Introduzione alle teorie supersimmetriche

Giovanni Ridolfi - INFN Genova

minario Nazionale di Fisica Teorica - Parma, 2-6 Settembre 2003

many respects

we are happy with the Standard Model

a unitary, renormalizable relativistic quantum field theory
amazingly consistent with data.

e problem of spontaneous gauge symmetry breaking (short
1ge of weak interactions) is solved in a simple way by the Higgs
chanism.

is also allows breaking of the flavour symmetry in a
enomenologically consistent way (flavour breaking confined in
» charged current interaction sector).

Achieving the same results without the Higgs mechanism is
extremely difficult.
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Conclusions and outlook

At the same time,

we are unhappy with the Standard Model.

Many unsatisfactory aspects. Among others:
e What is the origin of flavour symmetry breaking?
e Is there a grand unification?
e Where is gravitation?
The last two points raise further problems:
e Hierarchy

e Naturalness



o facts:

The masses of all known particles (including the minimal
Standard Model Higgs boson) are not far from the weak scale,
~ 200 GeV.

Much larger energy scales become relevant at some point

first question arises: why is the weak scale so much smaller than
» Planck scale, Mp ~ 10'° GeV, or the unification scale,
T ~ 1016 GeV?

is is usually referred to as the hierarchy problem.

Naturalness and fine tuning in a simple example

nsider a theory of two real scalars fields:
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sume A, o, § are all positive, small and comparable in
gnitude, and assume M? > m? > 0.

s the mass hierarchy m? < M? conserved at the quantum level?

Even worse: The Higgs mass (masses of scalar particles, in general)
is strongly sensitive to any large energy scale unless a fine tuning of
parameters is performed.

This is the so-called naturalness problem.

There is a very simple reason for this: scalar masses are not
naturally small, in the sense that no symmetry is recovered when
they are let go to zero.

Fermion and vector boson masses are naturally small: radiative
corrections are proportional to the masses themselves.

Compute one-loop radiative corrections to m? by taking the second
derivatives of the effective potential at the minimum ¢ = & = 0:
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Corrections proportional to M? appear at one loop. One can
choose ;1> ~ M? in order to get rid of them, but they reappear
through the running of m?(u?).

The mass hierarchy is preserved only if the parameters are such

that
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This is what we usually call a fine tuning of the parameters.



> same thing happens if m? <0, M2 > ‘m2| > 0. In this case the tree-level
ential has a minimum at

@ =0, ¢>=—6m2/)=0?
| the symmetry ¢ — —¢ is spontaneously broken. The degrees of freedom in
s case are ® and ¢’ = ¢ — v, with
m3 = M? mi, = —2m? = \?/3
one loop, the minimization condition m? + \?/6 = 0 is replaced by
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llowing the same procedure as in the unbroken case one finds
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th v ~ M without a suitable tuning of the parameters.

re A is an ultraviolet cut-off, to be identified with the energy
le at which the SM is no longer reliable, and the dots stand for
ms that do not grow with A.

dimensional regularization the A? term would be absent, but
itributions proportional to m%,m% would still be there.

en if the heavy degrees of freedom are not directly coupled to
» SM Higgs, it can be shown that similar contributions arise at

her orders.

In the absence of very special cancellations, the Higgs boson
becomes as heavy as the heaviest degrees of freedom.

Naturalness: a closer look

The scalar potential in the Standard Model:
V(9) = m? " + Alg[*

One-loop corrections to m? due to fermionic (a) or bosonic (b)

degrees of freedom:
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A symmetry that relates fermions to bosons would do the job, at
least at one loop. Suppose there are two scalars for each fermion:
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For suitable values of the couplings the quadratic divergence

disappears.

No surprise: with bosons and fermions in the same multiplet,
scalar masses are protected by the same (chiral) symmetry that
protects fermion masses from large radiative corrections.

Clearly, more restrictions will be needed in order to guarantee that

the cancellation takes place at all orders.



There is essentially one possibility:

ch a symmetry is called a supersymmetry: {Q, Qf} — pH

Q|boson) = |fermion) Q|fermion) = |boson) {Q,Q} ={Q",Q"} =0

— T =
e symmetry generator () (and its hermitian conjugate Q) carry [P, Q] =[P*, Q"] =0

n 1/2: it is a space-time symmetry. (more on this later). Further specifications:

e form of possible supersymmetry algebras is strongly e Q,Q' transform as spinors under the Lorentz group
1strained on the basis of very general theorems in field theory.

» example, it is impossible with ordinary symmetry generators * Q,Q" commute with gauge symmetry generators.

ements of a commutator algebra). In principle, we may have more than one Q: Q% i=1,...,N

(extended supersymmetry).

torical remark: symmetries that relate particles with different spin first
died in the context of approximate symmetries of hadrons. Non relativistic

) i . A few basic properties of a supersymmetric theory can already be
rk models have an approximate SU(6) symmetry (3 quark flavors with spin .
), which is observed hadron spectrum. It relates hadrons with the same recognlzed:

' tent, but diff t spi g K+ K*). C f imat . . . . . .
or content, but driierent spin (e-g ). Consequence of approximate e particles in the same supersymmetric multiplet (which we will
1 and flavor independence of quark-quark forces. .

call a supermultiplet) have equal masses and equal gauge
> Coleman-Mandula theorem tells us that this property cannot be ¢ f ti ti lectri h K i . d
sessed by a relativistic theory: with some reasonable assumptions, the most ranstormation properties (e ectric charge, weak 1sospin an
eral Lie algebra of symmetry operators that commute with the S matrix COIOI')

sists of Poincaré generators P, and J,,, plus ordinary internal symmetry ithi h ltiol h . 1 b £
erators that act on one-particle states with matrices that are diagonal in, e within the same supermultiplet, there i1s an equal number o

| independent of, momentum and spin. Crucial point: the Poincaré group is bosonic and fermionic degrees of freedom (a proof on the next

| compact, it has no non-trivial unitary representations. slide)

les out SU(6), but also Lie algebras of supersymmetry generators.



A proof (taken from S. Martin):

(—1)2*|boson) = +|boson)

(—1)2*|fermion) = —|fermion)

} = {(-1)*,Q} = {(-n*Q"} =0

1sider the subspace of states |i) within a supermultiplet with the same
nvalue p# of the four-momentum operator P*. ZZ |i)(i] = 1 within this
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e familiar lagrangian for a free, massive Dirac spinor is

L=9p(ig-m)y — (@—m)p=

ir-component Dirac spinors realize a reducible representation of

> Lorentz group:
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> two-component spinors £, {g transform independently under

rentz transformations.

terms of &5, £ we have
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Fermionic fields: a reminder

We use the Weyl representation of the Dirac matrices:

and
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