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The problem of non�radial oscillations of stars can be formulated as a problem of

resonant scattering of gravitational waves incident on the potential barrier generated

by the spacetime curvature� This approach discloses some unespected correspondences

between the theory of perturbations of stars and the theory of quantum mechanics� New

relativistic e�ects are predicted� as the resonant behaviour of the axial modes in slowly

rotating stars� due to the coupling with the polar modes induced by the Lense�Thirring

e�ect�

�� Introduction

Non�radial oscillations of stars are manifested in a variety of astrophysical situations�

For example� they are observed in the sun� and the corresponding frequencies� measured

with very high accuracy� are used in modern heliosysmology to investigate the internal

structure of the star� Moreover� non�radial pulsations are thought to be at the origin of

the drifting subpulses and micropulses detected in some radio sources� and of the quasi�

periodic variability seen in some X�ray burst sources and in a number of bright X�ray

sources �McDermott� Van Horn � Hansen ����	� Due to their central role in astrophysics�

oscillations of stars have been extensively studied both in the framework of the newtonian

theory of gravity� and in general relativity� According to general relativity� a star vibrating
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into non radial modes emits gravitational waves� whereas gravitational waves do not

exist in the newtonian theory� This di�erence is a substantial one� and it is the key

point of a recent reformulation of the relativistic theory of stellar perturbations� whose

main results we shall describe in this paper� This work has been developed in a series

of papers� Chandrasekhar� Ferrari a�b�c�d� Chandrasekhar� Ferrari � Winston� �����

Chandrasekhar� Ferrari e� to be referred to hereafter respectively as Paper I�II�III�IV�V

and VI�

It is useful to clarify what are the speci
c questions to which one is addressed in formu�

lating a theory of stellar oscillations� When a star is perturbed by some external agency�

after a transient which depends on the cause of the perturbation� it will start to oscillate

at some characteristic frequencies� that� as we have seen� appear to be coded in various

radiative processes� Gravitational waves will also be emitted with these frequencies� and

with some characteristic damping times which depend on the structure of the star� The

determination of these characteristic frequencies is therefore one of the main objects of

the theory� The new formulation of the problem of stellar oscillations presents several

novelties with respect to the existing relativistic theory developed by Thorne and his col�

laborators �Thorne�Campolattaro ����� Price � Thorne ����� Thorne ����	� It leads to

a di�erent interpretation of the problem� which discloses some surprising and fascinating

analogies with the theory of quantum mechanics� Moreover� it introduces a remarkable

simpli
cation of the problem� and allows a generalization of the theory to the case in

which the star is slowly rotating� New phenomena� as the resonant behaviour of the axial

modes� and the coupling between polar and axial modes induced by the Lense�Thirring

e�ect� will emerge�

But in order to understand how the anticipated novelties are introduced by the new

theory� we need to summarize and compare the newtonian theory and the previously






formulated relativistic theory�

In the newtonian theory the equations that govern the adiabatic perturbations of

a spherical star constitute a fourth�order linear di�erential system which couples the

perturbation of the newtonian potential with the perturbations of the variables describing

the �uid� All quantities are usually assumed to have a time dependence � ei�t� where

� is a constant frequency� an assumption which implies a Fourier decomposition of the

modes of vibration� The system of equations must be integrated from the center to the

surface of the star� with the boundary conditions that i	 all physical quantities are regular

at the origin� and ii	 the perturbation of the pressure� �p� vanishes at the surface� These

conditions are satis
ed only for a speci
c set of real values of �� f�ng� which are the

frequencies of the normal modes� Thus the problem of 
nding the frequencies of the

normal modes of a star in newtonian theory is an eigenvalue problem� one has to 
nd

the real values of � such that the corresponding solution of the equations satis
es all the

boundary conditions�

A relativistic theory of stellar perturbations can be constructed as a generalization of

the newtonian theory� The resulting system of equations splits into two decoupled sets�

the polar modes� �the even modes in Thorne�s notation	� that correspond to the tidal

modes already present in the newtonian theory� and the axial modes �odd modes	� whose

e�ect is to induce a stationary rotation in the star� but no pulsation in the �uid� The

axial modes do not have a counterpart in the newtonian theory� and since they do not

induce any motion in the �uid� they have been disregarded as irrelevant in the literature�

However� as we shall see in sections � and �� under suitable circumstances they can exhibit

very interesting properties�

Much more attention has been focused onto the polar modes� due to the fact that they

do excite pulsations in the �uid� In the theory developed by Thorne and his collaborators it
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has been shown that the system of equations governing the polar perturbations can still be

reduced� as in the newtonian case� to a fourth�order linear di�erential system that couples

the perturbations of the metric with the perturbations of the �uid� �The reduction to a

fourth order system has been accomplished by Lindblom� Detweiler ����	� This system

describes the evolution of the perturbations inside the star� However� unlike the newtonian

case� at this stage the description of the problem is not complete� The perturbations in the

interior must be matched with the perturbations of the gravitational 
eld in the exterior

of the star� to properly take into account the emission of gravitational waves� In general

relativity the frequencies of oscillation of a star are complex� The presence of an imaginary

part derives from the fact that the mechanical energy of vibration is exponentially damped

by the emission of gravitational waves� Consequently� the corresponding modes are called

quasi�normal modes� They are de
ned as the solutions of the sistem of equations which

govern the polar perturbations� both inside and outside the star� that satisfy the following

boundary conditions� i	 regularity of all functions at the center� �ii	 �p � � at the surface�

�iii	 continuous matching of the interior and the exterior solution� and �iiii	 at radial

in
nity the solution must reduce to a pure outgoing wave� In the approach we have

described� the nature of the problem does not change substantially with respect to the

newtonian theory� it is still an eigenvalue problem associated to a system of equations

which couples� in the interior of the star� the perturbations of the gravitational 	eld with

the perturbations of the �uid�

The new relativistic theory of stellar perturbations has been constructed having as a

guide the theory of perturbations of black holes rather than the newtonian theory� In order

to describe the perturbed spacetime we have choosen the same gauge which has been used

to study the perturbations of a Schwarzschild black hole �see The mathematical theory

of black holes� Chandrasekhar ����� this book will be referred in the sequel as M�T�	�
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This assumption� as remarked by Price � Ipser �Price � Ipser ����	� corresponds to an

incomplete constraint on the coordinates� However this additional degree of freedom has

no physical consequences because it is eliminated by the requirement that all perturbed

quantities are well behaved at r � �� Conversely� this choice is rich in consequences and

implications� The 
rst is that the resulting equations are particularly simple both for

the polar and for the axial modes� A scrutiny of the structure of the equations for the

polar modes immediately shows that it is possible to decouple the equations describing

the perturbations of the gravitational 	eld from the equations describing the perturbations

of the �uid� As a consequence� the equations for the perturbed gravitational 
eld can be

solved with no reference to the motion that can be induced in the �uid� This is a relevant

di�erence between our approach and the newtonian approach �or its previous relativistic

generalization	� In fact� due to this decoupling� the problem of 
nding the frequencies

of the quasi�normal modes is transformed into a problem of resonant scattering� But in

order to fully understand the physical content of the theory and its consequences� we now

need to enter into the details of its mathematical formulation�

�� The equilibrium con�guration

The metric for a static� spherically symmetric distribution of matter can be written

in the standard form�

ds� � e���dt	� � e����dr	� � r��d�� � sin� �d��	� ��	

Inside the star� the functions � and �� can be determined by solving Einstein�s equations

coupled to the equations of hydrostatic equilibrium� We shall assume that the star is

�We shall adopt the convenctions G � c � �� Gij � �Tij� and the Riemann tensor de�ned as in M�T�

ch� �
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composed by a perfect �uid� whose energy�momentum tensor is given by

T �� � �p� �	u�u� � pg��� �
	

where p and � are respectively the pressure and the energy density� that are assumed to

have an isotropical distribution� and u� is the four�velocity of the �uid� By de
ning the

mass contained inside a sphere of radius r as

m�r	 �
Z r

�
	r�dr� ��	

the relevant equations are

��r � � p�r
p� �

� ��	�
�� 
m�r	

r

�
p�r � ��	� p	

�
pr �

m�r	

r�

�
� ��	

and e��� � ��� 
m�r	

r
	��� ��	

When the equation of state of the �uid is speci
ed� eqs� ��	 and ��	 can be solved

numerically and the distribution of pressure and energy�density through the star can be

determined� Once � and p are known� eq� ��	 can be integrated

� � �
Z r

�

p�r
��� p	

dr � ��� ��	

The constant �� is 
xed by the condition that at the boundary of the star� r � R� the

metric reduces to the Schwarzschild metric

�e��	r�R � �e����	r�R � �� 
M
R� ��	

where M � m�R	 is the total mass�

Outside the star the metric is the Schwarzschild metric in its standard form

ds� �
�
�� 
M

r

�
�dt	� �

�
�� 
M

r

���
�dr	� � r��d�� � sin� �d��	� ��	
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�� The perturbed spacetime

We shall restrict our analysis to the study of axisymmetric perturbations of a star�

This assumption implies no loss of generality� since� due to the spherical symmetry of the

background� non�axisymmetric modes can be deduced from axisymmetric perturbations

by a suitable rotation of the polar axes �see M�T� x��
�	� A line�element appropriate to

describe an axially symmetric� time�dependent spacetimes is

ds� � e���dt	� � e���d�� q�dx
� � q�dx

� � �dt	� � e����dx�	� � e����dx�	�� ���	

In the following we shall project the equations onto an orthonormal tetrad

ei�a�e
j

�b�gij � ��a��b�� ���	

where ��a��b� � �����������	�

When a star is perturbed� each element of �uid su�ers an in
nitesimal displacement

from its equilibrium position� identi
ed by the lagrangian displacement 
�� Consequently�

the metric and the thermodinamical variables change by an in
nitesimal amount with

respect to their unperturbed values �indicated by a bar	

� �� �� � �� �� �� ��� � ��� 	 �� �	� �	 ��
	

� �� �� � �� �� �� ��� � ��� p �� �p� �p�

and

� �� �� � q� �� �q� � q� �� �q�� ���	

It should be recalled that �� q� and q� are zero in the unperturbed state� All perturbed

quantities depend on t� r and �� If we now write Einstein�s equations� the hydrodynam�

ical equations and the conservation of barion number �see Paper II xx� and ��	 we 
nd

that they decouple into two sets� the polar modes� involving the variables given in eqs�
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���	 and the lagrangian displacement 
�� and the axial modes� involving the o��diagonal

perturbations of the metric ���	� The same decoupling into axial and polar modes also

occurs when a Schwarzschild black hole is perturbed� However� as we shall see in the

following� polar and axial perturbations of stars behave di�erently�

�� The axial modes

The axial modes do not have a newtonian counterpart� They are purely gravitational

modes� since they do not produce any motion in the �uid except for a stationary rotation�

The equations for the axial modes are the following�

�R������ � 
�T������ � �e����������Q��	�� � e����������Q���t � �� ���	

�R������ � 
�T������ � �e����������Q��	�r � e����������Q���t � �� ���	

where�

Q�� � �q��� � �q��r� Q�� � ���r � �q��t� Q�� � ���� � �q��t �

Assuming that all perturbed quantities have a time dependence ei�t� eqs� ���	 and ���	

can easily be reduced to the following second order equation

�e�����������X�r	�r � �e�����������X��	�� � ��e�����������X � �� ���	

where we have put

e�����������Q�� � X� ���	

Equation ���	 can be separated by expanding the function X in terms of the Gegenbauer

polynomials C�
n��	� de
ned by the equation

�
d

d�
sin�� �

d

d�
� n�n� 
�	 sin�� �

�
C�
n��	 � � � ���	
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By introducing a new radial variable r� de
ned as

r� �
Z r

�
e�����dr� ���	

and putting

X � rZ�r	C
� �

�

�����	� �
�	

eq� ���	 reduces to the following radial equation

d�Z

dr��
� ���� U�r	�Z � �� �
�	

where

U�r	 �
e��

r�
����� �	r � r��	� p	� �m�r	� � �

	

Outside the star � and p are zero and eq� �

	 reduces to the Regge�Wheeler potential

�Regge � Wheeler ����	�

Thus the axial modes are completely described by the Schroedinger equation �
��� valid

from the center of the star to radial in	nity� with a potential barrier �

�� that depends on

how the energy�density and the pressure are distributed in the interior of the unperturbed

star�

Given a model of star� solution of the equilibrium equations� eq� �
�	 can be integrated

numerically� The solution free of singularities at the origin has the expansion

Z � rl�� �
�


�
l � �	
f�l� 
	�

�

�
�
l � �	�� � p��� ���grl�� � ��� � �
�	

where �� and p� are the values of the energy�density and of the pressure at the center of

the star� and �� � e����� The asymptotic behaviour of the function Z when r� �� is

Z � � f�� �
n� �

�r
� �


��
�n�n� �	� � �M���

�

r�
� ���g cos �r�

� f� � �
n � �

�r
� �


��
�n�n� �	� � �M���

�

r�
� ���g sin�r�� �
�	

�



� and �� which will play a relevant role in the following development of the problem� are

functions of � � and can be determined by matching the solution obtained by numerical

integration of eq� �
�	� with the asymptotic behaviour �
�	�

Since the axial modes are described by the Schroedinger equation �
�	� the problem

of studying the axial perturbations of a spherical star is a problem of pure scattering in a

spherically symmetric� static potential� Therefore we can apply the methods developed in

the framework of quantum mechanics in the context of the classical theory of relativity�

We can assume that the star is perturbed by an incident gravitational wave of arbitrary

frequency� and study the response of the star by evaluating how much of the incident wave

will be transmitted or re�ected by the potential barrier� in the same way in which the

properties of a nucleus described by a Schroedinger equation are investigated by scattering

waves of di�erent energy on its potential barrier�

A relevant question which emerges at this point is whether the scattering is� in our

context� resonant� If it is not resonant� the star will simply behave as a center of elastic

scattering for incident gravitational radiation� Conversely� if it is resonant� the star will

be able to emit gravitational waves with frequencies equal to the characteristic resonance

frequencies� An extensive answer to this question will be given in section ��
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�� The polar modes

The polar modes couple the perturbations of the diagonal part of the metric ���	

���� ��� ���� ���	� with the perturbations of the energy density ��� of the pressure �p� and

the lagrangian displacement 
�� In contraxt with the case of the axial modes� polar modes

do excite the motion of the �uid that composes the star�

We shall assume that the perturbations take place adiabatically� i�e�� that the changes

in the pressure and in the energy�density arise without dissipation�

The equations which describe the polar perturbations are the Einstein equations� the

hydrodynamical equations� and the conservation of barion number� Since we are mainly

interested in showing the results of the new theory� we shall omit the esplicit derivation

of these equations which can be found in Paper I and II� Here we only remark that the

relevant equations can be separated by performing the following substitutions in terms of

the Legendre polynomials� Pl� and their derivatives�

�� � N�r	P��cos�	 ��� � L�r	P��cos �	 �
�	

��� � T �r	P� � V �r	P��	�	 �� � T �r	P� � V �r	P��	 cot� �

�cf� M�T� p� ���� eqs� ���	����	 originally due to J�Friedman	� and

�p � ��r	P��cos�	 
�	� p	e�������r� �	 � U�r	P�

�	 � E�r	P��cos�	 
�	� p	e�������r� �	 � W �r	P��	 � �
�	

where �� and �� are respectively the r and � tetrad�components of the lagrangian displace�

ment� After the separation� we are left with a system of coupled equations involving the

following variables� N�r	� L�r	� T �r	� V �r	� which describe the radial part of the pertur�

bation of the metric� and U�r	� W �r	� ��r	� E�r	� which describe the radial part of the
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perturbation of the �uid� The resulting equations are�

�
d

dr
�
�
�

r
� ��r

��
�
T � kV 	� 


r
L � � U� �
�	

�T � V �N	�r�
�
�

r
� ��r

�
N �

�
�

r
� ��r

�
L � �� �
�	

�



e����

�



r
N�r �

�
�

r
� ��r

�
�
T � kV 	�r � 


r

�
�

r
� 
��r

�
L
�
�

�




�
� �

r�
�
nT � kN	 � ��e����
T � kV 	

�
� �� �
�	

V�r�r �
�



r
� ��r � ���r

�
V�r �

e���

r�
�N � L	 � ��e������V � �� ���	

W � ��T � V � L	� ���	

� � ��



��e���W � �	� p	N� ��
	

U �
�����

�e���W 	�r � �Q� �	��r
�
�
���e���W 	 � �	�r �Qp�r	N �

�
�

h
��e��� � e������r


�p
�	�r �Qp�r	

i � ���	

E � Q��
e����


�	 � p	
�	�r �Qp�r	U� ���	

where

k � ��� � �	� 
n � ��� �	�� � 
	 � k � 
� Q �
��� p	

�p
� ���	

and

� �
�	� p	

p
�
�p

�	
	entropy�const � ���	

is the adiabatic exponent �de
ned in Paper I� equation ����		�

One can immediately recognize that eqs� ���	����	 give the �uid variables as a combi�

nation of the metric perturbations T � V � L� and N � Therefore� if we replace the expressions

of U and � given by eqs� ���	 and ��
	 on the right�hand side of eqs� �
�	 and �
�	� we

are left with a system of equations which involves only the perturbations of the metric

functions �T� V� L�N	�

�




It should be stressed that the decoupling of the equations governing the metric pertur�

bations from the equations governing the hydrodynamical variables is possible in general�

and requires no assumptions on the equation of state of the �uid�

We are therefore in a situation totally di�erent from the newtonian case� we can solve

the equations for the perturbations of the metric independently on the motion which is

induced in the �uid�

Outside the star the variables related to the �uid� � and U � vanish and the system of

equations �
�	����	 can be reduced to a single Schroedinger equation �the Zerilli equation

�Zerilli ���
a�b		 with an associated potential barrier

�
d�

dr��
� ��

�
Z � V Z� ���	

where the function Z is de
ned as

Z �
r

nr � �M

�
�M

n
X � rL

�
� ���	

and

V �r	 �

�r � 
M	

r��nr � �M	�
�n��n � �	r� � �Mn�r� � �M�nr � �M�� � ���	

The radial variable r� is the �tortoise� coordinate

r� � r � 
M log�
r


M
� �	� ���	

We now want to integrate the perturbation equations both inside and outside the star�

�a� The integration of the equations

In order to numerically integrate the decoupled system for �T� V� L�N	 in the interior

of the star �we assume that the aforementioned substitution for U and � in eqs� �
�	 and

�
�	 has been performed	� we need to 
nd the behaviour of these functions near r � ��

��



We can seek a power series solution of the type

�T� V� L�N	 � �T�� V�� L�� N�	r
x �O�rx��	� ���	

where x is an exponent to be determined� but if we substitute these expressions into

the equations we discover that the system is linearly dependent near the origin� This

di�culty can be circumvented by introducing a suitably de
ned new variable� For the

sake of simplicity� in the following we shall restrict our consideration to the case when

the �uid obeys a barotropic equation of state� i�e� when the pressure is a unique function

of the energy density� p � p��	� In this case Q � ��r

p�r
� and the equations considerably

simplify� We shall replace the variable T by the new variable G de
ned as

G � ��r�
n� �

n
X � T ��r �

�

r�
�e��� � �	�n�N � T 	 �N � �

��r
r
�N � L	�

� e����	� p	N �
�



��e��������L� T �


n � �

n
X� � ��
	

and the variable V by X � nV �

The 
nal set of equations we shall integrate is

X�r�r �
�



r
� ��r � ���r

�
X�r �

n

r�
e����N � L	 � ��e�������X � �� ���	

�r�G	� r � n��r�N � L	 �
n

r
�e��� � �	�N � L	 � r���r � ���r	X�r � ��e�������rX � ���	

���rN�r � �G � ��r�X�r � ��r�N � L	� � �
�

r�
�e��� � �	�N � rX�r � r�G	 ���	

�e����	� p	N �
�



��e�������

�
N � L�

r�

n
G �

�

n
�rX�r � �
n� �	X�

	
�

�L�r � �N � 
X	�r �
�
�

r
� ��r

�
��N � �L� 
X	 � ���	

�
�



r
� �Q� �	��r

� �
N � L�

r�

n
G �

�

n
�rX�r �X	

�
�

��



This is a 
fth�order linear di�erential system� It has been shown �Price � Ipser ����	 that

it can be reduced to a fourth order system� however we prefer not to use that reduction

because our equations are considerably simpler�

The system of equations ���	����	� which involves only the perturbations of the grav�

itational 
eld� can now be integrated from the center to the surface of the star� in the

following way� As before� we shall assume that� near the origin� the functions have the

asymptotic expansion

�X�G�N�L	 � �X�� G�� N�� L�	r
x � �X�� G�� N�� L�	r

x�� � ���	

where both the exponent x and the coe�cients of the expansion have to be determined

by inserting eq� ���	 into equations ���	����	� and by setting to zero the coe�cients of

di�erent powers of r� From the lower order terms we obtain a homogeneous algebraic

system of four equations for the four coe�cients �X�� G�� N�� L�	

x�x� �	X� � n�L� �N�	 � � ���	

��a� b	x� ����X� � �x� 
	G� � n�a� b	N� � n�a� b	L� � ��
�a� b	x�

���

n

�x� 
n� �	

�
X� �G� � a�x� �	N� �

�



���N� �

�



���L� � �



�
x
�
n� �

n

�
� 


�
X� � �x� �	�N� � L�	 � ��

where a and b are the coe�cients of the expansion of the metric functions

e��� � � � br� � � � �



�
��	r

�� e�� � � � ar� � � � �p� �
�

�
��	r

�� ���	

The system ���	 admits a non�trivial solution only if the determinant is zero� This con�

dition provides the indicial equation for the determination of x

na�x� �	�x� �	��x� �� �	� � � � ���	

��



Surprisingly� we see that there are only two coincident values of x which correspond to

regular solutions� i�e� x � l� That means that� although our original system is of order


ve� only two independent solutions are acceptable� This is a great simpli
cation with

respect to the old theory� where four independent solutions had to be integrated through

the star and then matched in order to satisfy the boundary conditions� In selecting the

admissible values of x� we eliminate the extra degree of freedom due to our incomplete

gauge speci
cation� A possible choice for the two independent solution is

�	 L� � �� N� � �� X� � � n

��� � �	
N�� ���	

G� � �
�



� � �	

�
a� b� �

��� � �	
��a� b	�� ����

	
N� �


	 N� � � L� � �� X� � � n

��� � �	
L�� ��
	

G� � ��



� � �	

�
a� b�

�

��� � �	
��a� b	�� ����

	
L� �

The coe�cients �X�� G�� N�� L�	 in the expansion ���	� can be found by equating to zero

the coe�cients of the next power of x into the expanded equations�

We can now numerically integrate eqs� ���	����	� with the initial conditions ���	���
	�

It remains to be ascertained whether two independent solutions are su�cient to satisfy

the boundary conditions required by the problem� As in the newtonian case� we need to

impose that the perturbation of the pressure �p vanishes at the surface r � R� but in

addition we need to impose that the interior solution joins continuously with the solution

in the exterior of the star� In order to satisfy the continuity condition at r � R� eqs�

�
�	����	� which are equivalent to eqs� ���	����	� must reduce to those appropriate to the

vacuum� and therefore it must be

� � �� and U � �� ���	

��



The vanishing of �p at the boundary is included in the 
rst of eqs� ���	� since � is the

radial part of �p �see eq� �
�		� Since we are solving the barotropic case� from eqs� ��
	

and ���	 it follows that

� � ��



��e���W � �	� p	N� and U �W�r � �Q� �	��rW � ���	

For a �uid star � and p tend to zero at the boundary� Moreover

Q �
��r
p�r

� � Q�

�R� r	
� ��r � ���� and W � �R� r	W�e

��R�r� � ���	

where Q�� ���� W� and � are constant� Since �� p and W tend to zero� from equation ���	

it follows that the 
rst condition� � � �� is automatically satis
ed by any independent

solution� Conversely� from eqs� ���	 it follows that U tends to a constant value

U �W� � ���Q�W� � const � ���	

and we need to consider a linear combination of the two independent solutions in such a

way that the remaining condition� U � �� is satis
ed at the boundary� Therefore the two

degrees of freedom given by eq� ���	 and ��
	 are precisely what we do need to match the

interior and the exterior solution� and to satisfy the condition �p � ��

Now the strategy of integration is clear� we integrate the two independent solutions

of eqs� ���	����	 for the metric perturbations� with the initial conditions ���	 and ��
	�

Then we linearly superimpose the two solutions in such a way that at the boundary U � ��

At this point we have the values of X�L�X�r and L�r at r � R� and we can construct the

functions Z�R	 and Z�r��R	 given by

Z�R	 � lim
r�R��

r

nr � �M

�
�M

n
X � rL

�
� Z�r��R	 �

�
�� 
M

R

�
lim

r�R��
Z�r�r	� ���	

With these initial values� equation ���	 can be integrated� The asymptotic behaviour of

the function Z for large r is

Z � �

�
�� n� �

�

�

r
� �


��

�
n�n� �	� ���



M�

�
� �




n

�
�

�
�

r�
� ���

	
cos �r� ���	

��



�
�
� �

n � �

�

�

r
� �


��

�
n�n� �	� ��

�



M�

�
� �




n

�
�

�
�

r�
� ���

	
sin �r� �

where� as in the axial case� � and � are functions of � to be determined by matching the

integrated solution with the asymptotic behaviour ���	� The solution is now complete�

The consequences of the decoupling

In this section we have shown how to construct the solution for the polar modes

by solving a system of equations that do not involve the variables which describe the

perturbed �uid� they can be found� if required� from eqs� ���	����	 in terms of the metric

perturbations by simple algebraic relations� We therefore concentrate our attention on

the perturbations of the gravitational 
eld with no reference to the motion of the �uid�

and� again� we can treat the problem as a scattering problem� This is a relevant result

that does not have a counterpart in the newtonian theory�

A counterpart has to be found in the theory of perturbations of a Schwarzschild black

hole� In that case� both the polar and the axial modes are governed by a Schroedinger

equation� and the problem is manifestely a scattering problem� incident gravitational

waves are scattered by the curvature of the spacetime� The analogy is immediate in the

case of the stellar axial modes which� as we have seen� are also described by a unique

Schroedinger equation� In that case the potential barrier is generated by the curvature

of the spacetime produced by the particular distribution of energy density and pressure

inside the star�

In the case of the polar modes we do not have a simple problem in potential scattering�

as it was in the case of the axial modes� Here a Schroedinger equation holds only in the

exterior of the star� and a muchmore complicated 
fth�order system must be solved in the

interior� However we can still imagine that the perturbation is originated by an incident

polar gravitational wave� and that the incoming wave drives the �uid pulsations which

��



emit the scattered component of the wave�

The consequences of this new viewpoint will be manifest in the next sections where we

shall develop a very simple algorithm to 
nd the frequencies of the quasi�normal modes�

and a method to evaluate how the gravitational energy �ows through the star and in the

exterior� Another element of interest in this theory is the remarkable simpli
cation of the

problem� only two independent solutions are needed to 
nd the complete solution and

satisfy the boundary conditions�

	� An algorithm to �nd the frequencies of the quasi�normal modes

In Paper V we have developed a method to determine the complex characteristic

frequencies of the quasi�normal modes� which is based on the scattering nature of the

problem� We shall now formulate the theory in general� and then specify how it can be

applied to the axial and the polar modes� Let us consider a Schroedinger equation

d�Zc

dr��
� ��� � V 	Zc � �� ���	

where V is a spherically symmetric� short�range potential barrier � i�e� V � o�r��� 	 for

r� �� � We want to 
nd the complex values of the frequency such that the corresponding

solution of equation ���	� regular at r� � �� behaves as a pure outgoing wave at radial

in
nity� i�e�

Zc � e�i�cr�� when r� ��� ���	

where �c � � � i�i and Zc � Z � iZi � By separating the real and the imaginary

part in eq� ���	� we 
nd

d�Z

dr��
� V Z � ��� � ��i 	Z � 
��iZi � �� ���	

d�Zi

dr��
� V Zi � ��� � ��i 	Zi � 
��iZ � �� ��
	

��



We shall assume that �i � �� In our context this condition implies that the decay time

of the emission of gravitational waves� � � �
�i
� is much longer than the real part of the

frequency �� a condition which is always satis
ed for stars �only for black holes �i is

comparable with �	� If we now put Zi � �iY� and neglect the terms of order O���i 	 in

eqs� ���	 and ��
	� they become

d�Z

dr��
� ��� � V 	Z � �� ���	

d�Y

dr��
� ��� � V 	Y � 
�Z � � � ���	

From eq� ���	 it follows that

Y �r�� �	 �
�

��
Z�r�� �	 � ���	

and consequently

Zc�r�� �c	 � Z�r�� �	 � i�i

�
�

��
Z�r�� �	

�
� ���	

Therefore when �i �� �� we can construct the complex solution Zc corresponding to a

complex value of the frequency �c� by integrating only equation ���	 for the real part Z�

and for real values of the frequency ��

The asymptotic behaviour of Zc

When r� � �� the potential V tends to zero and eq� ���	 admits two linearly

independent solutions Z� and Z� which have the following asymptotic behaviour

Z� � cos �r� �O�r��� 	� Z� � sin�r� �O�r��� 	 �

Thus the general real solution Z is

Z�r�� �	 � ���	Z��r�� �	� ���	Z��r�� �	� ���	


�



where ���	 and ���	 are functions to be determined by matching eq� ���	 with the

integrated solution of eq� ���	 for di�erent initially assigned values of real �� From eq�

���	 and ���	 it follows that the complete solution for Zc� up to terms of order O���i 	 is

Zc � Z � i�i
�Z

��
� ���	Z� � ���	Z�� i�i��

���	Z� � ����	Z� � ���	Z �� � ���	Z ��� � ���	

where the prime indicates di�erentiation with respect to �� For su�ciently large values

of r� the behaviour of Zc is

Zc � ��� i�i�
� � i�i�r�	 cos �r� � �� � i�i�

� � i�i�r�	 sin �r�� ���	

It is clear that the terms proportional to r� would eventually diverge if r� ��� However�

in the limit �i �� �� the asymptotic behaviour ���	 that we use to determine � and �� is

established long before these terms begin to dominate� Therefore� if the value of r� where

we start to match the integrated real solution Z with the asymptotic behaviour� is large

enough that eq� ���	 can be applied� but not so far that the exponential growth has taken

over in eq� ���	� the diverging terms can be neglected� and the asymptotic form of Zc can

be written as

Zc � �



���� �i�

�	 � i�� � �i�
�	�ei�r� �

�



���� �i�

�	� i�� � �i�
�	�e�i�r� ���	

� I��	e�i�r� �O��	e�i�r� �

�That such value of r� does indeed exist has been shown be a direct veri
cation in Paper

V	� We now impose the outgoing wave condition� by setting to zero the coe�cient of the

ingoing wave� I��	� in eq� ���	

�� �i�
� � �� and � � �i�

� � � � ���	

Eliminating �i we 
nally 
nd

��� � ��� � � � ��
	


�



This equation says that if there exists a value of real �� say � � ��� where the function

��� � ��	 has a minimum� then the solution Zc at in
nity will represent a pure outgoing

wave� Therefore �� is the real part of the complex characteristic frequency belonging to

a quasi�normal mode� The imaginary part can be obtained from eqs� ���	 evaluated at

� � ��

�i � i
�

��







������

� � �

��







������

� ���	

Equation ��
	 suggests an alternative method to 
nd �i� Since the function ������	 has

a minimum when � � ��� in the region � � �� it can be approximated by a parabola

�� � �� � const
h
�� � ��	

� � ��i
i

���	

and �i can be determined by matching the values of ��� � ��	 obtained by numerical

integration� with eq� ���	�

The application of the algorithm we have described to the axial modes is straightfor�

ward� We integrate the Schroedinger equation �
�	 with the initial conditions �
�	 for

di�erent values of real �� For su�ciently large r�� we match the integrated solution with

the asymptotic behaviour of Z given in eq� �
�	 and determine the values of � and ��

Then we 
nd the values of � � �� where the resonance curve ��� � ��	 has a minimum

�if they exist	� �� will be the real part of the eigenfrequency� The imaginary part will

be found from eq� ���	� or alternatively� by 
tting the resonance curve with the parabola

���	� The same procedure can be applied in the case of the polar modes� The di�erence

with respect to the axial case is that inside the star we need to integrate the system of

equations ���	����	 in the manner described in section �� The purpose is to 
nd the initial

values for the function Z at the boundary of the star� which are needed to integrate the

Schroedinger equation ���	 outside the star� At su�ciently large values of r�� the inte�

grated solution will be matched with the asymptotic behaviour ���	� and � and � will be







determined� We shall then proceed as in the axial case�

To conclude this section we would like to stress the basic di�erence that exist between

the newtonian and the relativistic approach to the problem of 
nding the frequencies of

the normal �quasi�normal in the relativistic case	 modes� In the newtonian theory one

has to solve an eigenvalue problem associated to a system of equations which couple the

perturbations of the �uid with the perturbations of the gravitational 	eld� In the relativistic

theory we solve a problem of resonant scattering of gravitational waves by a potential

barrier� The implications of the analogy with resonant scattering in quantum mechanics

will be further discussed in the next sections�


� Some further analogies between oscillations of stars and resonant

scattering in quantum mechanics

There is clearly a strong resemblance between eq� ���	 and the Breit�Wigner formula

cross�section �
const

�E �E�	� �
�
��

�
���	

�see for example Landau � Lifschitz ����� pp��������	 used in atomic and nuclear physics�

and it is interesting to clarify this analogy� In the context of quantummechanics� resonant

scattering occurs when a system is in a quasi�stationary state that decays� as for example

a radioactive nucleus which emits an ��particle with energy E� and lifetime � � 	h


� The

Schroedinger equation appropriate to that problem is

d�Z

dr��
� �E � V 	Z � �� ���	

and one assumes that Z is an analytic function of the complex energy E� �In the notation

of this paper � � const
p
E� and the constant of proportionality is real and positive�	 The

complex plane is cut along the positive real E�axis in order to make Z a single valued


�



function� The asymptotic solution for large values of r� is of the form

Z�E	 � I�E	e�i
p
Er� �O�E	e�i

p
Er�� ���	

and if E is real and positive O�E	 � I��E	� and Z�E	 is real� The scattering amplitude

follows in the usual way

Sl � e�i�l � ���	l���I�
I	� ���	

where l is the angular momentum associated to the order of the Legendre polynomial�

and �l is the phase�shift� A quasi�stationary state corresponds to a zero of the function

I�E	 �or to a pole of the scattering amplitude Sl	� where the corresponding asymptotic

wave function ���	 reduces to a pure outgoing wave� In order to obtain the Breit�Wigner

formula� one postulates the existence of a pole lying close to the positive real axis� at some

complex energy E � E� � �
�i�� and by expanding I�E	 in the vicinity of the zero

I�E	 � const�E � E� �
�



i�	� ���	

the cross�section ���	 immediately follows�

Let us now see what is the connection between this approach and the algorithm devel�

oped in section �� We have shown that if the function ������	 has a minimum for a value

of real E �real �	� then the amplitude of the ingoing part of the asymptotic wavefunction

I�E	 is zero� provided � �� E ��i �� �	� Therefore� for such value E � E�� jI�E	j�

must also have a minimum and

II��� I�I � � � or I �
I � ��I��
I�	� ���	

where the prime indicates di�erentiation with respect to E� Thus� apart from the trivial

case I � � �� �I �
I	 is imaginary at E�� say �
i
�� Since the logarithmic derivative is

purely imaginary at E�� we may analytically continue the function I in the complex plane


�



and expand in the vicinity of E�

I�E	 � I�E�	�� � �I �
I	E�E�
�E � E�	� � I�E�	�� � 
i�E � E�	
��� ���	

A comparison with eq� ���	 shows that the Breit Wigner formula can now be derived by

the usual procedure� Thus our approach also leads to the Breit�Wigner formula� but we

have focused the attention on the amplitude of the standing wave prevailing at in
nity

A��	 �� 
Z� �
�

�

av� �� i�� ��
	

rather than on the amplitude of the ingoing part of the wave I��	� It should be stressed

however that� while in quantum mechanics the existence of a resonance is postulated� and

the values of E� and � are known from experiments� in our context we provide a method

to evaluate both �� and �i�

The analogies between the theory of oscillations of stars and quantum mechanics do

not end here� We shall see in the next section that a suitable generalization of the Regge

theory allows to de
ne the �ow of gravitational energy through the star�

�� The �ow of gravitational energy
 an application of the Regge theory

The Regge theory �Alfaro � Regge ����	 is applicable to the problem of potential

scattering when the wave equation is separable� and the wave function can be written

in terms of a radial function and a Legendre polynomial Pl�cos �	� In that case the

radial wave equation can be written by separating explicitely the �centrifugal� part of the

potential barrier

d�Z

dr�
�

�
�� � l�l� �	

r�
� U�r	

�
Z � �� ���	

and U�r	 is a short range� central potential� The amplitude of the standing wave at

in
nity is now considered as a function of the frequency and of the angular momentum l

A��� l	 � ���� l	 � i���� l	� ���	


�



and it is assumed to be an analytic function in the variables � and l� which are both

assumed to be complex� Further� to any given pole ��� � i�i� l�	� corresponding to a 
xed

integral value of the angular momentum l�� there exists a Regge pole in the complex

l�plane� ���� l� � ili	� belonging to the same quasi�stationary state� Consequently� in the

neighbourhood of ���� l�	� the amplitude A can be analytically continued either in the

complex ��plane

A��	 �
�
�A��	

��

�
����

�� � ��� � i�i	� ���	

and

jA��	j� � �� � �� �
�
�A��	

��

��
����

��� � ��	
� � ��i �� ���	

or in the complex l�plane

A��	 �
�
�A���� l	

�l

�
l�l�

�l � �l� � ili	�� ���	

and

��� � ��	 �
�
�A���� l	

�l

��
l�l�

��l� l�	
� � l�i �� ���	

It is now clear that we can generalize the algorithm developed in section � to 
nd the

resonance in the complex ��plane� to determine the corresponding resonances in the com�

plex l�plane� We shall assume that � � �� is known and 
xed� and that the angular

momentum is complex

lc � l� ili� ���	

If we assume that jlij �� l� in analogy with eq� ���	 the corresponding complex solution

Zc � Z � iZi� where now Z � Z�r���� l	� can be written as

Zc�r���� l� ili	 � Z�r���� l	 � ili

�
�

�l
Z�r���� l	

�
� ���	

and the complete complex solution Zc can be derived from the only knowledge of the

real solution Z�r���� l	� The procedure to 
nd l� and li is therefore the same as that


�



described in section � �eqs� ��
	� ���	 and ���		� with the only di�erence that now the

square amplitude of the standing wave at in
nity ������	 has to be considered a function

of real l�

Once l� and li are known� they can be substituted explicitely into eq� ���	� that

becomes

d�Zc

dr�
�

�
�� � l��l� � �	

r�
� U�r	

�
Zc � ili

�
l� � �	

r�
Zc �O�l�i 	� ���	

Multiplying equation ���	 by Z�c and subtracting from the resulting equation its complex

conjugate �complex conjugation is taken with respect to lc	� we 
nd that

d

dr
�Zc� Z

�
c �r � 
ili

�
l� � �	

r�
jZcj�� ��
	

where

�Zc� Z
�
c �r � Zc�rZ

�
c � Z�c�rZc ���	

is the wronskian� Since Zi is of order li �cfr� eq����		� up to terms of order O�l�i 	 jZcj� � Z��

and from equation ��
	 it follows that

�Zc� Z
�
c �r � 
ili�
l� � �	

Z r

�

dr

r�
Z�� ���	

The integral on the right�hand side converges for r � � and it is positive de
nite� In

quantummechanics the non constancy of the wronskian exhibited in eq� ���	 is interpreted

as the emission of a new particle in the 
eld volume� �see for example Landau � Lisfshitz

����� bottom of page ���	� The knowledge of the pole �l�� li	 is therefore essential to

evaluate eq� ���	�

The theory now described can be immediately applied to the axial modes� provided

they are resonant� The fact that the radial wave equation �
�	 is obtained by expand�

ing the wave�function in Gegenbauer polynomials C
� �

�

l��� instead of Legendre polynomial

Pl�cos �	� does not a�ect any conclusion we have reached so far� The radial equation �
�	


�



can be rewritten in a form analogous to eq� ���	�

d�Zc

dr��
�

�
�� � e��

r�
l�l� �	� U�r	

�
Zc � �� ���	

where

U�r	 � e��
�
��� p	 � �M

r�

�
� ���	

If we now assume that � � �� is the real part of the frequency of a quasi�normal mode

previously determined� and l � l� � ili� is the corresponding pole in the complex l�plane�

equation ���	 can be written in a form equivalent to eq� ���	

d�Zc

dr��
�

�
��� �

e��

r�
l��l� � �	 � U�r	

�
Zc � ili�
l� � �	

e��

r�
Zc� ���	

where Zc � Zc�r�� ��� l� � ili	� Multiplying by Z�c and subtracting from the complex

conjugate equation we 
nd

�Zc� Z
�
c �r� � 
ili�
l� � �	

Z r�

�

e��

r�
Z�dr�� ���	

In analogy with the interpretation of equation ���	 given in the context of quantum me�

chanics� we can interpret the right�hand side of eq� ���	 as the a measure of gravitational

energy which crosses a sphere of radius r��

It should be stressed that in order to de
ne the �ow of energy through and outside

the star we do need to use the Regge theory� One may ask why didn�t we try to evaluate

the �ux by assuming l real� � complex� and operating on eq� ���	 with the function Z�c

complex conjugate to Zc with respect to �� The result in that case would be

d

dr�
�Zc� Z

�
c �r� � ��i���ijZcj�� ���	

where now Zc � Zc�r�� �� � i�i� l�	� Consequently

�Zc� Z
�
c �r� � ��i���i

Z r�

�
jZcj�dr�� ����	


�



But in this case� if we require that the solution is exponentially damped in time� i�e�

�i � �� the asymptotic behaviour of jZcj� would be

jZcj� � e���ite��ir�� ����	

and the integral would explode� The application of the Regge theory is therefore essential

to circumvent the obstacle of the divergent integral� The question now is whether this

theory can be applied to the polar modes�

The resonant scattering of polar gravitational waves is not a conventional potential

scattering� Inside the star we have to integrate a 
fht�order di�erential system whose

solution must be properly matched with the solution of the Schroedinger equation which

governs the perturbations of the gravitational 
eld outside the star� Thus the Regge

theory cannot be applied in its standard form� However a generalization is possible� In

Part II of Paper I �eqs� ���
	�����		 it was shown that the polar perturbations allow a

conservation equation of the form

E��� � E��� � �� ���
	

where E is a vector we shall de
ne� x� � r and x� � � � cos �� By Gauss�s theorem�

it follows that� if C� and C� are any two closed contours� one inside the other� in the

�x�� x�	�plane Z
C�

�E�dx
� � E�dx

�	 �
Z
C�

�E�dx
� � E�dx

�	� ����	

provided E is not singular inside the area included between C� and C�� If we now assume

that the closed contour is a circle of radius r eq� ����	 becomes

� E� ��
Z 


�
r�E� sin �d� � const� ����	

which expresses the conservation of the �ux of the vector E across a spherical surface

of radius r surrounding the star� We shall now write explicitely E�� which is the only


�



component of E relevant to our problem�

E� � r�e���� sin �f����� ������ � ���� ����� � �������� � ��	
� � c�c� � ����	

� ������� � ��	
�
�� � c�c� �

h

���� p	��� � �� � ��	

� � �p�e������ � c�c
i
g�

Separating the variables as in eqs� �
�	� �
�	� after some reduction we 
nd

�

�
�
l � �	 � E� �� ��n� �	

Z r

�
e���� ��N � L	X� � �N � L	�X�dr ����	

� e����
n
�n� �	r��N �X	F � � �N �X	�F � � r���F ����F 	

o

� r�e����
�
�



r��r�UF

� � U�F 	 �
�


�� � p	
��U� ���U	

	
�

where we have de
ned F � L�X�W � Equation ����	 has been formally derived from the

equations describing the polar perturbations� by considering a solution ���� ���� ���� ��� ��	�

and the complex conjugate solution of the same equations� for real � and real l� Under

these conditions� according to eq� ����	� � E� � has the meaning of a conserved quantity�

But the boundary conditions of the problem discussed in section � do not allow a phys�

ically meaningful complex conjugate solution for real �s and real ls� Therefore equation

����	 cannot be used as it stands� However� we can assume� as we did for the axial modes�

that the polar perturbations are described by functions that are analytic in the complex

l�plane� and we can extend all perturbations as in eq� ���	� For example� we can assume

Nc � N�r���� l�	 � ili

�
�

�l
N�r���� l	

�
� Xc � X�r���� l�	 � ili

�
�

�l
X�r���� l	

�
� ����	

and similarly for the other functions� where N�r���� l	� X�r���� l	� etc� are solutions of

eqs� ���	����	 corresponding to real � � ��� and real l� In Paper VI we have shown that

this extension is indeed possible� and that to any pole ���� �i� there exists a corresponding

pole �l�� li� belonging to the same quasi�normal mode� Under these premises� the analytic

extension of � E� � in the complex l�plane can also be performed� and the right�hand

��



side of equation ����	 can be evaluated in terms of the extended solution ����	 to give

the �ux of gravitational energy through the star�

�� Some consequences of the new relativistic theory

One of the major novelties introduced by the relativistic theory that we have described

in the preceeding sections is that both the polar and the axial perturbations of a spherical

star can be studied as a problem of scattering of incident gravitational waves by the

curvature of the spacetime� However the two classes of modes di�er in one important

respect� the incidence of polar gravitational waves induces oscillations in the �uid� the

incidence of axial gravitational waves does not� It is known from the newtonian theory

that the polar modes are resonant� and frequencies of oscillation have been measured in

several astrophysical contexts� Thus stars are expected to emit polar gravitational waves

with these characteristic frequencies� The question now is whether the axial modes can

be resonant� and� in that case� what are the frequencies of the emitted gravitational axial

waves� We shall answer this question in two di�erent context� �a� very compact stars�

and �b� slowly rotating stars�

The phenomena which we are going to describe do not have any counterpart in the

newtonian theory since they derive from purely general relativistic e�ects�

�a� The resonant behaviour of the axial modes

In order to ascertain whether the axial modes can be resonant� in Paper IV we have

applied the method to 
nd the complex eigenfrequencies developed in section � to a model

of star with uniform energy density distribution� This model� although clearly unrealistic�

presents several advantages� The equilibrium con
guration is known as an exact solution

of Einstein�s equations �the Schwarzschild solution	� Moreover� this assumption enables

��



us to study the axial modes in a regime where the e�ects of general relativity are as strong

as they can ever become under conditions of hydrostatic equilibrium� The unperturbed

con
guration �c�f�r� S�Chandrasekhar � J�C� Miller� ����	� is

� � constant� m�r	 �
�r�

�
� p �

��y � y�	

��y� � y	
� ����	

e�� � ��y��y��
�

� e���� � ��� 
�r�

�
	�

y � ��� ��r�

�
	
�

� � y� � �� � 
�rR
�

�
	
�

� �

At the boundary of the star r � R�

e���r�R� � e�����r�R� � �� 
M
R� ����	

and the metric exterior to the star reduces to the Schwarzschild metric�

Homogeneous stars can exist only if their radius R exceeds � � times the Schwarzschild

radius Rs� or R
M � 
�
�� The models we shall consider in the following will be labelled

by the parameter �R
M	� For values of �R
M	 � 
��� we 
nd that the axial modes are not

resonant� The reason can be understood by plotting the potential barrier �

	� computed

for the model of star described in eqs� ����	� as a function of r
M for di�erent values of

�R
M	� as shown in 
g� �� It is known from atomic physics� that scattering by a potential

barrier will exhibit resonances if the potential has a minimun followed by a maximum�

and if the potential well is su�ciently deep to ensure the occurrence of quasi�stationary

states� In our present context we see that only when �R
M	 � 
��� namely when the

star becomes very compact� this condition is satis
ed� and the axial modes do become

resonant� In Table � it is also shown that the imaginary part of frequency dramatically

tends to zero as we approch the limit �R
M	 � 
�
�� Therefore� the more compact is the

star� the longer will be the time needed to damp the axial oscillation�

It is interesting to note that the axial quasi�normal modes that we have found for

�




Table �� The l � 
 axial resonances for homogeneous star with � � �

� M and � are measured in the units �
�

� and ��
�

� 	

� R
M
	 M �� �i


�
� �������� ��
�������� ��
� �����

�
� �������� ��������
 ���
 �����

��� �������� ������
� ��
� �����

��� �������� ������ ���
 ������

homogeneous stellar models with radii approaching the limiting radius� are not related

to the Schwarzschild quasi�normal modes� We might have expected that� when the star

tends to the limiting con
guration� the frequencies of the quasi�normal modes would tend

to those of a Schwarzschild black hole of the same mass� But� as on e can see from Table

�� this is not the case� For example� for a star with R
M � 
�
� we 
nd � � ������ while

a Schwarzschild black hole of the same mass would have � � ����� The reason is that the

nature of the scattering in the two cases �a compact star and a black hole	 is di�erent�

and di�erent are the boundary conditions associated to the problem� In the case of a star�

we require that at r � � the solution is free of singularity� and that at r � R the metric

functions and their derivatives are continuous� with no restrictions on the direction of the

�ow of radiation� In contraxt� in the case of a black hole the only boundary condition is

that at the horizon there cannot be an outward directed wave� and only inward radiation

can be present� Consequently� a black hole will be characterized by a re�ection and an

absorbtion coe�cient� while a star will behave as a center of elastic scattering for incident

radiation� The progressive increasing of the damping time � as the star tends to the

limiting con
guration means that the lowest quasi�stationary state is e�ectively trapped�

and the star cannot radiate in that resonance frequency� In conclusion� we have shown

��



that in extremely compact stars axial modes can become resonant� Since neutron stars are

likely to have radii in the range � � R
M � �� resonant scattering of axial gravitational

waves by neutron stars is not to be expected� However it is possible that these modes

may be excited as transients during the gravitational collapse�

�b� The coupling of the axial and polar modes in slowly rotating stars�

The theory of non�radial oscillations of stars has been developed by assuming that the

unperturbed star is static and spherically symmetric� However� all celestial objects are

known to be rotating� and a generalization of the theory is needed to describe realistic

situations� In Paper III we have considered the case of a star that rotates with an agular

velocity ! so slow that the distortion of its 
gure from spherical symmetry is of order !��

and can be ignored� For compact objects� small angular velocity means

!R �� �� ����	

a condition which is satis
ed by most realistic neutron star models� We have restricted

our analysis to the axial modes of slowly rotating stars�

The metric for the unperturbed spacetime is �Hartle ����� Chandrasekhar � Miller

����	

ds� � e���dt	� � e���d�� �dt	� � e����dx�	� � e����dx�	�� ����	

where �� �� ��� �� di�er from those of a spherical non�rotating star by quantities of order

!�� and � �that is zero in the non�rotating case	 is now of order !� The equations

governing �� �� ��� �� to order zero in ! are given in section �� The equation determining

� is

��r�r �
�

r
��r � ��� � �	�r

�
��r �

�

r
�
�
� �� ���
	

where we have de
ned

� � !� �� ����	

��



In the vacuum outside the star� �� � � � � and the solution of eq� ���
	 can be written

as

� � !� 
Jr��� ����	

where J is the angular momentum of the star� Both inside and outside the star � is a

function of r only� and the continuity of � at the boundary requires that ��	r�R � �JR���

It should be noted that the function � is responsible for the dragging of inertial frames

predicted by the Lense�Thirring e�ect�

The equations governing the perturbations of a slowly rotating star can be derived by

assuming that the metric appropriate to describe the phenomenon has the same form as

eq� ���	� We retain the hypothesis of axisymmetric perturbations because the distortion

of the unperturbed con
guration from spherical symmetry due to the rotation is only of

order !�� However� there will be relevant changes with respect to the equations that we

have derived in section � for the non�rotating case� since now the unperturbed �uid is in

slow rotation with a velocity

v��� � �� �� � 
� �	� v��� � V � e����!� �	 � e����� ����	

where vi � xi�t� and v�i� are the tetrad components� The basic equation appropriate to

describe the axial modes in the present context is

�e�����������X�r	�r � �e�����������X��	�� � ��e�����������X ����	

� �� r���� � �� � ��� � ���	�� � ����� p	e���������� � ����� p	e���������r�

where we have made the assumption that all perturbed quantities have the same time�

dependence ei�t� and that X is the same function de
ned in eq� ���	� Equation ����	

should be compared with eq� ���	 valid in the non�rotating case� The di�erence is that on

the right�hand side of eq� ����	 in place of zero we have a combination of the perturbations

���� ��� ���� ���� ��� ��	� that describe the polar modes� multiplied by � and ��r�

��



Thus� if a star is slowly rotating the polar and the axial modes are no longer indepen�

dent� they couple through the 
coupling function� � that is responsible for the dragging of

inertial frames�

In order to further clarify the nature of this coupling� we may expand all perturbed

quantities in terms of !� say �X � X� � !X� � ���� �� � ��� � !��� � ���� etc�	� Let

us consider eq� ����	 at lower order in !� Since � is of order !� we shall substitute

to ���� ��� ���� ���� ��� ��	� their zero order terms in !� i�e� ����� ���� ����� ��
�
�� �

�
� � �

�
�	�

Consequently� the axial perturbations X on the left�hand side of eq� ����	 will be of order

one in ! �X�	�

�e�����������X�
�r	�r � �e�����������X�

��	�� � ��e�����������X� ����	

� �� r����� � ��� � ���� � ����	�� � ����� p	e����������� � ����� p	e����������r�

In a similar manner� the zero�order �with respect to !	 axial perturbations X� will be

the source for the 
rst order polar modes� ����� ���� ����� ��
�
�� �

�
�� �

�
�	� of a slowly rotating

star� a case that we are not going to treat in the present paper�

Since the left�hand side of eq� ����	 is the same as eq� ���	� we can expand X� in terms

of Gegenbauer polynomials �see eq� �
�		� It should be stressed that ����� ���� ����� ��
�
�� �

�
�� �

�
�	

are the solution of the polar equations to order zero in !� namely the solution appropriate

to a non�rotating star that we have discussed in section �� Therefore� the �source term�

on the right�hand side can be separated in terms of Legendre polynomials as indicated

in eqs� �
�	��
�	� By introducing the variable r� de
ned in eq� ���	� and the function

Z� � X�
r� we 
nd that eq� ����	 reduces to

�X
l��

�
d�Z�

l

dr��
� ��Z�

l �
e��

r�
�l�l� �	r � r���� p	� �m�r	�Z�

l

	
C
� �

�

l����	 ����	

� �
e��

r�
J��� ��	�

�X
l��

S�
l �r� �	�

��



where

S�
l � ��r��
W

�
l �N�

l � �L�
l � 
nV �

l Pl�� � 
�V �
l Pl����� � 
�W �

l �Q� �	��rPl��� ����	

and Q has been de
ned in eq� ���	� Eq� ����	 is valid from the center of the star up

to radial in
nity� remembering that outside the star� �� p and W are zero� In order to

eliminate the angular dependence in eqs� ����	� we multiply by C
� �

�

m�� and integrate over

the range � � cos � � ���� �	� Since C
� �

�

m��� Pl�� and �Pl���� are of opposite parities� it

follows that the polar modes belonging to even l can couple only with the axial modes

belonging to odd l� and conversely� and it must be

l � m� �� or l � m� �� ��
�	

Moreover� a propensity rule is true� Due to the behaviour of the source term S�
l near

the origin �for details� see Paper III� eqs� ���	����		� the transition l � l � � is strongly

favoured over the transition l � l � �� It is interesting to note that these �coupling

rules� are known in atomic theory� the 
rst is the Laporte rule� while the propensity rule

has been formulated �Fano�����	 in the context of light absorption� Once again� we are

dealing with a phenomenon in general relativity that has a counterpart in the theory of

quantum mechanics�

The problem which we have formulated is essentially a two�channel problem� the two

channels being the axial and the polar modes� and it is clear that a whole range of problems

with di�erent initial conditions can be formulated� We have seen that in general the axial

modes of a non�rotating star are not resonant� unless the star is extremely compact�

Conversely� the polar modes are always resonant� In a slowly rotating star the axial and

the polar modes couple in the manner that we have now described� and it is interesting

to ask whether� due to this coupling� the axial modes may exhibit resonances� To answer

this question we consider the following situation� Suppose that a polar gravitational wave

��



of frequency � excites the star in its quadrupole polar mode l � 
� If the star is slowly

rotating� the polar perturbation of order zero in !� �the same as if the star were non�

rotating	� will act as a source for the axial perturbation with m � �� according to the

Laporte and the propensity rule� as shown in eqs� ����	 and ����	� We can solve eq�

����	 and 
nd the values of � for which the solution at in
nity reduces to a pure outgoing

wave� All the methods developed in the previous sections can now be applied� since at

in
nity the right�hand side of eq� ����	 goes to zero at least as fast as r��� and the

wave equation tends to a homogeneous Schroedinger equation� As an example� in Paper

III we have applied this procedure to a politropic model of star� with a politropic index

n � ���� for di�erent values of the angular velocity !� For this star the axial modes were

not resonant in the non�rotating case� We have found that when the star does rotate the

axial modes become resonant� Their resonances are di�erent from that of the polar modes�

and in particular� the damping times are considerably longer �hundred times longer in the

example we have considered�� Thus� in a slowly rotating star� the axial modes are resonant

even if the star is not extremely compact� and this resonant behaviour is a consequence

of the coupling between the polar and the axial modes� that is induced by the dragging

of inertial frames�

��� Concluding remarks

The idea that certain types of variable stars owe their variability to periodic oscilla�

tions� originally due to Shapley �����	� received a 
rst mathematical formulation in ����

�Eddington ����a�b	� Since then� stellar pulsations have been studied both in the frame�

work of the newtonian theory� and in general relativity� and one might think that nothing

new can be said on the subject� However� if the search is focused on those phenomena

that are of pure relativistic origin� some new interesting e�ects emerge which disclose the

��



original content of the theory of general relativity�

A 
rst result of this approach is a totally new interpretation of the phenomenon of

non�radial oscillations of stars� we have shown that it can be studied as a problem of pure

scattering of gravitational waves by the curvature of the spacetime� This interpretation

is straightforward for the axial modes� since they are governed by a single Schroedinger

equation with a potential barrier depending on the particular distribution of energy den�

sity and pressure inside the star� In the case of the polar modes� the scattering nature of

the problem emerges as a consequence of the decoupling of the equations that govern the

perturbations of the gravitational 
eld from those that describe the perturbations of the

�uid�

Moreover� we have shown that� although the axial modes do not produce a pulsating

motion in the �uid� they can exhibit a resonant behaviour� either if the star is non�

rotating but compact enough� or if the star is slowly rotating� In this case the resonances

are induced by a coupling between the polar and the axial modes due to the dragging of

inertial frames�

These e�ects are new� They could not have been anticipated by the newtonian theory

of gravity� and they were obscured in the existing relativistic treatment of the problem�

An interesting possibility follows from these results� When a Schwarzschild black hole

is perturbed� both the axial and the polar modes are resonant� and they have exactely

the same resonances� Conversely� when a star is perturbed the spectrum of the axial

and the polar modes is di�erent� Thus� there is a clear signature in the spectrum of the

quasi�normal modes which allows to distinguish whether the emitting source is a star or

a black hole� An unanbiguous identi
cation of black holes will therefore be possible when

axial and polar gravitational waves will be detected�

But perhaps one of the most interesting consequences of our approach is that it dis�

��



closes analogies and correspondences between the theory of general relativity and the

theory of quantum mechanics� The fact that we can evaluate the frequencies of the

quasi�normal modes� and compute the �ux of gravitational radiation by generalizing the

Breit�Wigner and the Regge theory� or the existence of a Laporte� selection and propensity

rule which govern the coupling between the axial and polar modes of a slowly rotating

star� provide an example of a close interconnection between the two theories� that has

remained veiled for more than 
fthy years�
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FIGURE CAPTIONS

�g� �

The potential V for l � 
� computed for a model of homogeneous star and for di�erent

values of the ratio R
M � The discontinuity at r � R is due to the discontinuity of �� The

dashed lines are the values of ���M	� corresponding to the quasi�stationary states�

�



