1
3

δρm

ρm
+ Φ

�
(ηLS)

=
�
−2

3
Φ + Φ

�
(ηLS) =

1
3
Φ(ηLS)

= −1
5
ζinf



C� =
2
π

�
dk

k
� 1
25

|ζk|2�k32�(k(η0 − ηLS))

π�(� + 1)C� =
1
50

1
M

2
P

�
H

2π�1/2

�2



CMB anisotropy
at 

scales smaller than
the horizon 

at last scattering



log aLS



Acoustic peaks

• At recombination, baryon-photon fluid undergoes “acoustic oscillations”
A cos cskη + B sin cskη

• Compressions and rarefactions change the temperature Tγ

• Peaks in ∆Tγ corresponds to extrema of compressions and rarefactions



Acoustic peaks



Dynamics of the photon-baryon fluid
(electrons are kept in equilibrium through the 

Coulomb scatterings with protons)

The photon distribution satisfies the Boltzmann equation

df

dη
= C[f ](Thomson scatterings)

f(xi, p, ni, η) = 2
�
exp

�
p

T (η)(1 + Θ(xi, niη)

�
− 1

�−1

∂∆
∂η

+ ni ∂∆
∂xi

+ 4ni ∂Φ
∂xi

− 4
∂ψ

∂η
= −τ �

�
∆0 +

1
2
∆2P2(v̂ · n)−∆ + 4v · n

�

∆ = 4Θ ∆� =
1

(−i)�

� 1

−1

dµ

2
P�(µ)∆(µ), µ = v̂ · n



By integrating over the solid angle, we get: 

Energy continuity equation

∆�
0 +

4
3
∂iv

i
γ − 4ψ� = 0,

4
3
vi

γ =
�

dΩ
4π

∆ni

 Velocity continuity equation

v
�i
γ +

3
4
∂jΠij

γ +
1
4
∆0 + ∂iΦ = −τ � �vi − vi

γ

�

Πij
γ =

�
dΩ
4π

�
ninj − 1

3
δij

�
∆

Momentum continuity equation for baryons

vi = vi
γ +

R

τ �

�
v

�i +Hvi + ∂iΦ
�

, R =
3
4

ρb

ργ



Acustic Oscillations of the photon-baryon fluid
(beneath the horizon)

vi�

γ +H
R

1 + R
vi

γ +
1
4

∂i∆0

1 + R
+ ∂iΦ = 0

�
∆

��

0 − 4ψ
��
�

+
HR

1 + R
(∆�

0 − 4ψ�)− c2
s∇2 (∆0 − 4ψ) =

4
3
∇2

�
Φ +

ψ

1 + R

�

cs = 1/
�

3(1 + R)

Pattern of oscillations:

[1 + R(η)]1/4 (∆0 − 4ψ) = A cos[krs(η)] + B sin[krs(η)]

− 4k√
3

� η

0
dη� [1 + R(η�)]3/4

�
Φ(η�) +

ψ(η�)
1 + R

�
sin [k(rs(η)− rs(η�)]

rs(η) =
� η

0
dη�cs(η�)

Hubble drag infallredshfit pressure



To study the solutions we have to see if the 
modes enter the horizon before or after 

matter-radiation  equality



First, fix the initial (adiabatic) conditions

Φ = −1
2
∆0 [(00)− Einstein equation]

∆0 − 4ψ = constant [continuity equation]

(∆− 4ψ) = −6Φ cos(ω0η)− 8
k√
3

� η

0
dη�Φ(η�) sin[ω0(η − η�)],

ω0 = kcs, cs = 1/
�

3(1 + R∗), ψ = Φ



Time behaviour of the gravitational perturbation

Using

3H
�
HΦ + Φ̇

�
+∇2Φ = −4πGNa2δρ

Φ̈ + 3HΦ̇ +
�
2Ḣ+H2

�
Φ = 4πGNδP

δP = c2
sδρ

Φm = constant for all scales = −5
3
ζ =

9
10

Φγ(0)

Φγ = 3Φγ(0)
sin(kη/

√
3)− (kη/

√
3) cos(kη/

√
3)

(kη/
√

3)3



For modes which enter the horizon when the 
Universe is MD

∆0 − 4ψ =
6
5
Φγ(0) cos(ω0η)− 36

5
Φγ(0)

For modes which enter the horizon when the 
Universe is RD

∆0 − 4ψ = 6Φγ(0) cos(ω0η)

ω0 = cs k



super-horizon

sub-horizon



Position of the first peak
Modes caught in the extrema of their oscillation at recombination will 
have enhanced fluctuations, yielding a fundemental scale or frequency 

related to the Universe sound horizon 

�first peak �
220√
Ωtot





INFLATION



The Future

•CMB polarization

•Non-Gaussianity



Planck

• Lunch in April 29, 2009

• Fully sky imaging from L2 in nine frequency 
bands (30-587 GHz)

• Polarization may be sensitive to r ∼ 0.1



CMB anisotropy is polarized



CMB Polarization

For a plane wave along the z-direction, symmetric trace-free 
(STF) correlation tensor of electric field defines (transverse) 

linear polarization tensor:

Pa ≡
�

1
2 �E

2
x − E2

y� �ExEy�
�ExEy� −1

2 �E
2
x − E2

y�

�
=

1
2

�
Q U
U −Q

�

Under a rotation in the (x-y)-plane

Q± iU → (Q± iU)e−∓α ⇒ (Q + iU) is spin 2



E- and B-modes

Pab(n) = ∇�a∇b�PE + �c
(a∇ b)∇cPB

Q + iU = ∂∂(PE − PB)
∂sη = − sin−s θ(∂θ − icosec∂φ)(sins θη)

Expand in spin-weight harmonics

PE(B) =
�

�m

�
(�− 2)!
(� + 2)!

E�m(B�m)Y�m(n)⇒ (Q± iU) =
�

�m

(E�m ∓B�m)∓2Y�m(n)

If parity is respected, only three correlations: CE
� , CB

� , CTE
�



Scalar perturbations

Tensor perturbations



CMB Polarization from scalar perturbations

Thomson scattering of radiation quadrupole produces linear polarization,
which is conserved by free-streeming, but suppressed during reionization

Due to Doppler effect, eletron scatterers see the photon-baryon fluid
temperature anisotropy carrying a nonvanishing quadrupole

δT (x0,n) = n · [v(x)− v(x0)] � λT ninj∂ivj(x0)

(Q + iU) ∝ σT

�
dΩ�(m · n�)2T (n�) ∝ δτLSmimj∂ivj(LS)

scattering matrix P = −3/4σT (m · n�)2, m = e1 + ie2



Physics of CMB Polarization: scalar perturbations

A single plane wave of scalar perturbation has:

Only E-mode which traces baryon velocity perturbation

Θ2m ∝ Y ∗
2m(k)⇒ dQ ∝ sin2 θ and dU = 0 as k along z





CMB Polarization from tensor perturbations

Take a gravity wave propagating along the z-axis. The frequency shift in the 
temperature is given by

1
ν

dν

dη
=

1
2
ninjh(±)

ik =
1
2

sin2 θe±2iφḣeik·x

⇒ dQ ∝ (1 + cos2 θ) cos 2φ, and dU = − cos θ sin 2φ

Both E- and B-modes with roughly same amplitude



Testing the energy scale of Inflation

[�(� + 1)CB�/2π]1/2 � 0.024(Einf/1016 GeV) µK

CMBpol: approved by NASA on Feb. 18, 2008,
http://astro.fnal.gov/cmb/, Weiss document



Observation of the B-mode polarization 
from inflationary gravity waves requires

r � 10−2

�
∆φ

mPl

�
> 10−2



Non-Gaussianity



Characterizing the cosmological perturbationsCharacterizing the cosmological perturbations

– The WMAP data are telling us that
primordial fluctuations are very close to
being Gaussian.

– It may not be so easy to explain that
CMB is Gaussian unless we have a
compelling early universe model that
predicts Gaussian primordial
fluctuations: Inflation



What if we discover
in the future

that perturbations 
are non-Gaussian?



Gaussian
free (i.e. non-interacting)
field, linear theory 

!Collection of independent harmonic
oscillators (no mode-mode coupling)

!NG requires more than linear theory

“… the linear perturbations are so surprisingly simple that a

perturbation analysis accurate to second order may be

feasible …”    (Sachs & Wolfe 1967)



Why do we expect some NG,
i.e. some Non-Linearity ?

• The observed sky is NG: astrophysical sources (point 
sources and galactic emission, low level contaminaton of 
galactic foreground  leads to detectable NG, but 
negligible effects in the angular power spectrum)

•  Secondary anisotropies (lensing, SZ, .etc: known to exist)

• Variance of the noise is spatially variable, increasing the 
variance of the NG estimator

• Gravity itself is nonlinear

• Primordial contribution 



How large is the predicted value of NG ?

It depends on the primordial contribution:  it is the 
contribution generated either during or after inflation, 
when the comoving curvature perturbation becomes 

finally constant (in time) on super-horizon scales

It is the real science driver



Phenomenlogical approach:

  The expanding parameter is roughly   The expanding parameter is roughly   

 The non-linear parameter is usually The non-linear parameter is usually

 momentum dependent momentum dependent

 It is not directly connected to the measurable It is not directly connected to the measurable

 quantity, the CMB anisotropy quantity, the CMB anisotropy

ζ(x) = ζg(x) − 3
5
fNL

�
ζ2
g (x) − �ζ2

g �
�

fNLζg



Second scenario: Inflation is non-standard (DBI, ghost inflation,....)
Third scenario: inflation does not take place, instead ekpyrotic,....

“bang”

radiation

matter

dark energy

“ekpyrotic”
contraction

“crunch”
!"#$"%&'()*+,--"$(./%01'(234

)*+,--"$'(./%01'(234
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“bang”

radiation

matter

dark energy

“ekpyrotic”
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Models predictions

Canonical Non canonical
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• Single field inflation with
canonical kinetic term

• Multi-field inflation

• Curvaton-like models

• K-inflation, DBI-inflation,…

• Break in slow-roll…

• New ekpyrotic

• DBI-multi-field inflation

Models predictions
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• Single field inflation with
canonical kinetic term

• Multi-field inflation

• Curvaton-like models

• K-inflation, DBI-inflation,…

• Break in slow-roll…

• New ekpyrotic

• DBI-multi-field inflation

N. Bartolo, E. Komatsu, S. Matarrese and A.R., 
Phys. Rept. 402, 103 (2004)



The Bispectrum

June 09, 2007 KICP - Chicago 33

The shape of Non-Gaussianities

• Babich et al. 2005

• Creminelli, et al. 2005

Different models for the generation of NG
may lead to different shape dependence of
the bispectrum, which are very important 
for constraining NG (see L. Senatore talk)

June 09, 2007 KICP - Chicago 33

The shape of Non-Gaussianities

• Babich et al. 2005

• Creminelli, et al. 2005

Different models for the generation of NG
may lead to different shape dependence of
the bispectrum, which are very important 
for constraining NG (see L. Senatore talk)

D. Babich et al.,  (2005)

Bζ(k1, k2, k3) ∝ fNL [P (k1)P (k2) + perm.]

Local Equilateral

k1 � k2, k3

�ζ�k1
ζ�k2

ζ�k3
� = δ

�
�k1 + �k2 + �k3

�
Bζ(k1, k2, k3)



N. Bartolo, E. Komatsu, S. Matarrese and A.R., 
Phys. Rept. 402, 103 (2004)

�
S

N

�

prim

∼ 10−4fNL �

∆fNL ∼ 20, �max ∼ 500 (WMAP)
∆fNL ∼ 3, �max ∼ 3000 (Planck)
∆fNL ∼ 2, (ideal experiment)



Lecture three: 
the Dark Puzzles





Dark Energy





Distance-Redshift Relation
F =

L

4πd2
L

defines luminosity distance, know    , measure L F

4πd2
L area of       centered on source at time of detection  2S

ds2 = dt2 − a2(t)
�

dr2

1− kr2
+ r2dΩ2

�
⇒ area = 4πa2

0r
2

d2
L = a2

0r
2(1 + z)2



Distance-Redshift Relation

Light travels on geodesics

ds
2 = 0⇒

�
dr√

1− kr2
=

�
dt

a(t)
=

�
da

H(a)a2



dL(z) =
1

H0

�
z + (1− q0)

z
2

2
+

�
−j0 + 3q

2
0 − 1− k

a
2
0H

2
0

�
z
3

6
+O(z4)

�

q ≡ −(ä/a)/H
2
, jerk j ≡ (...a/a)/H

3

Distance-Redshift Relation















Dl(z) =
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+
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2
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�
,

q ≡ −(ä/a)/H
2
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Evidence for acceleration
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+
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q ≡ −(ä/a)/H
2
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Taking sides:

G00(FRW) = 8π GT00

1) Modify the RHS of Einstein equations
a) Cosmological constant

     b) Not constant (scalar field)

2) Modify the LHS of Einstein equations
                a) Beyond Einstein (mod. of gravity)

            b) Just Einstein (BR of inhomog.)



The dark side of the Universe

70% of the energy density of the Universe
is in the form of dark energy

ä > 0⇔ w ≡ P/ρ < −1/3



How do we know DE exists?

• Assume FRW model of cosmology:

• Assume energy and pressure content:

• Input cosmological parameters

• Compute observables:

• Model cosmology fits with       , but not without 

• All evidence for DE is INDIRECT : the observed Hubble rate 
is not the one predicted through all the previous steps                                                               

H
2 = 8πGρ/3− k/a

2

ρ = ρM + ργ + ρΛ + · · ·

dL(z), dA(z), H(z)

ρΛ ρΛ



Modify the RHS: 
CC/Quintessence

• Many possible 
contributions?

• Why then is the total  
so small?

• Perhaps some unknown  
dynamics sets the total 
CC to zero, but we are 
not there yet



Why now?



Modify the LHS:
non-standard gravity

Fg = GN
m1m2

r2
per r < rc

Fg = GN
m1m2

r3
per r > rc



Degravitation

G−1
N

�
L2�

�
Gµν = 8π Tµν

All these class of theories predict the presence of extra 
longitudinal degrees of freedom of the graviton which 

becomes strongly coupled at some distance



Anthropic/Landscape

• Many sources of vacuum 
energy

• String Theory has many 
vacua

• Some of them 
correspond to a 
cancellation leading to 
the observed  small 
cosmological constant

• Although the are 
exponentially 
uncommon, they are 
preferred because...

• More common values of 
the CC results in an 
inhospitable Universe

> 10500

Galaxies require
(Weinberg)

Λ < 10−118 M4
Pl





Evidence for Dark Energy

• Hubble Diagram (SNe)

• Baryon acoustic 
oscillations

• Weak lensing

• Galaxy clusters

• Age of the Universe

• Structure formation



Observational strategy



Distortion of background images by foreground matter

 

Unlensed    Lensed

WEAK LENSING – A POWERFUL PROBE FOR THE FUTURE



Cosmological Perturbations are 
sensitive to energy content

and to modified gravity

δ̈m + 2H δ̇m =
3
2
H

2δm, δm = δρm/ρm

Perturbations can be probed at different epochs:
1) CMB, z ~ 1100

2) 21 cm, z ~ 10-20
3) Ly-alpha forest, z ~ 2-4
4) Weak lensing, z ~ 0.3-2

5) Galaxy clustering, z ~ 0-2 

δm(a) = D(a) = growth function, D(a) = a in MD



w(a) = w0 + (1− a)wa

D. Huterer, E. Linder, 2005

g(a) ≡ δm/a = e
R a
0 d ln a�[Ωγ

M (a�)−1]



Acoustic Baryonic Oscillations
δρM

ρM
=

δρB + δρDM

ρB + ρDM
=

ΩB

ΩM

δρB

ρB
+

ΩDM

ΩM

δρDM

ρDM

�
�

δρM

ρM

�2

� =
ΩDM

ΩM
B(k) +

ΩB

ΩM
C(k) cos(krs)



Acoustic Baryonic Oscillations

Each overdense region is an overpressure that launches a spherical 
sound wave. Wave travels outward at sound speed. Photons decouple,  

travel to us and are observable as CMB acoustic peaks. For matter, 
sound speed plummets, wave stalls, total distance travelled 150 Mpc

imprinted on power spectrum.
DE enters in the determination of the angular distance







Dark Matter







What we should see

What we do see





The cornerstones of structure formation

• Initial seeds provided by primordial inflation: spectrum 
of perturbations nearly flat and nearly gaussian

• Density perturbations grow because of the gravitational 
instability. They grow like the scale factor at the linear 
level

• In the CDM scenario, the first objects to collapse and 
form dark matter haloes are of low mass

• Merger trees: a halo that exists at a given time will have 
been constructed by the merging of smaller fragments 
over time

• When haloes merge, their cores survive as distinct 
subhaloes for some time. In group/cluster scale haloes, 
these will mark the locations of the galaxies



The Millenium Simulation Project:  
http://www.mpa-garching.mpg.de/galform/virgo/millennium/



The structure in the Universe
Perturbing around the average energy density

we may define the density contrast

δ(x, t) ≡ ρ(x, t)− ρ

ρ
=

�
d3k

(2π)3
δk(t) e−i k·x

The power spectrum is defined by

�δk δk�� = (2π)3 Pδ(k) δ(k− k�)

∆δ(k) =
k3 Pδ(k),

2π2
, Pδ = A kn T (k)

n � 1, T (k) = transfer function



Matter perturbations
They can be found from the (00) Einstein equation

(Poisson equation)

For modes well inside the horizon 
during the MD period, matter perturbations grow

For modes well inside the horizon 
during the RD period, matter perturbations are frozen

∇2Φ = −4πGNa
2δρm = −3

2
H

2
a
2 ρm

ργ

δρm

ρm

δρm

ρm
∝ (ργ/ρm)(Ha)−2Φ ∝ a

−1 × a
2 × a

−1 = a
0

∇2Φ = −4πGNa
2δρm = −3

2
H

2
a
2 δρm

ρm

δρm

ρm
∝ (Ha)−2Φ ∝ a× a

0 = a



δ̈k + 2H δ̇k = 4πG ρ δk ⇒ δk ∝ a

δk = −2
3

k
2

ΩmH2
Φk



δk = −2
3

k
2

ΩmH2
Φk ⇒ Pδ ∼ k

4
PΦ

Pδ =
�

k as PΦ ∼ k−3

k−3 as PΦ ∼ k−3 × k−4



Power spectrum for CDM





�
δρ

ρ

�

galaxies

= b

�
δρ

ρ

�

mass

Bias





Dark Matter Galaxies

Dark Matter halo: 1014 M⊙

The Millenium Simulation Project:  



The dark matter 
halo mass function

A successfull theory of structure formation must be able to 
predict the number density of dark matter haloes as a function of their mass 

(systems with ~ 200 mean density)  

dn

dM
dM =

ρ

M

����
dF

dM

���� dM

|dF/dM | is the fraction of volume occupied
by virialized object of mass between M and M + dM



Informations on the DM  
halo mass function from 

Warren et al., 2006SDSS AXU

• Optical detection of their member galaxies

• X-ray emission from hot electrons confined by the 
gravitational potential wells

• SZ effect whereby hot electrons up-scatter the CMB 
photons leaving an apparent deficit of low-frequency CMB 
flux in their direction

• Weak lensing (clusters selected as peaks in a smoothed two-
dimensional shear map) 

• Systematic, not statistical uncertainties, provide the limiting 
factor in cosmological measurements: none of these 
technique measure mass directly, but some proxy quantity as 
galaxy counts, X-ray flux and/or temperature or the SZ 
decrement (e.g. X-ray selection requires the intra-cluster  gas 
to be heated to a detectable level, bias effects; weak lensing 
techniques may miss a fraction of the real mass)





• The DM halo mass function  will be accurately tested by 
planned large-scale galaxy surveys, both ground (e.g. Large 
Synoptic Survay Telescope, Galaxy And Mass Assembly, 
volume comparable to horizon size) and satellite (e.g.  the 
ESA EUCLID) based (optical, weak lensing,  X-ray emission, 
SZ effect are complementary)



Why the halo mass function is so relevant ?

                 is exponentially sensitive to the
 Dark Energy through the  growth function 
dn/dV dz

X-ray cluster cosmology white paper, arXiv: 0903.5320



Cosmic Inflation Probe (CIP), a galaxy survey 
measuring 10 million galaxies at 3<z<6, would offer 
an opportunity to use this formula to constrain fNL~5 

(note that the scale measured by CIP is smaller than 
that measured by CMB by a factor of ~10!)

Matarrese, Verde and Jimenez (2000)

fNL = 100, 50, 10

Why the halo mass function is so relevant ?
Rare events are an excellent probe of non-Gaussianity in 
the primordial power spectrum: Φ(x) = Φg(x) + fNLΦ2

g

Matarrese et al. (2000)



The High-peak bias model, based on the knowledge of the 
halo mass function,  correctly predicts that high-mass 
haloes are positivey biased:

�
δρ

ρ

�

galaxies

= b

�
δρ

ρ

�

mass

Why the halo mass function is so relevant



How dark matter mass is distributed 

At present the  knowledge of the halo mass function 
comes mainly from N-body simulations 

Warren et al., 2006



The smoothing procedure

Smooth out the perturbation on a sphere of radius R

S ≡ σ2(R) ≡ �δ2(x, R)� =
� ∞

−∞
d ln k ∆2

δ(k) |W (k,R)|2

δ(x, R) =
�

d3x� W (|x− x�| , R) δ(x�)



Window function / filter

Top-hat in momentum space

W (k,R) = θ(kf − k), kf = R−1

One may not identify a well-defined mass

V = 12πR3

� ∞

0
dx

�
sinx

x
− cos x

�
is not defined



Window function / filter

Top-hat in real space

W (x, R) =
3

4πR3
θ(R− r)

M = ρ V, V =
4πR3

3

N-body simulations use 
 this window function

W (k, R) = 3
(sin(kR)− kR cos(kR)

(kR)3



dn

dM
= 2

ρ

M2
f(σ)

d lnσ−1

d lnM

S = σ2(M), f(σ) = 2σ2 dF

dS



R M(R)

σ2(R)S

Dictionary



The spherical collapse model

According to Birkhoff’s theorem, a spherical density overdense
perturbation departs from the background evolution and  behaves 

in exactly the same way as part of of a closed Universe

r(t)

t

turn-around

∆ � 178 corresponds
to a linear contrast δc � 1.68



Press-Schecther theory (1974)

• Identify the preferential sites for halo formation in 
Lagrangian space: at any given cosmic time haloes 
will form preferably in those regions where  the 
initial linear density field is larger than some  critical 
value 

It deals with the clustering problem 
in the following way: 



Press-Schecther theory
and the collapse barrier

• It is assumed that initial linear perturbations are 
gaussian distributed:             

• Virialized objects at a given radius form if the 
density contrast is larger than the collapse barrier δc

→ 1.68 D(z) for ΛCDM

ΠPS =
1√
2πS

e−δ2/(2S)

FPS(R) =
� ∞

δc

dδ ΠPS (δ, S(R)) =
1
2

Erfc
�

ν(R)√
2

�

δc = 1.68(1 + z)
ν = δc/σ(R)



Cloud-in-cloud problem

In the hierarchical models, the variance           diverges at small radii:
all mass in the Universe must be finally contained in virlialized objects:    

σ2(R)

FPS(R = 0) = 1/2

instead    

The PS procedure misses the cases in which, one a given smoothing 
scale     , the smoothed density contrast            is below threshold, 

but still it happened to be above threshold at some scale    
            .The missing factor of two is put by hand

R δ(R)

R� > R

F (R = 0) = 1



The excursion 
set method

Bond, Cole, Efstathiou, Kaiser (1991)



The smoothed density contrast performs a random walk 

δ(R) =
�

d3k

(2π)3
δk W (k,R) e−ik·x

W (k,R) = θ(R−1 − k)

∂δ(R)
∂R

=
�

d3k

(2π)3
δk

∂W (k, R)
∂R

e−ik·x

= R2

�
d3k

(2π)3
δk δD(R− k−1) e−ik·x

�δk δk�� = (2π)3 Pδ(k) δ(k− k�)

�∂δ(R1)
∂R1

∂δ(R2)
∂R2

� = f(R1)δD(R1 − R2)







The smoothed density contrast performs a random walk 
as a function of the pseudo-time S

MARKOVIAN DYNAMICS  &  NO MEMORY EFFECTS: 
the conditional probability depends on the latest step

S ≡ σ2(R) ≡ �δ2(x, R)� =
� ∞

−∞
d ln k ∆2

δ(k) |W (k,R)|2

∂δ(S)
∂S

= η(S)

�η(S1)η(S2)� = δ(S1 − S2)



The normalization of the PS theory is not correct
because it does not discard multiple crossings



The problem of finding the probability of 
halo formation can be matched 

into the so-called

FIRST-PASSAGE TIME PROBLEM

find the probability that a particle subject 
to a random walk passes for the first time 

through  a given point

Very well-known problem for markovian dynamics;
application in chemical kinetics, biology, etc. 

(for a textbook, see Redner, 2001)



A markovian random walk
with diffusion coefficient             D:

�δ2(S)� = D S

satisfies a Fokker-Planck (diffusion) equation             

with boundary conditions:             

δ(S = 0) = δD(δ)
Π(δc, S) = 0 (absorbing barrier)

∂Π
∂S

=
D

2
∂2Π
∂δ2



Π(δ, S) =
1√
2πS

�
e−δ2/(2DS) − e−(2δc−δ)2/(2DS) )

The probability is given by 

The first-passage time probability is 
inferred from the survival probability 

⇓
D = 1

The PS prediction  is recovered with the missing factor of two

� δc

−∞
dδ Π(δ, S) = 1− F (S)

dF

dS
= −

� δc

−∞
dδ

∂Π
∂S

=
2√

2πS3/2
e−δ2

c/(2S)



f(ν) = 2σ2(dF/dS)

ν = δc/S = δc/σ2

Tinker et al., 2008

At large masses, the PS theory underestimates the dark 
matter halo mass function by a factor ~ 10; 

at small halo masses it overestimates it by a factor ~ 2



The diffusing 
barrier



The collapse is not spherical

In fact, the formation of dark matter haloes does not take place through 
a spherical collapse, but through an ellipsoidal collapse along each 
of the principal ellipsoidal axes under the action of external tides

 

∇i∇j Φ⇒ {λi} (i = 1, 2, 3) such that δ = (λ1 + λ2 + λ3)

The collapse barrier must be fuzzy to encode the 
randomness of the initial conditions



Robertson et al., 2009

For each halo identified, the center-of-mass of the halo particles is computed 
from their positions in the linear density field at z ~ 100 and use the window-

smoothed field to compute the overdensity within the lagrangian radius R 
about this location. This overdensity is then linearly extrapolated to z=0 



Robertson et al., 2009

The distribution of the smoothed linear overdensity is 
approximately log-normal in shape with a width

ΣB � 0.3 σ(M)



The scatter in the collapse barrier reflects the intrinsic 
scatter in the linear overdensity of collapsed regions 

introduced by the smoothing process  

The collapse barrier moves stochastically with 
a diffusion coefficient  

DB � (0.3 δc)2 � 0.25
It encodes in an effective way the properties of the ellipsoidal collapse model (like the shear) 

M. Maggiore, C. Porciani, R. Sheth and A.R., in prep.

�(B − �B�)2�1/2 =
�
eΣ2

B − 1
�
�B�

� ΣB �B�
� 0.3 δc σ(M) = 0.3 δc

√
S



The first-passage time problem becomes the well-known 
problem of the ``diffusing cliff ’’  

The first-passage time problem of two particles with diffusion 
coefficients             and                     is mapped into a one-

degree problem of a stochastic particle with effective coefficient
D = 1 DB = 0.25

Deff = 1 + DB = 1.25



N-body data from Porciani et al., 2008



C. Frenk, ENTAap DM meeting, CERN, Feb. 2009



The Halo Model

1-halo 2-haloes
P (k) = P1h(k) + P2h(k)

P1h(k) =
�

dM
dn

dM

�
R3δ̄ρ(kR)

�2

P2h(k) =
��

dM
dn

dM
R3δ̄ρ(kR)b(M)

�2

Plin(k)







Despite the 
Dark Puzzles, 
the future is

brighter


