










































































































































































































































Symmetries and Dualities of Scattering amplitudes

Jan Plefka

Humboldt-Universität zu Berlin

Lecture 5

Parma International School of Theoretical Physics



N = 4 super Yang Mills: The simplest interacting 4d QFT

Field content: All fields in adjoint of SU(N), N ×N matrices

Gluons: Aµ, µ = 0, 1, 2, 3, ∆ = 1

6 real scalars: ΦI , I = 1, . . . , 6, ∆ = 1

4× 4 real fermions: ΨαA, Ψ̄α̇
A ,α, α̇ = 1, 2. A = 1, 2, 3, 4, ∆ = 3/2

Covariant derivative: Dµ = ∂µ − i[Aµ, ∗], ∆ = 1

Action: Unique model completely fixed by SUSY

S =
1

gYM
2

∫
d4xTr

[
1
4F

2
µν + 1

2(DµΦI)
2 − 1

4 [ΦI ,ΦJ ][ΦI ,ΦJ ]+

Ψ̄A
α̇σ

α̇β
µ DµΨβ A − i

2ΨαAσ
AB
I εαβ [ΦI ,Ψβ B]− i

2Ψ̄α̇ Aσ
AB
I εα̇β̇ [ΦI , Ψ̄β̇ B]

]

βgYM = 0 : Quantum Conformal Field Theory, 2 parameters: N & λ = gYM
2N

Shall consider ’t Hooft planar limit: N →∞ with λ fixed.

Is the 4d interacting QFT with highest degree of symmetry!

⇒ “H-atom of gauge theories”
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Superconformal symmetry

Symmetry: so(2, 4)⊗ so(6) ⊂ psu(2, 2|4)

Poincaré: pαα̇ = pµ (σµ)α̇β, mαβ, m̄α̇β̇

Conformal: kαα̇, d (c : central charge)

R-symmetry: rAB

Poncaré Susy: qαA, q̄α̇A Conformal Susy: sαA, s̄
A
α̇

4 + 4 Supermatrix notation Ā = (α, α̇|A)

J ĀB̄ =



mα

β − 1
2 δ

α
β (d+ 1

2c) kαβ̇ sαB
pα̇β mα̇

β̇ + 1
2 δ

α̇
β̇

(d− 1
2c) q̄α̇B

qAβ s̄Aβ̇ −rAB − 1
4δ
A
B c




Algebra:

[J ĀB̄ , J
C̄
D̄} = δC̄B̄ J

Ā
D̄ − (−1)(|Ā|+|B̄|)(C̄|+|D̄|)δĀD̄ J

C̄
B̄
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Gluon Amplitudes and Helicity Classification

Classify gluon amplitudes by # of helicity flips

By SUSY Ward identities: An(1+, 2+, . . . , n+) = 0 = An(1−, 2+, . . . , n+)
true to all loops

Maximally helicity violating (MHV) amplitudes

An(1+, . . . , i−, . . . , j−, . . . n+) = δ(4)(
∑

i

pi)
〈i, j〉4

〈1, 2〉 〈2, 3〉 . . . 〈n, 1〉 [Parke,Taylor]

Next-to-maximally helicity amplitudes (NkMHV) have more involved structure!Weak coupling expansion of integral equation

MHV

NMHV

N2MHV

A4,2

A5,2 A5,3

A6,2 A6,3 A6,4

. . .. . .. . .. . .

2

An,m : gn−m+ gm−

[Picture from T. McLoughlin]
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On-shell superspace

Augment λαi and λ̃α̇i by Grassmann variables ηAi A = 1, 2, 3, 4 [Nair]

On-shell superspace (λαi , λ̃
α̇, ηAi ) with on-shell superfield:

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCεABCDΓ̄D(p)

+
1

4!
ηAηBηCηD εABCDG

−(p)

Superamplitudes:
〈

Φ(λ1, λ̃1, η1) Φ(λ2, λ̃2, η2) . . .Φ(λn, λ̃n, ηn)
〉

Packages all n-parton gluon±-gluino±1/2-scalar amplitudes

General form of tree superamplitudes:

An =
δ(4)(

∑
i λi λ̃i) δ

(8)(
∑

i λi ηi)

〈1, 2〉 〈2, 3〉 . . . 〈n, 1〉 Pn({λi, λ̃i, ηi})

Conservation of super-momentum: δ(8)(
∑

i λ
αηAi ) = (

∑
i λ

αηAi )8

η-expansion of Pn yields NkMHV-classification of superamps as h(η) = −1/2

Pn = PMHV
n + η4 PNMHV

n + η8 PNNMHV
n + . . .+ η4n−16 PMHV

n
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Super BCFW-recursion

Efficient way of constructing tree-level amplitudes via BCFW recursion using an
on-shell superspace via shift in (λi, λ̃) and ηi [Elvang et al, Arkani-Hamed et al, Brandhuber et al]

An =
∑

i

∫
d4ηPALi+1

1

P 2
i

ARn−i+1

. . .. .
.. . .. .
.

1̂
2

n̄

P̂iP̂i

i − 1 i

∑∑ ALAL ARAR

x̂1 , θ̂1x2 , θ2

xi , θi
xi−1 , θi−1

xn , θn

r.h.s. of on-shell recursion relation dual variables

Figure 1: Illustration of the r.h.s of the on-shell recursion relations (9),(12). The picture on the right
illustrates the transition to dual variables.

Hatted quantities denote the shifted variables. This shift, called an |n1〉 shift, is depicted in
Fig. 1. Note that the amplitudes Ah

L(zPi
), A−h

R (zPi
) are on-shell. Indeed, the shift parameter zP

must be chosen such that this is the case, which amounts to saying that the shifted intermediate
momentum P̂i = −(λ̂1λ̃1 +

∑i−1
j=2 λjλ̃j) is on-shell, i.e.

(P̂i)
2 =

(
−

i−1∑

j=1

λjλ̃j + zPi
λnλ̃1

)2

= 0 . (11)

Note also that the propagator 1/P 2
i in (9) is evaluated for unshifted kinematics.

We will use the supersymmetric version of the BCF recursion relations of [17, 18, 19]. This
amounts to replacing the sum over intermediate states by a superspace integral, and the on-shell
amplitudes by super-amplitudes, i.e.

A =
∑

Pi

∫
d4ηPi

AL(zPi
)

1

P 2
i

AR(zP ) . (12)

The validity of the supersymmetric equations can be justified by relating the z → ∞ behaviour
of the shifted super-amplitudes A(z) to the known behaviour of component amplitudes [15] using
supersymmetry [17, 18, 19].

For the supersymmetric equations, supersymmetry requires that in addition to (10) we also
have

η̂n = ηn + zPi
η1 . (13)

In the following sections it will be very useful to use the dual variables [21]

λiλ̃i = xi − xi+1 . (14)

As was already mentioned, these have a natural generalisation to dual superspace [1], i.e.

λiηi = θi − θi+1 . (15)

Following [18], in the supersymmetric recursion relations only the following dual variables get
shifted,

x̂1 = x1 − zPi
λnλ̃1 , θ̂1 = θ1 − zPi

λnη1 . (16)

See Fig. 1. The fact that all other dual variables remain inert under the shift will prove useful
when solving the supersymmetric recursion relations.

4

Reformulation of recursion relations in terms of functions Pn(1, 2, . . . , n):

Pn = Pn−1(P̂ , 3, . . . , n̂) +

n−1∑

i=4

Rn;2,i Pi(1̂, 2, . . . ,−P̂i)Pn−i+2(P̂i, i, . . . , n̂)

Is much simpler and can be solved analytically!

⇒ Pn({λi, λ̃i, ηi}) known in closed analytical form at tree-level [Drummond,Henn]

[5/24]



The Drummond-Henn solution

Pn expressed as sums over R-invariants determined by paths on rooted tree

PNkMHV
n =

∑

all paths
of length k

1 ·Rn,a1b1 ·R
{L2};{U2}
n,{I2},a2b2 · . . . ·R

{Lp};{Up}
n,{Ip},apbp

1

a1b1

a2b2

a3b3 a3b3

b1a1; a2b2

b2a2; a3b3b1a1; a3b3b1a1; b2a2; a3b3

2 n − 1

n − 1

n − 1n − 1

a1 + 1

a2 + 1a2 + 1 b1

b1

b2b2

Figure 4: Graphical representation of the formula for tree-level amplitudes in N = 4 SYM.

a diagrammatic way of organising the general formula. Then we will go on to prove the formula
by induction.

We illustrate the full n-point super-amplitude in Fig. 4 as a tree diagram, where the vertices
correspond to the different R-invariants which appear. We consider a rooted tree, with the top
vertex (the root) denoted by 1. The root has a single descendant vertex with labels a1, b1 and the
tree is completed by passing from each vertex to a number of descendant vertices, as described
in Fig. 5. We will enumerate the rows by 0, 1, 2, 3, . . . with 0 corresponding to the root. For an
n-point super-amplitude (with n ≥ 4) only the rows up to row n−4 in the tree will contribute to
the amplitude2. The rule for completing the tree as given in Fig. 5 can be easily seen to imply
that the number of vertices in row p is the Catalan number C(p) = (2p)!/(p!(p + 1)!).

Each vertex in the tree corresponds to an R-invariant with first label n and the remaining
labels corresponding to those written in the vertex. For example, the first descendant vertex
corresponds to the invariant Rn;a1b1 which we already saw appearing from the NMHV level. The
next descendant vertices correspond to Rn;b1a1;a2b2 (which appears for the first time at NNMHV
level) and Rn;a2b2 , etc.

We consider vertical paths in the tree, starting from the root vertex at the top of Fig. 4.
To each path we associate the product of the R-invariants (vertices) visited by the path, with
a nested summation over all labels. The last pair of labels in a given vertex correspond to the
ones which are summed first, i.e. the ones of the inner-most sum. In row p they are denoted by
ap, bp. We always take the convention that ap + 2 ≤ bp, which is needed for the corresponding
R-invariant to be well-defined.

The lower and upper limits for the summation over the pair of labels ap, bp are noted to the
left and right of the line above each vertex in row p. For example, the labels a1 and b1 of Rn;a1,b1,
associated to the first descendant vertex, are to be summed over the region 2 ≤ a1, b1 ≤ n−1, as

2The three-point MHV amplitude is a special case where only the root vertex contributes.

14

E.g.

PNMHV =
∑

1<a1,b1<n

Rn,a1b1

PN2MHV
n =

∑

1<a1,b1<n

Rn;a1b1×
[ ∑
a1<a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2,b2<n
Ra1b1;0
n;a2b2

]

1

a1b1

a2b2

a3b3 a3b3

b1a1; a2b2

b2a2; a3b3b1a1; a3b3b1a1; b2a2; a3b3

2 n − 1

n − 1

n − 1n − 1

a1 + 1

a2 + 1a2 + 1 b1

b1

b2b2

Figure 4: Graphical representation of the formula for tree-level amplitudes in N = 4 SYM.

The process of solving the recursion relation can be continued to higher levels in the MHV
degree. Instead of working level by level however, it is possible to write down an expression
which can be verified to satisfy the recursion relation (19) directly [15]. It is helpful to strip off
the MHV prefactors for the superamplitudes and just work in terms of the function Pn. Having
done this the recursion relation can be expressed as

Pn = Pn−1(P̂ , 3, . . . , n̂) +
n−1∑

i=4

Rn;2,iPi(2, . . . , −P̂i, 1̂)Pn−i+2(P̂i, i, . . . , n̂). (33)

Note that the same quantity Rn,ab appears in the quadratic term on the RHS. The solution to
this equation is encoded diagrammatically in Fig. 4. To obtain the expression for the tree-level
amplitudes from Fig. 4 we consider paths, starting at the top and descending through the tree
structure. Each node of the path corresponds to a generalisation of formula (32) carrying the
labels of that node,

Rn;b1a1;b2a2;...;brar ;ab =
〈a a − 1〉〈b b − 1〉δ(4)(〈ξ|xaraxab|θbar〉 + 〈ξ|xarbxba|θaar〉)

x2
ab〈ξ|xaraxab|b〉〈ξ|xaraxab|b − 1〉〈ξ|xarbxba|a〉〈ξ|xarbxba|a − 1〉 , (34)

with
〈ξ| = 〈n|xnb1xb1a1xa1b2xb2a2 . . . xbrar . (35)

For a given path we are required to take the product over all nodes and for each node perform
a summation over the final pair of labels over the region L ≤ a < b ≤ U where the limits L, U
are given on either side of the line above each node in Fig. 4. A final subtlety is that when the
labels take their boundary values, formula (34) must be modified slightly so that the explicit
dependence on the boundary spinor is replaced. This is dealt with by writing superscripts on the
R-invariants to indicate special behaviour for terms when a = L or b = U . Specifically we write

∑

L≤a<b≤U

R
l1...lp;u1...uq

n;b1a1;...;brar ;ab . (36)

8
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Dual Superconformal symmetry

Introduce dual on-shell superspace [Drummond, Henn, Korchemsky, Sokatchev]

(xi − xi+1)αα̇ = λαi λ̃
α̇
i (θi − θi+1)αA = λαi η

A
i

Transformation properties under inversions I[. . .] in dual x-space

I[〈i i+ 1〉] =
〈i i+ 1〉
x2
i

I[δ4(p)δ8(q)] = δ4(p)δ8(q)

I[〈n|xnaxab|b〉] =
〈n|xnaxab|b〉
x2
nx

2
ax

2
b

, I[〈n|xnaxab|b− 1〉] =
〈n|xnaxab|b− 1〉

x2
nx

2
ax

2
b−1

One shows that I[Rn;b1a1;...;brar;ab] = Rn;b1a1;...;brar;ab as all weights cancel!

Simple proof of dual conformal symmetry: Rn,st is I-invariant, assume Pk<n are
I-invariant. Then RHS of recursion relation is invariant too, thus Pn also
I-invariant.

Hence:
I[An] = x2

1 x
2
2 . . . x

2
nAn
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Infinitesimal form of dual superconformal symmetry

Infinitesimally one has: Kαα̇ =
∑

i

xαβ̇i xα̇βi
∂

∂xββ̇i

+ xα̇βi θαBi
∂

∂θβ Bi
.

Bosonic part derives from Kµ = x2 ∂µ − 2xµ x · ∂.

Indeed: Trees are dual superconformal covariant:

Kαα̇Atree
n = −

n∑

i=1

xαα̇i Atree
n SαAAtree

n = −
n∑

i=1

θαAi Atree
n

⇒ K̃ = K +
∑

i xi and S̃ = S +
∑

i θi annihilate the amplitude.

Extend dual superconformal generators so that they commute with constraints

(xi − xi+1)αα̇ = λαi λ̃
α̇
i (θi − θi+1)αA = λαi η

A
i

leads to expression for Kαα̇ acting in joint super-space {λi, λ̃i, ηi;xi, θi}

Kαα̇ =
∑

i

xαβ̇i xα̇βi
∂

∂xββ̇i

+ xα̇βi θαBi
∂

∂θβ Bi

+xiα̇
βλiα∂iβ + xi+1α

β̇λ̃iα̇∂iβ̇ + λ̃iα̇θ
B
i+1α∂iB

[8/24]



Infinitesimal form of dual superconformal symmetry

Infinitesimally one has: Kαα̇ =
∑

i

xαβ̇i xα̇βi
∂

∂xββ̇i

+ xα̇βi θαBi
∂

∂θβ Bi
.

Bosonic part derives from Kµ = x2 ∂µ − 2xµ x · ∂.

Indeed: Trees are dual superconformal covariant:

Kαα̇Atree
n = −

n∑

i=1

xαα̇i Atree
n SαAAtree

n = −
n∑

i=1

θαAi Atree
n

⇒ K̃ = K +
∑

i xi and S̃ = S +
∑

i θi annihilate the amplitude.

Extend dual superconformal generators so that they commute with constraints

(xi − xi+1)αα̇ = λαi λ̃
α̇
i (θi − θi+1)αA = λαi η

A
i

leads to expression for Kαα̇ acting in joint super-space {λi, λ̃i, ηi;xi, θi}

Kαα̇ =
∑

i

xαβ̇i xα̇βi
∂

∂xββ̇i

+ xα̇βi θαBi
∂

∂θβ Bi

+xiα̇
βλiα∂iβ + xi+1α

β̇λ̃iα̇∂iβ̇ + λ̃iα̇θ
B
i+1α∂iB

[8/24]



The natural question

Q: What algebraic structure emerges when one commutes conformal with dual
conformal generators? [Drummond,Henn,Plefka]

First Task: Tranform dual superconformal generators expressed in dual space
(xi, θi) into original on-shell superspace (λi, λ̃i, ηi)!

1 Open chain by droping xn+1 = x1 and θn+1 = θ1 conditions, implemented via
δ-fcts: δ(4)(p) δ(8)(q) = δ(4)(x1 − xn+1) δ(8)(θ1 − θn+1)

2 Express dual variables via “non-local’ relations:

xαα̇i = xαα̇1 +
∑

j<i

λαj λ̃
α̇
j θαAi = θαA1 +

∑

j<i

λαj η
A
j

Now set x1 = θ1 = 0 by dual translation P and Poincare Susy Q.

3 Can now drop all x1 and θi derivatives in dual superconformal generators.

[9/24]
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Dual psu(2, 2|4) generators

Dual superconformal generators acting in standard on-shell superspace (λ, λ̃, η):

Pαα̇ = 0 , QαA = 0 , Q
A
α̇ =

∑

i

ηAi ∂iα̇= s̄Aα̇

Mαβ =
∑

i

λi(α∂iβ)= m̄α̇β̇ , M α̇β̇ =
∑

i

λ̃i(α̇∂iβ̇)= mαβ ,

RAB =
∑

i

ηAi ∂iB − 1
4δ
A
Bη

C
i ∂iC= −rAB ,

D =
∑

i

−1
2λ

α
i ∂iα − 1

2 λ̃
α̇
i ∂iα̇= −d ,

C =
∑

i

−1
2λ

α
i ∂iα + 1

2 λ̃
α̇
i ∂iα̇ + 1

2η
A
i ∂iA= 1− c ,

SAα=
∑

i

λiαθ
γA
i ∂iγ + xi+1α

β̇ηAi ∂iβ̇ − θBi+1αη
A
i ∂iB ,

Sα̇A =
∑

i

λ̃iα̇∂iA= q̄α̇A ,

Kαα̇ =
∑

i

xiα̇
βλiα∂iβ + xi+1α

β̇λ̃iα̇∂iβ̇ + λ̃iα̇θ
B
i+1α∂iB
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Nonlocal structure of dual K and S

We are left with the dual generators K and S, all others trivially related to
standard superconformal generators.

K̃αα̇ =

n∑

i=1

xα̇βi λαi
∂

∂λβi
+ xαβ̇i+1 λ̃

α̇
i

∂

∂λ̃β̇i

+ λ̃α̇i θ
αB
i+1

∂

∂ηBi
+ xαα̇i

xαα̇i =
i−1∑

j=1

λαj λ̃
α̇
j θαAi+1 =

i∑

j=1

λαj η
A
j

Nonlocal structure!
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Yangian symmetry of scattering amplitudes in N = 4 SYM

Can show that dual superconformal generators K and S may be lifted to level 1
generators of a Yangian algebra Y [psu(2, 2|4)]:

[J (0)
a , J

(0)
b } = fab

c J (0)
c conventional superconformal symmetry

[J (1)
a , J

(0)
b } = fab

c J (1)
c from dual conformal symmetry

with nonlocal generators

J (1)
a = f cba

∑

1<j<i<n

J
(0)
i,b J

(0)
j,c

and super Serre relations (representation dependent). [Dolan,Nappi,Witten]

[J (1)
a , [J

(1)
b , J (0)

c }}+ (−1)|a|(|b|+|c|)[J
(1)
b , [J (1)

c , J (0)
a }}+ (−1)|c|(|a|+|b|)[J (1)

c , [J (1)
a , J

(0)
b }}

= h(−1)|r||m|+|t||n|{J (0)
l , J (0)

m , J (0)
n ]far

lfbs
mfct

nfrst.
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Yangian symmetry of scattering amplitudes in N = 4 SYM

Bosonic invariance p
(1)
αα̇An = 0 with

p
(1)
αα̇ = K̃αα̇+∆Kαα̇ =

1

2

∑

i<j

(mi, α
γδγ̇α̇+m̄i, α̇

γ̇δγα−di δγαδγ̇α̇) pj, γγ̇+q̄i, α̇C q
C
j,α−(i↔ j)

In supermatrix notation: Ā = (α, α̇|A)

J ĀB̄ =



mα

β − 1
2 δ

α
β (d+ 1

2c) kαβ̇ sαB
pα̇β mα̇

β̇ + 1
2 δ

α̇
β̇

(d− 1
2c) q̄α̇B

qAβ s̄Aβ̇ −rAB − 1
4δ
A
B c




and J (1) Ā
B̄ := −

∑

i>j

(−1)|C̄|(J Āi C̄ J
C̄
j B̄ − J Āj C̄ J

C̄
i B̄)

Integrable spin chain picture also for colour ordered scattering amplitudes!

Implies an infinite-dimensional symmetry algebra for N = 4 SYM scattering
amplitudes!

[13/24]



Summary of Yangian Structure

Combination of standard and dual superconformal symmetry lifts to Yangian
Y [psu(2, 2|4)] [Picture: Beisert]

Level

p(1) = K, q(1) = Ss̄(1), q̄(1)

k(0), s(0)

k(1), s(1)

s̄(0) = Q̄

q̄(0) = S̄
p(0), q(0)

P, Q

(1)

(0)

Tree level superamplitudes invariant: J ◦ Atree
n = 0 for J ∈ Y [psu(2, 2|4)].

[14/24]



Dual conformal symmetry at loop level

4-point MHV-amplitude at 1-loop: (a = λ/8π2)

AMHV, 1-loop
4 = AMHV, tree

4 · a
2
st · I(s, t)

Scalar box integral: I(s, t) =

∫
d4k

k2(k − p1)2(k − p1 − p2)2(k + p4)2

No bubbles or triangles!

Transform to dual coordinates: xij = xi − xj

p1 = x12 p2 = x23 p3 = x34 p4 = x41 k = x1 − x5

then I(s, t) =

∫
d4x5

x2
15 x

2
25 x

2
35 x

2
45

which is (naively) dual conformal invariant

I[
d4x5

x2
15 x

2
25 x

2
35 x

2
45

] = x2
1x

2
2x

2
3x

2
4

d4x5

x2
15 x

2
25 x

2
35 x

2
45

Note st = (2p1 · p2)(2p1 · p3) = x2
13 x

2
24, hence st I(s, t) is dual conformal inv.
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Pseudo conformal invariance at loop level

One-loop box is only “pseudo-conformal” invariant as I(s, t) is IR-divergent and

needs to be regularized: d4x5 → d4−2εx5 . This breaks dual conformal
invariance.

Indeedexact dual conformal invariance would imply st I(s, t) = 0 as there are no
conformal invariant cross-ratios for 4 light-like seperated points:

Dual conformal cross-ratios: R(i, j, k, l) =
x2
ijx

2
kl

x2
ikx

2
jl

Indeed one finds a non-vanishing result

µ2εe−εγE st I(s, t) =
2

ε2

[
(
µ2

s
)ε + (

µ2

t
)ε
]
− log2(s/t)− 4π2

3

⇒ dual conformal anomaly

“Pseudo” dual conformal invariance still a very useful concept as it constrains
the possible scalar-integrals appearing at higher loops.

[16/24]



Dual conformal invariance at higher loops

E.g. at 2 loops: Only one integral is allowed by dual conformal symmetry:
p2 p3

p4p1

i2i2

i3

i3

i4i4

i1

i1

j k

(a)

p2 p3

p4p1

(b)

Figure 4: (a) Double line notation of the gauge factor corresponding to the two-loop box integral in
the Higgsed theory. The integral is dual conformally invariant. (b) Diagram for the same integral in
the equal mass case mi = m. Dashed thin lines denote massless propagators, thick black lines denote
massive propagators.

where x̂2
i,i+1 = 0 as in the one-loop case. The momentum space notation may be more familiar

to some readers, which in the equal mass case is given by

I(2)(s, t, m) = (c0)
2 s2t

∫
d4k1

∫
d4k2

[
P (k1, m

2)P (k1 + p1, m
2)P (k1 + p1 + p2, m

2)

× P (k1 − k2, 0)P (k2, m
2)P (k2 − p4, m

2)P (k2 − p3 − p4, m
2)

]
, (34)

where P (k, m2) = (k2 + m2)−1 and the external momenta are light-like, p2
i = 0. The double box

integral may also appear in a different orientation obtained by replacing x̂1 → x̂2 , . . . , x̂4 → x̂1,
which amounts to interchanging s and t in (34). We argue that the coefficients of the box integrals
must be the same as those obtained in dimensional regularisation [13, 14]. The reason is that
the leading infrared divergence cannot depend on the regularisation. Therefore, based on dual
conformal symmetry we expect 6

M4 = 1 − a

2
I(1)(s, t, m) +

a2

4

[
I(2)(s, t, m) + I(2)(t, s, m)

]
+ O(a3) , (35)

with a = g2
YMN/(8π2). Following [13, 14], we compute

ln M4 = a w(1) + a2 w(2) + O(a3) , (36)

in order to see whether we find exponentiation in our Higgs regularisation. It is convenient to
write all quantities that appear in a small m2 expansion in the following form,

f(s, t, m2) =

imax∑

i=1

[
lni(m2/s) + lni(m2/t)

]
fi(s/t) + f0(s/t) + O(m2) . (37)

6For convenience, we write the following formulae in the equal mass case mi = m. Note that one can always
restore the full dependence on the mi by substituting m2/s → m1m3/x̂2

13 and similarly m2/t → m2m4/x̂2
24,

thanks to dual conformal symmetry.
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Similar restrictions at higher loops.

One observes exponentiation: [Bern,Dixon,Smirnov]
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massive propagators.
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= exp
[
Γcusp(λ)

p2 p3

p4p1

i2i2

i3

i3

i4 i4

i1

i1

j

(a)

p2 p3

p4p1

(x2, m2)

(x3, m3)

(x4, m4)

(x1, m1)

(x5, 0)

(b)

Figure 3: (a) Double line notation of the gauge factor corresponding to a one-loop box integral. The
U(M) indices in determine the masses of the different propagators. (b) Dual diagram (thick black lines)
and dual coordinates. The fifth component of the dual coordinates corresponds to the radial AdS5

direction.

made in such a way that a proliferation of Feynman graphs is avoided. For example, at tree-level,
we need to compute only one Feynman diagram and we obtain 3

Atree
4 = ig2

YM . (17)

The corresponding one-loop calculation is carried out in appendix B. Introducing the notation

A4 = Atree
4 M4 , (18)

and using the result (71) we obtain

M4 = 1 − a

2
I(1)(s, t, mi) + O(a2) , (19)

where s = (p1 + p2)
2, t = (p2 + p3)

2 are the usual Mandelstam variables, mi are the Higgs masses
introduced in the previous section, and a = g2

YMN/(8π2), with gYM being the Yang-Mills coupling
constant.

The integral I(1) is a box integral, depicted in figure 3. In contrast to dimensional regular-
isation, it is defined in four dimensions and depends on several masses coming from the Higgs
mechanism. The integral is given by

I(1)(s, t, mi) = c0

∫
d4k

(s + (m1 − m3)
2)(t + (m2 − m4)

2)

(k2 + m2
1)((k + p1)2 + m2

2)((k + p1 + p2)2 + m2
3)(k − p4)2 + m2

4)
. (20)

3We redefine the coupling constant g = gYM/
√

2 in order to compare to results in the conventions of [13, 14].
Also, we omit writing the momentum conservation delta function δ(4)(p1 + p2 + p3 + p4).

10

]∣∣∣
λ2
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What about higher loops?

Spezialize to MHV for simplicity: AMHV
n = AMHV

n,0 MMHV
n (pi · pj ;λ)

All loop planar amplitudes can be split into IR divergent and finite parts:

lnMMHV
n = Dn + Fn +O(ε)

IR divergencies exponentiate in any gauge theory (a = λ/8π2) [Mueller,Collins,Sterman,. . . ]

Dn = −1

2

∞∑

l=1

al

(
Γ

(l)
cusp

(lε)2
+
G(l)

lε

)
n∑

i=1

(2pi · pj)lε

Γcusp(a) =
∑

l

alΓ
(l)
cusp , cusp anomalous dimension

G(a) =
∑

l

alG(l) , colinear anomalous dimension

IR divergencies break {s, s̄, k,K, S, Q̄} but leave {p, q, q̄, P,Q, S̄} intact.
[Korchemsky,Sokatchev]
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Dual conformal anomaly

Breaking of Kµ is under control and proportional to Γcusp(g) for MHV
amplitudes. From dual Wilson loop picture: UV anomaly due to cusps for finite
piece Fn

KµFn =

n∑

i=1

[
2xiµx

ν
i

∂

∂xνi
− x2

i

∂

∂xµi

]
Fn =

1

2
Γcusp(a)

n∑

i=1

[
xµi,i+1 ln

x2
i,i+2

x2
i−1,i+1

]
Fn

Conjecture: Dual superconformal ’anomaly’ is the same for MHV and non-MHV
amplitudes [Drummond,Henn,Korchemsky,Sokatchev ’08]

‘Anomaly’ fixes the MHV 4 & 5 gluon amplitudes completely ⇔ BDS-ansatz.
Nontrivial structure starts with n = 6.

⇒ Remainder function, non-trivial function of dual conformal invariants

Q: Can the other broken Yangian symmetry be repaired at loop level?

⇒ Does this constrain the answers?
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From N = 4 SYM trees to massless QCD

Goal: Project onto component field amplitudes [Dixon, Henn, Plefka, Schuster]

xi − xi+1 = pi xij := xi − xj i<j= pi + pi+1 + · · ·+ pj−1

All amplitudes expressed via momentum invariants x2
ij and the scalar quantities:

〈na1a2 . . . ak|a〉 := 〈n|xna1xa1a2 . . . xak−1ak |a〉
= λαn(xna1)αβ̇(xa1a2)β̇γ . . . (xak−1ak)δ̇ρλa ρ

Building blocks for amps: R̃ invariants and path matrix Ξpath
n

R̃n;{I};ab : =
1

x2ab

〈a(a− 1)〉
〈n {I} ba|a〉 〈n {I} ba|a− 1〉

〈b(b− 1)〉
〈n {I} ab|b〉 〈n {I} ab|b− 1〉 ;

Ξpath
n : =




〈nc0〉 〈nc1〉 . . . 〈ncp〉

(Ξn)c0a1b1 (Ξn)c1a1b1 . . . (Ξn)
cp
a1b1

(Ξn)c0{I2};a2b2 (Ξn)c1{I2};a2b2 . . . (Ξn)
cp
{I2};a2b2

...
...

...
(Ξn)c0{Ip};apbp (Ξn)c1{Ip};apbp . . . (Ξn)

cp
{Ip};apbp



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All gluon-gluino trees in N = 4 SYM [Dixon, Henn, Plefka, Schuster]

MHV gluon amplitudes [Parke,Taylor]

AMHV
n (c−0 , c

−
1 ) = δ(4)(p)

〈c0 c1〉4
〈1 2〉〈2 3〉 . . . 〈n 1〉

NpMHV gluon amplitudes:

ANpMHV
n (c−0 , . . . , c

−
p+1) =

δ(4)(p)

〈1 2〉 . . . 〈n 1〉
∑

all paths
of length p

(
p∏

i=1

R̃Li;Rin;{Ii};aibi

)
(det Ξ)4

MHV gluon-gluino amplitudes (single flavor)

AMHV
n (a−, bq, cq̄) = δ(4)(p)

〈a c〉3〈a b〉
〈1 2〉 . . . 〈n 1〉

NpMHV gluon-gluino amplitudes:

ANpMHV
(qq̄)k,n (. . . , c−k , . . . ,

(
cαi
)
q
, . . . ,

(
cβ̄j
)
q̄
, . . .) =

δ(4)(p)sign(τ)

〈1 2〉〈2 3〉 . . . 〈n 1〉 ×
∑

all paths
of length p

(
p∏

i=1

R̃Li;Rin;{Ii};aibi

)(
det Ξ

∣∣
q

)3
det Ξ(q ↔ q̄)

∣∣
q̄
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From N = 4 to massless QCD trees

Differences in color: SU(N) vs. SU(3); Fermions: adjoint vs. fundamental
Irrelevant for color ordered amplitudes, as color d.o.f. stripped off anyway. E.g.
single quark-anti-quark pair

Atree
n (1q̄, 2q, 3, . . . , n) =gn−2

∑

σ∈Sn−2

(T aσ(3) . . . T aσ(n)) ī1
i2

Atree
n (1q̄, 2q, σ(3), . . . , σ(n))

Color ordered Atree
n (1q̄, 2q, 3, . . . , n) from two-gluino-(n− 2)-gluon amplitude.

For more than one quark-anti-quark pair needs to accomplish:

(1) Avoid internal scalar exchanges (due to Yukawa coupling)

Motivation All Trees in N=4 SYM From N=4 SYM to Massless QCD Summary and Outlook

N=4 SYM vs QCD

Problem 1: Color structure of both theories is different
gluinos in adjoint representation
quarks in fundamental representation

Solution: consider color-ordered amplitudes (color factored out)

Problem 2: Avoid scalar exchange

B

! +AA

+B ! B

! +AB

+A !
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From N = 4 to massless QCD trees

(2) Allow all fermion lines present to be of different flavor

How to get from N = 4 SYM to (massless) QCD trees?

mechanism 1: choose equal flavour
→ scalar exchange is eliminated

mechanism 2:
choose unequal flavour to distinguish between two channels

[14/30]

(3a) =
1! 1+

1! 1+
1!

! +

! +
! +

(3c) =
1! 1+

2+ 2!
! +

!+
!+ 2+ 2!

(3e) =
! +

!
+
!

+ !
1!

1+
2+
2+

2! 2!

1+

1! 1+

1!
1+

1!
1+

(3b) =
1! 1+! +

!+
! +

2+ 2!
1+1!

(3d) =
1! 1+! +

!+
! +

2!
2+3!

3+
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From N = 4 to massless QCD trees

Also worked out explicitly for 4 quark-anti-quark pairs.

Conclusion: Obtained all (massless) QCD trees from the N = 4 SYM trees

Comparison of numerical efficiency to Berends-Giele recursion: Analytical
formulae faster for MHV and NMHV case, competitive for NNMHV
[Biedermann, Uwer, Schuster, Plefka, Hackl]
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