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Abstract

These are informal lecture notes on lattice gauge theory prepared for theXIV
Seminario Nazionale di Fisca Teorica, Parma 29/8 - 10/9 2005.

1 QCD

There is little doubt that the physics of strong interactions is accurately described by
Quantum Chromodynamics or QCD, a gauge theory where the elementary matter fields
are the quarks, which fill the color triplet, i.e. the fundamental representation of the
gauge or color group SU(3), while their interaction is mediated by the gluons, the
gauge particles filling the color octet, i.e. the adjoint representation of SU(3).

The pure gauge part of the dynamics is described by the Yang-Mills action

S = −
1

4

∫

d4x tr (Fµ νFµ ν) , Fµ ν =
a=8
∑

a=1

λaF a
µ ν (1.1)

where theλa’s are the infinitesimal generators of the Lie algebra of SU(3) and

Fµ ν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] , (1.2)

whereAµ is the gauge potential andg the adimensional coupling constant.
By far the most important properties of QCD are

➫ the asymptotic freedomwhich tells us, roughly, that the forces between quarks
become weak for small quark separations. This is a property that QCD shares
with the four-dimensional YM theories with non-abelian Liegroups. It implies
that the theory becomes a free field theory in the ultravioletlimit, hence its
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perturbative expansion can be put in a rigorous, sound basis. Because of this
asymptotic freedom it is possible to carry out quantitativecalculations of strong
interaction observables which are sensitive to the short distance structure of the
theory. The discovery of the asymptotic freedom led very quickly to the realiza-
tion that QCD was the right theory of the strong interactions, and this was what
really completed the Standard Model. It is one of the most important discoveries
of 20th century physics.1

➫ the quark confinement, which tells us that the physical states of QCD are singlets
of SU(3). This implies that the quarks are permanently confined in a hadron.
More specifically, one says the a gauge theory is in a confined phase if the po-
tential between point-like static sources increases linearly with the intersource
distance:

V (r) = σ r + c + O(1/r) (1.3)

where the physical constantσ is known as the string tension. Contrarily to what
happens for the asymptotic freedom, this is an infrared property which is, strictly
speaking, still at the conjectural stage. The debate on the confining mechanisms,
started at the mid-1970’s, is still open. The second week of the “Seminario
nazionale di fisica teorica” 2005 is entirely dedicated to this subject. My lecture
notes constitute a preamble to introduce the main concepts.

2 Need of non-perturbative methods

One consequence of asymptotic freedom is that there must be physical quantities which
cannot be expanded in a perturbative series in the coupling constantg.

In a nutshell, the argument goes as follows . Quantising the YM theory requires
regularising it by the introduction of a cut-off in order to control the UV divergences
coming when two fields are evaluated at the same point. For instance, we can introduce
a spatial cut-offa representing the minimal distance between two local fields2. Let m
be a physical observable with the dimension of a mass ( for instance it could be the
mass of the lowest physical state). Its functional form is necessarily

m = m(a, g) = f(g)/a , (2.1)

wheref is, for the moment, an unknown function ofg. Since the classical action (1.1)
does no contain any dimensional parameter, the scaling dimension is necessarily due to

1The calculation of the Yang-Mills beta function was completed in 1973 about the same time by David
Politzer (a student of Sidney Coleman’s at Harvard) and David Gross working with his student Frank Wilczek
at Princeton. Gross was actually trying to complete a proof that all Quantum Field Theories had bad ultra-
violet behaviour; he still was suffering from the pre-QCD prejudice common to almost all physicists of that
time, that the strong interactions could never be understood via QFT, that one needed instead to do S-matrix
theory or string theory or something other than QFT. Gerald ’t Hooft had done the beta function calculation
one year earlier, but he didn’t work out the experimental implications for deep inelastic scattering, which
was what Gross, Politzer and Wilczek did. They were awarded the Nobel prize for Physics in 2004.

2In the subsequent sections the role of such a spatial cut-offwill be played by the lattice spacing; for the
moment this further assumption is not necessary
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the cut-offa. On the other end if,m is a physical quantity, it should not depend on the
cut-off, which has to be regarded as a computational artificeto get finite results.Thus

d

d a
m = 0 . (2.2)

As a consequence, ifa is varied, alsog must change in order to keepm constant.
Thereforeg = g(a). But a is a dimensionful quantity, whileg is adimensional, hence

g = g(aΛ) , (2.3)

whereΛ has the dimension of a mass and is independent of the cut-off,hence it is a
physical quantity. As we shall see, it sets the scale of the strong interactions, because
it turns out that any physical mass can be expressed as a numerical constant timesΛ.

Eq. (2.2) yields

f ′(g)a
d

d a
g = f(g) . (2.4)

Introducing the beta function of Callan-Symanzik, defined as

a
d

d a
g = β(g) , (2.5)

we can write the differential equation

d f

f
=

d g

β(g)
, (2.6)

i.e.
f(g) = f(go) e

R

g

go

d g
β(g) . (2.7)

In SU(N) YM theoriesβ(g) can be evaluated perturbatively and gives

β(g) =
11N

3

g3

(4π)2
+

34N2

3

g5

(4π)4
+ . . . (2.8)

where the positive sign of the first term encodes the defining property of the asymptotic
freedom. Taking into account, for sake of simplicity, only the first perturbative term of
Eq.(2.8) we get

f(g) = C e
− 24π2

11N g2 , (2.9)

which shows that any physical mass has the same functional dependence on the cou-
pling constant, therefore the ratios of different masses isa numerical constant. The
other important property is that the above function cannot evidently be expanded per-
turbatively aroundg = 0, because of the essential singularity of Eq.(2.9).

In conclusion, the perturbative methods cannot give any information about the di-
mensional physical quantities of the theory, thus some non-perturbative approach is
needed.
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3 A crucial step: Statistical Field Theory

The Statistical Field Theory (SFT) is a formulation of QFT which uses the methods and
the language of Classical Statistical Mechanics (CSM). More precisely, it is a theory
which develops tools useful both for CSM and QFT. One discovers that QFT’s and
CSM of critical systems are exactly the same theory: it is possible to translate a QF
model into a critical system of the statistical mechanics and vice-versa. For instance it
can be shown that the Ising model at criticality in any dimension is, when translated in
the language of QFT, theϕ4 theory with realϕ.

The starting point is the resemblance of the generating functional of the Feynman
diagrams in the functional approach of QFT3

Z =

∫

Dϕ e−i S
~ (3.1)

with the canonical partition functionZ which encodes all the statistical properties of
a classical system described by an HamiltonianH and in thermal equilibrium with a
thermostat at a temperatureT :

Z(T, V ) =
∑

configurations

e−H/κT . (3.2)

Clearly
∫

Dϕ ↔
∑

configurations

, (3.3)

but at this level there are still many differences between the two approaches: the former
has only a formal meaning away from the gaussian (or perturbative) limit and it is
mainly used to get the right multiplicity of the Feynman diagrams. The latter is a
finite, well-defined, quantity and there are analytic or numerical methods which allow
to extract at least some estimate of many physical quantities related toZ.

It is then natural to try to modify the functional approach inorder to apply these
powerful methods. First one performs a Wick rotationt → iτ which implies−iS →
−SE, whereSE is the Euclidean action. In this way any field configuration has a real
Boltzmann weight.

The other useful transformation is to put the theory on a lattice, for instance an
hypercubic one, that we denote withΛ. In four space-time dimensions each nodeP
of the lattice is selected by four integer numbersP = (nxa, nya, nza, nta) (n ∈
Z), wherea is the lattice spacing. Putting the QFT on the lattice means simply the
following:

➫ Associate to each node an arbitrary value of the fieldϕ:

P 7→ ϕ(P ) (3.4)

3For the sake of simplicity we temporarily assume that the quantum system is described by an action
S[ϕ] which depends only on a scalar fieldϕ.
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➫ EvaluateZ by summing over all these possible values according to

∏

P∈Λ

∫

dϕ(P )e−SE [ϕ] . (3.5)

[Exercise: verify that the SU(N) invariant field model defined by the action

S =

Z

d
d
x[

1

2
∂µϕ

∗

i ∂
µ
ϕ

i − V (ϕ∗

i ϕ
i)] , (i = 1, . . . , N)

becomes on the hypercubic lattice a statistical system described by the Hamiltonian

H = a
d

X

P∈Λ

"

1

2

d
X

µ=1

[∇µϕ
∗

i (P )∇µϕ
i(P )]|2 + V (ϕi(P )ϕi(P ))

#

(3.6)

with∇µϕ(P ) = ϕ(P+aµ̂)−ϕ(P )
a

]
In this way there is a finite number of degrees of freedom per unit volume, there-

fore the functional integration
∫

Dϕ has now a precise meaning and the lattice spacing
a acts as a spatial cut-off, eliminating all the UV divergences. In this way the corre-
spondenceQFT ↔ CSM becomes exact, and we can build up a dictionary which
translates typical terms of one formulation in the other:

QFT CSM
functional integration sum over configurations
d spatial dimensions D = d + 1 spatial dimensions
Euclidean actionSE HamiltonianH

~ κT
Transition Amplitude Partition Function

Vacuum expectation value of theT -product Correlation function
Energy of the ground state Free energy
Mass of the lightest particle Inverse of the correlation length

3.1 The price of lattice regularisation

The price of transforming a QFT in an Euclidean lattice field theory is rather high:
the Lorentz invariance is completely lost and replaced by the symmetry of the lattice,
which has nothing to do with the physical properties of the original model. Moreover
the transformed model, although calculable, depends in a crucial way on the lattice
spacinga, while the true physical properties of the model should not depend ona, of
course. One cannot put simplya → 0 in SE

4, because on one hand, as shown in§2,
also the coupling constants depend ona and , on the other hand, the multiple integral
(3.5) loses any meaning in this limit.

The way-out is to resort to Renormalization Groupà la Wilson, which provides
us with the rules to extract from the lattice regularised theory the physical, cut-off
independent, properties. It turns out that a true continuumlimit of the Euclidean QFT

4This is called thenaive limit, since it does not take into account the other places wherea has an important
role in the functional integration.
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exists near a continuous transition, where the correlationlengthξ goes to infinity, so
that the lattice details are negligible and the rotational invariance is restored. In other
terms QFT’s correspond to the universality classes of phasetransitions of classical
statistical systems [1].

4 Gauge invariance

Lat us start by considering the model defined in Eq.(3.6). It is invariant (i.e.δH = 0)
under rigid SU(N) transformations

φ(P ) → V φ(P ) , φ† → φ†V † , V ∈ SU(N) , φ =













ϕ1

ϕ2

.

.
ϕN













(4.1)

If the transformationV becomes alocal transformation, i.e. depends on the nodesP
in an arbitrary way,V → V (P ) ∈SU(N), the Hamiltonian (3.6) is no longer invariant,
because of the contributions of the mixed terms in the kinetic part:

φ†(P )φ(Q) → φ†(P )V †(P )V (Q)φ(Q) , Q = P + aµ̂ , (4.2)

henceδH 6= 0.
In the continuum it is well known since the time of the Yang-Mills work (1952) a

recipe to get a locally invariant theory: one has to introduce the gauge fieldsAµ asso-
ciated to the infinitesimal generators of SU(N). In particular, to transformφ†(P )φ(Q)
into a locally invariant quantity one introduces an arbitrary pathγ connectingP to Q
and build up the SU(N) path ordered product

Uγ(P, Q) = Peig
R

Q

P
Aµ(x)dxµ

(4.3)

which under a local transformation becomes

Uγ(P, Q) → V (P )Uγ(P, Q)V †(Q) , (4.4)

thus it is evident that nowφ†(P )Uγ(P, Q)φ(Q) is invariant. It is also evident how to
extend this construction to the lattice: we associate to each oriented link5 (P, µ̂) an
arbitrary element of SU(N):

(P, µ̂) 7→ Uµ(P ) , (Q = P + aµ̂,−µ̂) 7→ U−µ(Q) ≡ U †
µ(P ) . (4.5)

The ordered product of these link variables allows to construct lattice path operators in
analogy with Eq.(4.3).

To modify the model under study in such a way to have a locally invariant Hamil-
tonianH it suffices replacing the mixed terms with

φ†(P )φ(Q) → φ†(P )Uµ(P )φ(Q) , (4.6)

5An oriented link is the segment connecting two neighbouringnodesP andQ = P + aµ̂. It is uniquely
selected by the pair(P, µ̂)
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thus the model is invariant under the joined local transformations

φ(P ) → V (P )φ(P ) , ∀P ∈ Λ (4.7)

Uµ(P ) → V (P )Uµ(P )V †(Q) , (4.8)

which constitute alattice gauge transformationof SU(N).
[Exercise: Show that in the naive continuum limit the kinetic term of the gauge invariant

version of the model under study can be expressed in the usualway in terms of the covariant
derivatives.]

5 LGT

We have just seen that there is a simple recipe to transform a lattice field theory in-
variant under global SU(N) transformations into a gauge invariant theory: it suffices
replacing the mixed term coming from the kinetic part with a term with a link variable
as shown in Eq.(4.6), which is equivalent, in the continuum limit, to replace normal
derivatives with covariant derivatives. Like in the continuum limit, the part of the ac-
tion describing the gauge degrees of freedom is an independent gauge invariant. In the
lattice models the role of the gauge fields is played by the link variables (4.5); how to
construct a lattice analog of Eq.(1.1)?

Let Γ be any closed path on the lattice, made with the sequence of links

Γ = (P1, µ̂1)(P2 = P1 + aµ̂1, µ̂2) . . . (PM = P1 − aµ̂M , µ̂M ) (5.1)

an construct the corresponding ordered product of link variables

UΓ = Uµ1(P1)Uµ2(P2) . . . UµM
(PM ) , (5.2)

which transforms as
UΓ → V (P1)UΓ V †(P1) . (5.3)

HencetrUΓ is gauge invariant. Such an observation might be used to construct a lattice
analog of the YM action in many different ways. The simplest choice is theWilson
action, which is written as the sum of the trace in the fundamental representation of all
the minimal loops one can draw in the lattice, i.e. the smallest squares made with four
contiguous links, calledplaquettes6

SW = −
∑

plaquettes

β

N
ℜe (tr Uplaq) (5.4)

with
Uplaq = Uµ(P )Uν(P + aµ̂)U †

µ(P + aν̂)U †
ν (P ) (5.5)

[Exercise: Show that in the naive continuum limitℜe(tr Uplaq.) = N−g2a4tr (F 2
µ ν)+O(a5) .

Hint: use the exponential mapUµ(P ) = eiagAµ(P ) and Taylor expand about the center of the
plaquette.]

6An oriented plaquette passing trough the pointP is uniquely selected by the triple(P, µ̂, ν̂) with µ̂ 6= ν̂.

7



Comparing the result of the above exercise with Eq.(1.1) we can read off

β =
2N

g2
(5.6)

which relates theβ parameter of the lattice with the gauge coupling constant ofthe
continuum theory.

For the quantum YM theory we have to specify how to do functional integrals. The
sum over all the gauge configurations on the lattice amounts to integrate over all link
variables. So, the SU(N) Yang-Mills theory on the lattice isdescribed by the partition
function

Z =

∫

∏

P∈Λ

∏

µ=1,...4

dUµ(P ) e−SW (5.7)

wheredU is the invariant measure of the SU(N) group. Since SU(N), as any other
compact group, has a finite volume, we can always normalise tohave

∫

dU = 1,
thus Eq.(5.7), like its obvious generalisations to whatever compact group, is a perfectly
well-defined expression which is finite and in principle calculable, at least approxi-
mately, thus there is no need to fix whatever gauge: this is a great advantage with
respect to the continuum quantum formulations, where the zero modes of the kinetic
part of Eq.(1.1) force the choice of gauge fixing terms and thethe introduction of the
corresponding Fadeev-Popov ghosts.

In the present lattice regularised theory the vacuum expectation value of any ob-
servableO is defined as

〈O〉 =
1

Z

∫

∏

links

dUµ(P )Oe−SW . (5.8)

t

r
W r,t

Of particular interest are the gauge invariant operatorsWΓ ≡ tr UΓ, (UΓ is defined
in (5.2)) calledWilson loops. In particular a rectangular Wilson loopWr,t (see Figure)
can be interpreted as the contribution to the action of a pairof point-like sources in the
representationf andf̄ respectively, which are created at a timet = 0 and placed at a
distancer and then annihilated at the timet. The vacuum expectation value of these
operators in thet → ∞ limit allows to define the static intersource potential:

V (r) = − lim
t→∞

1

t
log〈Wr,t〉 . (5.9)
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Comparing this expression with Eq.(1.3) we see that a gauge theory is confining if
the vacuum expectation value of large Wilson loops drop off exponentially with the
minimal area encircled byΓ.
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