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1 Electroweak phenomenology before the GSW model
Some phenomenological facts:

» discovery of the weak interaction via radioactive (3-decay of nuclei:
n—p-+e -+ Vg, p—n-+ et + Ve (not possible for free protons)

e terminology “weak”. interaction at low energy has very short range
— long life time of weakly decaying particles:

strong int.:  p — 2, T ~ 107 %%s
elmg. int.: 7T — 27, T ~ 107165
weakint. 7T — uT + 7, T~ 107 %s

poo— e + Ve + Uy, 7~ 10 Ss
e l[epton-number conservation: u~—/e~ +v (BR S 1071)
= L, L,,, L, individually conserved:
L, = +1fore, v, L.=—1fore", v, etc.
(For massive v’s with different masses, only L.+ L, + L is conserved.)

e parity violation (Wu et al. 1957):
e.g. KT —2r 3n 0Co — ONi* + e + 1

_ \,—/_ _ — polarization inversion does not
final states of different parity yield inversion of spectra
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The Fermi model
(Fermi 1933, further developed by Feynman, Gell-Mann and others after 1958)

Lagrangian for “current—current interaction” of four fermions:
Lrermi(7) = —2V2G, J}(2)J7 (), G, =1.16639 x 107° GeV

with  J,(z) = J})ep(x) + ngad(a:) = charged weak current

* Leptonic part J)** of J,:

Jéep = Y. Ypw_ e + w—,,/ﬂpw_wu Wi = %(1 + ~5) = chirality projectors

o only left-handed fermions (w_1), right-handed anti-fermions (yw. )
feel (charged-current) weak interactions = maximal P-violation

o doublet structure: (eyf ) (:‘i ) later completed by (TVZ )

o (J'P)T.JeP induces muon decay:
B o< E e~
Ve
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* Hadronic part J}*“ of J,:

Relevant quarks for energies S1GeV: u,d,s,c
— meson (¢q) and baryon (gqq) spectra

Question: doublet structure (3) (Z) ?

Problem: e.g. annihilation of us pair would not be allowed,
but is observed: K — ptu,
~—

us pair in quark model

Solution (Cabibbo 1963):
u-c-mixing and d-s-mixing in weak interaction

/
— doublets (%) (C,> with (d,) = Uc (d>
d S S S

cosfc  sinfc )

orthogonal Cabbibo matrix U¢ = ( sinfe  cosl
_ C C

empirical result: 6o ~ 13°

Jgad — %’pr—wd’ - E’pr—ws’
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Remarks on the Fermi model:

* universal coupling &, for all transitions
(UéUC = 1 is part of universality)
* no (pseudo-)scalar or tensor couplings, such as (1) (Y1), (V) (Pys),
etc., necessary to describe low-energy experiments (£ < 1 GeV)
* Problems:
° cross sections for v,,e — v.u, etc., grow for energy £ — oc as E?
< unitarity violation !

© no consistent evaluation of higher perturbative orders possible
(no cancellation of UV divergences)

— non-renormalizability !
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“Intermediate-vector-boson (IVB) model”
ldea: “resolution” of four-fermion interaction by vector-boson exchange

Lagrangian:

LIVB — [’O,ferm + £O,W + Einta

[,o,ferm = ?,b_f(lﬁ — mf)wf, (summation over f assumed)
1
Low = —5(8MWj — 8VWJ)(8’“‘W_’” — "W ™H) + M%VWJW_’”,
1 .
. + 1 TA72 )
with W5 = — (W, FiW7), W/ real

V2

W= are vector bosons with electric charge +e and mass My .

. WW —1 k k’/ —
Propagator: G (k)= 2 MZ (gW — ]\Zv2v) ,  k =momentum
Interaction Lagrangian: Ling = % (JPW T + JPTW;) ,

JP = charged weak current as in Fermi model
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Four-fermion interaction in process v, e~ — pu~ v

Fermi model: IVB model:
Vi . Y —> B
W
e Ve e Ve
- 1 koko
—i2v/2G . gpo s g (gpo - p—)
29V k2 — M, M3,
X [ﬂu_fypw_uyu} (U, ¥ WU | X [ﬂu_ypw_u,/u] (U, YV wW_Ug— |
2
= identification for |k| < Mw: 2v2G, = 2%
2M2,

Consequences for the high-energy behaviour:

°* kPterms: Uy fw_u,— = Uy, (Pe — Pro )W—Ug— = Melly,W—Ug—
— no extra factors of scattering energy F£

* propagator 1/(k* — Mg,) ~ 1/E? for |k| ~ E> My
— damping of amplitude in high-energy limit by factor 1/E?

= Cross section ——~— const/E?, = No unitarity violation !
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Comments on the IVB model:

* Formal similiarity with QED interaction:  J*WJF +hc. «— ji A,
* Intermediate vector bosons can be produced, e.g.

\uél/ — W7 - f f: (discovery 1983 at CERN)
In pp collision W= unstable

* Problems:
o unitarity violations in cross sections with longitudinal W bosons, e.g.

W
W
Ve
8
W W

© non-renormalizability
(no consistent treatment of higher perturbative orders)

— Solution by spontaneously broken gauge theories !
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2 The principle of local gauge invariance
QED as U(1) gauge theory:

Lagrangian Lo form = ¥ (i@ — m ;)4 has global phase symmetry:
Vr — Py = exp{—iQyred}by, y — ) =y exp{+iQred}

with space-time-independent group parameter 6

“Gauging the symmetry”: demand local symmetry, 6 — 6(x)
To maintain local symmetry, extend theory by “minimal substitution”:
" — D" = 90" +iQreA"(x) = “covariant derivative”,
A*(x) = spin-1 gauge field (photon).

Transformation property of photon A, (z) — A, (z) = Au(z) + 0,0(x) ensures
* Dupy — (Dptpy)’ = Dby = exp{—iQred}(Dputpy)
* gauge invariance of field-strength tensor F,, = 0, A, — 0., A,

Gauge-invariant Lagrangian of QED:

1

Lqep = V(i — Qe A — mys)hy — ZFMVFMV
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Non-Abelian gauge theory (Yang—Mills theory):

Starting point:
Lagrangian L4 (P, 0, P) of free or self-interacting fields with “internal symmetry”:

° o = <¢1> = multiplet of a compact Lie group G:
Pn
®— o' =U0)P, U(H) = exp{—igT*0°} = unitary,
T* = group generators, [T%,T° =iC*T°¢, Tr{T*T"} = 15"
* Lo isinvariantunder G: Lg(9,0,P) = Lo (D',0,P")

Example: self-interacting (complex) boson multiplet
Lo = (0,)(0"D) —m’DTD 4+ A(®TP)? (m = common boson mass, A = coupling strength)
Gauging the symmetry by minimal substitution:

Lo(®,0,P) — Lo(®,D,d) with D, = 9, +igT*A% (),

g = gauge coupling, T'“ = generator of G in ® representation, A (x) = gauge fields
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Transformation property of gauge fields:
* Lo(®,D,®) local invariantif D,® — (D,®)' =D, ®" =U(0)(D,?)

= TA) = UT*ALUT - éU(@MU‘L), A% A1 = not gauge invariant
infinitesimal form: 6 A% = gC***§0° AS, + 9,60
* covariant definition of field strength:  [D,, D,| = igT"F},
= T°F}, — T°F% =UT*F2,U', F{,F“" =gauge invariant

explicit form:  F?, = 9, A% — 9, A% — gC**° Al A,

Yang—Mills Lagrangian for gauge and matter fields:

1 a a v
Lyv = _ZFMVF B ,C@((I),DM(I))
e Lagrangian contains terms of order (0A)A?, A* in F? part

— cubic and quartic gauge-boson self-interactions

* gauge coupling determines gauge-boson—matter and gauge-boson
self-interaction — unification of interactions

®* mass term MQ(AZA“’“) for gauge bosons forbidden by gauge invariance
— gauge bosons of unbroken Yang—Mills theory are massless

Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture | —12

Parma School of Theoretical Physics, SNFT06, September 2006



Quantum chromodynamics — gauge theory of strong interactions

e Gauge group: SURB)., dim.=38
2

structure constants f**°, gauge coupling g., as = 2=

4
* Gauge bosons: 8 massless gluons g with fields Aj;(z), a=1,...,8

* Matter fermions:  quarks g (spin-1) with flavours ¢ = d, u, s, ¢, b, t
in fundamental representation:
qr ()
Ye(x) = q(x) = | q.(z) | = colour triplet
gv ()

a

A\ 01 0
T = -  Gell-Mann matrices A\' = [ 1 0o o], etc.
2 00 0

* | agrangian:
1 a a,uv A
Lqcp = _ZFWF M+ qu(llp — Mg )Yq
q
1 a a abc 4b ,c 2 A . a
= _Z (aMAV — aVAM - gsf A/,LAI/) + Z wq 1@ — Js E‘A — My qu

q

g g g q
g s g :;%wmg :;%i: Go——q >mmg
g g g q
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3 The Standard Model of electroweak interaction (Glashow—Salam-Weinberg model)

— matter, Yang—Mills, and Higgs sector

3.1 The gauge group for electroweak interaction
Why unification of weak and elmg. interaction ?

* similiarity: spin-1 fields couple to matter currents formed by spin-% fields

* elmg. coupling of charged W bosons

v, W, W~ as gauge bosons of group SU(2) ? — No!
Reason: charge operator Q cannot be SU(2) generator, since Tr{Q} # 0

0 O e
for fermion doublets: (@ = (O 1) for (V ) etc.

Possible way out: additional heavy fermions like E* as partner to e~ ?
<— no experimental confirmation !

e
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Minimal solution: SU2)r x U(1)y
e SU(2); — weak isospin group with gauge bosons W', W, W"
* U(l)y — weak hypercharge with gauge boson B

W" and B carry identical quantum numbers

— two neutral gauge bosons ~, Z as mixed states

Experiment: 1973 discovery of neutral weak currents at CERN
— Indirect confirmation of Z exchange

1983 discovery of W= and Z bosons at CERN
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3.2 Fermion sector and minimal substitution

Multiplet structure:
Distinguish between left-/right-handed parts of fermions: " = w_, "™ = w

a

* )" couple to W= — group %" into SU(2); doublets, weak isospin 71" = %-

e " do not couple to W+ — % are SU(2); singlets, weak isospin 77 = 0

e /R couple to v in the same way
< adjust coupling to U(1)y (i.e. fix weak hypercharges Y™/ for v
such that elmg. coupling results: Lin..qep = —Q e s Aty

L/R)

Fermion content of the SM:

(ignoring possible right-handed neutrinos) TI3
L L L 1
1% 1% v + 5 0

leptons: ok = T, T, Ll ’
P " (eL) (ML) (TL) 1
R S
quarks: | . - oL L +i  +2
(Each quarkexists V¢ = gL ) L) pL ) ) .
in 3 colours!) ) — 3
by = u ¢, t, 0 +3

R R R R

Vg = dY, s, b, 0 -3
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Free Lagrangian of (still massless) fermions:
Loferm = WrPpy = (WEPVE +IVHPVE + F PP + pE P + 1 Poa
Minimal substitution:
Ou — D, =0, —igTYW, +ig13Y B, = Djw_ + Djwy,
L igo (O W i (W, —aY"B, 0
DM — 8,1, - = _ - A 3 L )
\/5 WM 0 2 0 —QQWH — g1Y B,u
D)t =0, +ig1iYEB,

Photon identification: 5 .
“Weinberg rotation”: ( L ) _ ( Cw SW) (Wu ) Cw = €08 Ow, sw=sin Ow,

A, —Sw  Cw B, Ow = weak mixing angle
Py = g, ( g28w = giew ) Lojeq, (@1 )
Ay 2 0 g2sw — griewY 0 Qo
e charged difference indoublet Q1 — Q2 =1  — go = —
Sw
e normalize Y*/® such that ¢, = —
Cw v

< Y fixed by “Gell-Mann—Nishijima relation” Q = T} + 5
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Fermion—gauge-boson interaction:

I 0 + I
Lferm,YM — € \IJL ( W ) \IJ% + € \IJ%O'SZ\IJIFJ’

\/§SW £ W_ 0 2Cw Sw
— eS—Wwa_fzwf —eQ s Ay (f=all fermions, F'= all doublets)
Cw
Feynman rules:
f . f
%% L’y w A —iQ) rey
) % \/§8w 2 i % Fe T
f f
f
Zy evugfwr 4 g5 wo) = ievu(vy — agys)
fT Sw Sw TI3
with ¢f = -2 e = —— X :
gy - Qr, gy - Qr + p——
3 3
PR ¥ S ©
v = Cw Qf * 2CWSW7 o= 2CWSW
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3.3 Gauge-boson sector
Yang—Mills Lagrangian for gauge fields:

1 1
Ly = _ZW'LCLLVW@,MV_ZBMVBMV

Field-strength tensors:

a a a abc b C
Wo, = 9We—d,Wo + goc®WIWE, B, =

Lagrangian in terms of “physical” fields:
1 —,V v —
Lym = —5(8HWJ —(9,,W/j)((9“W Y — "W TR

i(auzy 0, Z,)(0" 2" — 8" 7" — i

9,B, — 0,B,

(0,A, — 9,A,)(O" A — 0” A™)

+ (trilinear interaction terms involving AW W —, ZWTW ™)

-+ (quadrilinear interaction terms involving

AAWYTW =, AZW W =, ZZWTW -, WTW - W W)
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Feynman rules for gauge-boson self-interactions:

(fields and momenta incoming)

W .
ieCwwy | g (ks — k=)o + gup (k= kv ),
Jol
W- -+ gpu(kV - k+)1/}
with CWny =1, Cwwz = _&w
Sw
W v,
iGQCWWVV’ 29uv9poc — Gup9ov — guagvp}
W]/_ Va/ . Cw
Wlth CWW'y'y — _]-7 CWW’YZ — T
Sw
C 1
Cwwzz = ——, Cwwww = —
Sw Sw
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3.4 Higgs sector and spontaneous symmetry breaking
ldea:  spontaneous breakdown of SU(2); xU(1)y symmetry — U(1)eimg Symmetry
— masses for W* and Z bosons, but v remains massless

Note: choice of scalar extension of massless model involves freedom

GSW model: .
Minimal scalar sector with complex scalar doublet ¢ = (?50 ) Yo =

Scalar self-interaction via Higgs potential:

V(®) = —p 0T + %(cb*cb)?, 1, > 0,
= SU(2)1 xU(1)y symmetric
. 2112 v
V(®) = minimal for |®| = \/ = >0
(@) ol =5 =5

ground state &, (=vacuum expectation value of ®) not unique
.. : 0

specific choice ®(= <
V2

. : : 1 0
elmg. gauge invariance unbroken, since Q®y = (O O) Py =0

) not gauge invariant = spontaneous symmetry breaking
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Field excitations in &:

¢" ()
®(z) = ( 2 (v + H(z) + ix(a:)) )

Gauge-invariant Lagrangian of Higgs sector: (6~ = (¢
Ly = (D, @) (D"®) - V(®) withD, =0, — igga—Wa + i%BM
lev 2 2
= (0,07)(0"¢7) — o (W, 0"~ — W, 8" )+ W W "
28W 48\7\/
1 2 62U2 2 1 2 27172
— Z,0" —(0OH)" — u"H
i 2 (0%)" + ZCWSW IXF 4c2, 52, + 2 (OH)" = p
+ (trilinear SSS, SSV, SVV interactions) x> e e

+ (quadrilinear SSSS, SSVV interactions) = :’Afi

e ~ e

Implications:

ev ev M
e gauge-boson masses: My = —, My = — =Y M, =0
2SW QCWSW Cw

e physical Higgs boson H: My = +/2u2 = free parameter
* would-be Goldstone bosons ¢*, y:  unphysical degrees of freedom
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3.5 p-parameter and custodial SU(2) symmetry

Observation:  Higgs potential of SM invariant under larger symmetry

V(@) = f(@'®), @70 =Re{¢"}* +Im{¢"}* + Re{¢’}* + Im{¢"}*
= Invariant under O(4) = 4-dim. rotations

Relation between O(4) ~ SU(2)xSU(2) and SU(2); xU(1)y symmetry
— matrix notation:

= " oF
M= (,®)= _ — T {II'II} = o'®
—¢p~ ¢ ’
SU(2); xU(1)y transformation: U = exp{ig20°T{}, Uy = exp{—igi0" Tv}

I — I'=U:00U), T¢=0%/2, Ty=0"/2
covariant derivative:

D, = 9,10 —igoW, I —igiIB, Ty, W, = WL}
transformation of gauge fields:

Wi = Wu=Ut(Wat £0.) Ul Bu — Bl =By +0.0"

O(4) symmetry:  ®'® invariant under SU(2); x SU(2) transformation
M — ' =07 100, Uy = exp{—igi0°T{}, T9 = o/2
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Situation after spontaneous symmetry breaking:
ground state TIy = (®g, ®g) o 1 still “diagonal” SU(2) symmetric:
Iy — I =UI,U' =1y, ie. [T% 1] = 0 for SU(2) generators T

— under global transformation U

e W transforms as 3-vector: W2 — W/* = RW?. (Ry = rotation matrix)
* B, transforms as 3rd component of a fictive triplet B}, with Ry

— mass terms for gauge bosons

1 1 o 2
LWz mass = 5Tr{(D,J[O)’f(D“HO)} - §Tr{H:§H0 (ggqu +ng3Bu) }

Ve

invariant under U
— length of 3-vector

g (W' W+ W2W?) + (g2W? + 1 B)? < i WTW— + 227

= Relation for the p-parameter. p =

Role of the p-parameter in low-energy physics:
effective four-fermion interaction (cf. IVB model) with charged and neutral currents:
Lifesr = —22G, ( copdoc + le%C,MJf\)I’@ , p =ratio of NC to CC interaction
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