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● Inflation
● Light fields (m<<H)
● Curvaton
● Cosmological perturbations and observations
● From heaviness to lightness

Concise Oxford dictionary:
Curvaton / 'ku:vaton/  noun
Light scalar field partially or totally 
responsible for the primordial 
density perturbations 

 

OUTLINE: 



COSMIC MICROWAVE BACKGROUND 

[WMAP: Bennet et al., '03]

Perturbations are approximately:

● adiabatic

● Gaussian

● scale-invariant

● and no gravity waves (background) have been observed



STANDARD VIEW: 

INFLATION provides us with three things:

  Superluminal expansion

Origin of matter: reheating

Density perturbations  
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A QUESTION OF SCALES 
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INFLATION (in a nut-shell) 
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FRIEDMANN EQUATIONS



FIELD PERTURBATIONS  t   t , x 
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Evolution equation:

Using Fourier modes

Canonical variable:

Conformal time:

v k=a k

Canonical equation

[Mukhanov, Brandenberger and Feldman., Phys Rep.]



PERTURBATIONS  IN  DE SITTER
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HEAVY FIELD  m
φ
>>H
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Fluctuations of a heavy scalar field are diluted by inflation
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LIGHT FIELD  m
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Wavelengths smaller than the Hubble radius, 
k>>aH (| kη| >>1) are in the Minkowski 
vacuum state: 
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For de Sitter spacetime we can choose the Bunch-Davis vacuum: 
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in the large scales limit  

 ~H Quantum fluctuations of size H
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reheating

R.D.

ρ
φ inflation

H−1
−1

Moduli problem: [Coughlan et al., '83]

Weakly coupled light scalar fields (m<<H) are not diluted during inflation and 
can dominate the universe and decay during or after nucleosynthesis

LIGHT FIELDS

T ~1 M eV

Nucleosynthesis



LIGHT FIELDS

● Scalar field σ   negligible during inflation, ρ
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CURVATON
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Nucleosynthesis

[Linde and Mukhanov;
Mollerach, '90;
Enqvist and Sloth, '02;
Moroi and Takahashi, '01;
Lyth and Wands, '02;
Bartolo and Liddle, 03]

QUESTION: WHY???



CURVATURE PERTURBATIONS
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INFLATON PERTURBATIONS
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Slow-roll parameters

Relation between the inflaton potential
and the density perturbations
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Power spectrum

Tensor/ scalar ratio

Scalar spectral index

Constraints on the inflaton potential



OBSERVABLES:

P  , n S , r

nS−1=2−6 

r=16 

INFLATON PERTURBATIONS

[Leach and Liddle, 2002]

Data constraints
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INFLATON CONSTRAINTS
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INFLATON CONSTRAINTS
● Inflation is very economical but tightly constrained:
severe constraints on inflaton potential

CONSTRAINTS:

V , V ' , V ' '

COBE normalization

V =1 0−7 2 mPl
4

≪1 ⇒ mPl V ' /V ≪1

No gravity waves observed

Scale invariance
≪1 ⇒ mPl

2 V ' ' /V ≪1

● Some inflationary models motivated by particle 
physics (supersymmetry) require the violation 
of some of these constraints

[Dimopoulos and Lyth, 2002]

V ≪1 016 G eV 4 a n d m~ H

[Dvali and Kachru, 2003]



● The curvaton can generate perturbations and 
liberate the inflaton relaxing the constraints on 
inflaton potential: division of labour

COBE bound

≪1 ⇒ mPl V ' /V ≪1

~1 ⇒ m≪ H
m~H

V 1 0−7 2 mPl
4 ~1 016 G eV 4

CONSTRAINTS:

V , V ' , V ' '

Drawback: 

● more difficult to directly test inflation   

Superluminal expansion

Origin of matter: reheating

INFLATON

INFLATON

CURVATONDensity perturbations  



CURVATON GENERATED PERTURBATIONS
● Any light field (overdamped during inflation, m<<H) inherits the 
same quantum fluctuation (flat spectrum) as the inflaton

Curvaton σ  :  ≃H

=
4 r r 
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● By dominating the universe and decaying before nucleosynthesis 
the curvaton imprints its perturbations: generation of curvature perturbations

=
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≃
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i f ≪ mPl , a n d  ,dec.≃1≪

New extra parameter: σ   expectation value during inflation

● These may be much larger than the inflaton perturbations



OBSERVABLES:
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QUARTIC INFLATION

V =4

Quartic inflation is excluded at 
95% C.L. by combined WMAP data

Number of e-folds

60th e-folds

[Leach and Liddle, '03]

[Peiris et al., '03]



QUARTIC INFLATION + CURVATON

V =4 with 

Mixed perturbations with σ    ~ 0.5 m
Pl

Mixed perturbations with σ    ~ 0.1 m
Pl

[Langlois and F.V., '04]

*
Pure curvaton perturbations  σ    << m

Pl

 ,dec.=1Assume:



NON-GAUSSIANITIES

INFLATION: Non-Gaussianities generated from inflation are small:                        
[Maldacena, '03; Acquaviva et al., '02; Bernardeau and Uzan, '02] 
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Simple characterization of non-Gaussianities:                                                                                 
[Verde et al., '00; Komatzu and Spergel, '01] 
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mPl

≃×10−5 ! Need to break slow-roll!

Compare with:                       of WMAP and                    of Planckf N L~100 f N L~5



REHEATING AND THE CURVATON IN THE LAB

Superluminal expansion

Origin of matter: reheating

INFLATON

CURVATON

CURVATONDensity perturbations  

● Baryons and leptons may have been generated by the curvaton (Affleck-
Dine field)     [Hebecker, March-Russel, Yanagida, '02; Moroi                                                      
             and Murayama, '02; MacDonald, '03]

(Small) Isocurvature perturbations

● The Minimal Supersymmetric Standard Model contains many flat directions 
(directions in the field space where V ~ 0): curvaton as flat 
direction of the MSSM.                [Mazumdar and Enqvist, '03; Enqvist, '04]

● Possibility to see the curvaton in the laboratory if LHC sees SUSY



ADIABATIC  vs  ISOCURVATURE

ADIABATIC: Perturbation affecting all the 
cosmological species such that

ISOCURVATURE: Perturbations in the 
matter components that does not perturb 
the geometry

It is thus associated with a curvature 
perturbation:
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Observables Values INFLATION CURVATON
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?

YY
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Isocurvature

2×1 0−52

≃0

≃0

≃0

≃0

       Fine structure:
 →  Small isocurvature perts
 →   Small non-Gaussianities
 →   Small deviation from scale-invariance

Perturbations: 
● Adiabatic
● Gaussian
● Scale-invariant

SUMMARY



FROM HEAVINESS TO LIGHTNESS
[Langlois and F.V., in prep.]

0
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≃a3 /2 sin m t 

m
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Time dependent mass: 
σ-particle production
and change in σ-spectrum 
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2
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2 2 1
2
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During inflation, H slowly decreases: a field χ which is initially light, m
χ
 << H,

becomes heavy when m
χ
 >> H, before the end of inflation. 

What happens if the curvaton couples to χ?



PERTURBATION EQUATION: POTENTIAL

m
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2  g 2 X 0
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Time dependent mass
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FEATURES IN THE SPECTRUM



CONCLUSIONS

Why the curvaton?
● Light fields are generically predicted by supersymmetric models
● Separating the field responsible for superluminal expansion (inflaton) from the field 
responsible for density perturbations (curvaton) and
relax the constraints on the inflaton potential
● Contact with particle physics

 

Observational consequences:
● Inflation is more difficult to be tested

● The curvaton changes the predictions in the (n
s
,r)-plane and introduces a new degeneracy (σ 

  parameter)
● Features in the spectrum of perturbations may be present
● Small non-Gaussianities

 


