
Program

1) Why and how explore the TeV region

2) The hierarchy ‘problems’: Λ and mHiggs.

3) Solutions to mHiggs (both faces):

– Technicolor.

– Little-Higgs.

– Extra dimensions.

+ Supersymmery.

4) Solutions to Λ:

–

5) Antrophic ‘solutions’ to all.

Alessandro Strumia, SNFT, Parma 2005



Status of high-energy physics

[Caution with over-enthusiast / over-pessimistic / politically-correct descriptions]

? SM proposed around 1970 (QCD after experiments, electroweak before).

• Since then nothing unexpected discovered at higher energies.

? But 2 good (=maybe right) reasons to theorize new physics at E ∼ TeV.

• But nothing seen just below it. Concrete proposals disfavored.

◦ Working hard, colliders are now going to explore it.

Results will strongly impact theory and decide the future of the field



The energy scale
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Goals of TeV experiments: (1) thermal dark matter,

(2) understand electroweak symmetry breaking.



Experiments



Towards the TeV
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a few to get their mean energy:

p is composite of a few quarks.

Past exponential increase in energy

achieved thanks to new technolo-

gies. E.g. first small hadron col-

lider made obsolete big target ex-

periments. Recently slower progress

thanks to 30km, 20 yr, few Ge.



From LHC to ILC?

Higher energy need higher luminosity: LHC aims at L ∼ few/nb · sec = bomb

σ ∼
1

E2
= 0.4nb

TeV2

E2
nb ≡ 10−33 cm2

Proton size σ ∼ 1/m2
p � 1/E2 gives more junk that what computers can store:

(1) trash almost all data with fast triggers (keep missing 6ET , energetic particles)

(2) remains a combination of everything. Analyze with grid of computers.
(3) if something discovered, to understand it a cleaner e+e− might be needed.

Circular e+e− colliders limited by radiation: Larmor dE/dx = 2e2γ4β3/3R2:

Emax

me
= γmax ≈ 4
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The next project seems a linear e−e+ collider at
√

s >∼500GeV: needs ∼ 50km

code Optimistic name Pessimistic joke
LHC Large Hadron Collider Last Hadron Collider
ILC International Linear Collider Imaginary Linear Collider





Thermal dark matter



Inventory

Total density = critical density

Present composition:

Dark energy (maybe cosmo-illogical constant) . . . . . . . . . . .73%
Dark matter (maybe new neutral stable particle) . . . . . . . .23%
Known particles (γ, e, ν, p, Helium, Deuterium. . . ) . . . . . . . . 4%



Big bang: H ∼ T2/MPl

( )
Homogeneous ρ(t) expands according to Newton acceleration

R̈ = −
GM(r < R)

R2
= −

4πGρ(t)

3
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Get ‘energy constant’ k assuming non-relativistic matter: ρ(t) ∝ 1/R3(t):
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Critical case k = 0: needs ρ = 3H2/8πG ≡ ρcr and expands for free. Valid for

all ρ in general relativity, where k is curvature; inflation smoothes k → 0.

Matter in thermal equilibrium at temperature T � m has density

neq ∼ T3 ρeq ∼ T4

one particle with energy ∼ T per de-Broglie wavelength ∼ 1/T .

Non relativistic particles are Boltzmann-suppressed: neq ∼ e−m/T (mT )3/2 .

PS: in units ~ = c = 1 G = 1/M2
Pl with MPl ∼ 1019 GeV.



Dark matter as thermal relic

What happens to a stable particle at T < m?

Scatterings try to give thermal equilibrium

nDM ∝ exp(−m/T ).

But at T <∼m they become too slow:

Γ ∼ 〈nDMσ〉 <∼ H ∼ T2/MPl

Out-of-equilibrium relic abundancy:

nDM
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Inserting ρDM ∼ ργ and σ ∼ 1/m2 fixes

m ∼
√

TnowMPl ∼ TeV

Directly produced at CERN 2008?
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Cosmological constant

ρΛ = energy (and pressure) density of vacuum = Energy/Volume = Mass4

LEinstein =
∫

d4x
√

g

[
R

16πG
− ρΛ

]

Rµν −
R

2
gµν = 8πGTµν − Λgµν Λ = 8πGρΛ

Positive Λ makes expansion faster .
Theory

EW-breaking suggests ρΛ ∼ Vmin = [V0 −m2H2 + λH4]min ∼ λv4 ∼ 1055ρΛ.

GUT-breaking suggests Vmin ∼ M4
GUT ∼ 10110ρΛ.

Quantum corrections to Λ seem O(Λ4
UV): 10120 too large if ΛUV ∼ MPl

QCD gives VQCD ∼ Λ4
QCD ∼ 1035Λ.

Expectation was: some unknown mechanism sets Λ = 0
Experiment

There are two ‘evidences’ for a small positive cosmological constant

ρΛ ≈ (2.3 10−3 eV)4 ∼ 10−30g/cm3 Λ ∼ H2 ∼ (10−33 eV)2

1. Older supernova explosions seem fainter [1998]: accelerated expansion.

2. CMB and LSS data suggest ΩCDM = 0.3, Ωtot = 1 [2002]: ΩDE = 0.7.



Cosmo-illogical constant

Evolution of the average energy densities of photons, neutrinos, baryons, Cold

Dark Matter and cosmological constant Λ.
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The hierarchy ‘problems’

Continua su → www.cern.ch/astrumia/BSM.pdf


