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6 Quantum field theories and higher perturbative orders

6.1 General procedure

Formulate theory: Lagrangian

e

guantization — gauge fixing, Faddeev—Popov ghosts

Y

Perturbative evaluation:  Feynman rules

e

Feynman graphs

Y

loop integrals — technical problem: divergences (UV, IR)

4

regularization — divergences mathematically meaningful

Y

Define input parameters: renormalization — eliminates UV divergences
Y
Theoretical predictions: calculation of observables (cross sections, decay widths, etc.)

— IR divergences cancel for sufficiently inclusive quantities
(e.g. inclusion of photon bremsstrahlung)
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6.2 Green functions, transition amplitudes, and observables
“Amputated” Green functions G2,

calculated as sum of all connected Feynman diagrams with external n legs
o1, ..., 0, With external propagators (and propagator corrections) omitted

cuge = - = <+ <+ O+

Transition amplitude M, for i) — |f):

calculated from amputated Green functions G;ﬁb‘% by “LSZ reduction™;

* put external momenta to their mass shell, p? = m?

* contract with wave functions of external particles (Dirac spinors, polarization vectors)
Note: fields must be normalized: R,;, = 1 (= residue of propagator pole),
otherwise multiply by /R4, for each external leg

Cross section for transition |¢) — |f):

o = flux x /dLIPS M il
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“Vertex functions” I'*1¢» as irreducible building blocks:

o [¥192 = _(G?192)~! = _(inverse propagator)

example: scalar 2-point function

%% (p) = i(p® — m?) +iX(p?), ¥ = self-energy = sum of 1PI graphs
‘ _ ‘ 1P| = 1-particle-irreducible
o + (graph canFr)lot be disconnected by cutting one line)
G??(p) = o R—— + o R—— i3 (p”) o R— +... (Dyson series)

(O = + @+ @@ + .
- - -(m)” - (@)

p? —m? + X(p?)

° F¢1---¢n — G;br%-b-qbn

only 1PI graphs

example:
>:< = >‘< + )—Q—( + two permutations
Gooeo [odod [66 (106 ddd
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6.3 Loop integrals and regularization

Regularization of divergences
Observation: loop integrals involve divergences

* UV divergences for ¢ — oo, €.9.:

1 dq : .
d*q ~ / — forg — o0 — logarithmic divergence
/ (¢ —m3)(q® — m3) q ) °

* |IR divergences for ¢ — qo, €.9.:

1 dq : .
d* ~ | = for 0 logarithmic divergence
/ 4 q%(q% + 2qp1)(q? + 2qp2) / q 1 o9 J

“Regularization”™  extension of theory by free parameter ¢ such that

* integrals (and thus the theory) become finite, i.e. well defined
* original theory is obtained as limiting case § — do
— fix input parameters z; of regularized theory (6 # do) by experiment

= observables must have finite limit § — ¢ as functions of z;
(independent of regularization scheme)
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Convenient regularization schemes:

* Dimensional regularization:  switch to D # 4 space-time dimensions
¢ regularizes UV (and IR) divergences, respects gauge invariance, easy use

© prescription: (u = arbitrary reference mass, drops out in observables)
4 4—D D : : :
/d qg — (2mp) /d g and D-dim. momenta, metric, Dirac algebra

and analytic continuation to complex D !

¢ divergences appear as poles In results

. 2 2
= — —— 4 const.
— define A =D ~ve + In(47) =D +

* IR regularization by infinitesimal photon mass m.,
and (if relevant) by small fermion mass m

¢ prescription:  photon propagator pole

—

1 1
q2 q2 _ m%
¢ divergences appear as In(m.) and In(m ) terms
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Standard 1-loop integrals:

* 2-point integrals:

5

2mp) "t 1, qu, Qe - - -
Bosuson(p.maym) = 0 [ a7 ( Qs 40

i ¢*> —mg +10)[(q +p)? — mi + 0]

scalar integral By = logarithmically UV divergent = A + finite,

vector integral B, = —2p,A + finite, etc.
* 3-point integrals: /;2
—>
p1

Co.pu,pv,...(p1, P2, Mo, M1, M2)

(2mp)*=" /qu 1, qu, QuQy, - - -
im? (¢2 —mg +1i0)[(q + p1)? — m3 +1i0][(¢ + p2)? — m3 + i0]

Co, C,, = UV finite,
Cyv = logarithmically UV divergent = 1g,, A + finite, etc.

* A-point integrals:  D__ functions, etc.

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture lll — 8



Features of one-loop integrals:

* sign of infinitesimally small imaginary part i0 in mass terms reflects causality

* general results for 1-loop integrals known
(complicated but straightforward calculation)

¢ momentum integrals can be carried out after “Feynman parametrization”
— (n — 1)-dimensional integrals for n-point functions
¢ B functions — can be expressed in terms of log’s

© C, D, etc. — involve dilogarithms Liz(z) = — [ ¢ In(1 — ¢)

* tensor integrals can be decomposed into Lorentz covariants:
B" = p" By, B"” = g"” Boo + p"p” B11,
CH =piC1+p5C2, CF =pipiCr1 + phpsCaz + (pi'Ph + Pips) + 9" Coo,  etc.
— tensor coefficients By, B;;, C;, etc. can be obtained as

linear combinations of scalar integrals By, C, etc.
(e.g. by “Passarino—Veltman reduction”)
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6.4 Renormalization

Propagators and 2-point functions:

Structure of one-loop self-energies (scalar case as example):
Y(p?) = Cip* A + C2 A + Zgnite(p?) = UV divergent

Behaviour of propagator near pole for free propagation:

p2—m2—|—2(p2) p2—m? 1+E’(m2) p2—m2—|—2(m2)

— higher-order corrections change location and residue of propagator pole

Interaction vertices:
Example: scalar 4-point interaction £ 4 = Aop* /4!

F¢¢¢¢(p1’p27p3) = i\ + iA (p17p27p3)

e

momentum-dependent one-loop correction:
A (p1,p2,p3) = C3A + Aginite (p1,D2,p3) = UV divergent
— higher-order corrections change coupling strengths
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Structure of UV divergences:

* Renormalizable field theories:

UV divergences in vertex functions have analytical form of
elementary vertex structures (directly related to £)

— idea: absorb divergences in free parameters
= Reparametrization of theory (=renormalization)

Different types of renormalizable theories:

¢ theories with unrelated couplings of non-negative mass dimensions
— renormalizability proven by power counting and “BPHZ procedure”

¢ gauge theories (couplings unified by gauge invariance)
— renormalizability non-trivial consequence of gauge symmetry  ‘t Hooft '71
* Non-renormalizable field theories:

e.g. theories with couplings of negative mass dimensions (cf. Fermi model)

operators of higher and higher mass dimensions needed to absorb
UV divergences

— Infinitely many free parameters, much less predictive power

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture Il — 11



Practical procedure for renormalization:

consider original (“bare”) parameters and fields as preliminary
(denoted with subscripts “0” in the following)

— switch to new “renormalized” parameters and fields that obey certain conditions

Propagators and 2-point functions:

e mass renormalization: mja = m? + ém?,
| . .
m? = location of propagator pole = “physical mass” — §m? = X(m?)

* wave-function ren.:  rescale fields ¢o = \/Zyp, G** = Z ' G?%
fix Z, = 1+ 624 such that residue of G at p* = m? equals 1
— 0Zy = —X'(m?)

= Renormalized propagator G*? is UV finite:

9% (p2) — 1
(p ) p2 _ m2 _|_ Eren(pQ),

Yren(p?) = 2(p?) — (M) + (p* — m*)X'(m?) = ren. self-energy
= Bfinite(p”) = Bainite(m?) + (p* — m?) T (m?) = UV finite
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Vertex functions for interactions:
® coupling renormalization: Ao = A+ dA

fix 6\ such that A assumes a measured value for special kinematics p;™
note: %999 — Z£F¢o¢o¢0¢0

— ON = —20Zg)\ — A(pS*P, pS*P, pSP)

= Renormalized vertex function is UV finite:

F¢¢¢¢ (pl’p2,p3) p— iA —|_ iAren (p17p27p3) 9

Aren (P1,P2,03) = Agnite (D1,P2,03) — Agnite(P] ", D5 05 ~) = UV finite
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7 Electroweak Standard Model — radiative corrections

7.1 Loop corrections

Recapitulation of elementary SM couplings (vertices)

gauge-boson self-couplings: Higgs self-couplings:
Wﬁ{ :Ei‘ L« 7/ AN . /
gauge-boson-Higgs couplings: fermion couplings:

/ /
/ /
% %
- — = ANNNNK - — =
\ \
\ \
\ \

Faddeev—Popov couplings:

= Large variety of loop diagrams !
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Examples for 2-point functions at one loop: (‘t Hooft—-Feynman gauge)
Electron self-energy:

[ (p) = i(p — me) + ipwy IR (p?) + ipw_3 (p?) + ime X5 (p?)

H)X ¢ ’77Z W
ST e ST e e e
e \__/ e \__/ e e
e Ve e Ve

W-boson self-energy:

W-WT . 2 2 . kuky W /7.2 ckuky W /7.2
F;u/ (k) — _1g,uy(k o MW) —1 (gMV T %—2) ET (k ) —1 P];Q Z]L (k )
H, x ¢ v, Z W l p
' SRR O NN A O W
W W w W W W W W %%
124/ u
¢ U o) W 72 W
oW W T W WQHQ LW T
W B W . W o W - B
H,x Uy, Uz Uy, UZ v, Z & H

Parma School of Theoretical Physics, SNFT06, September 2006



Examples for 3-point functions at one loop:

Wevr, vertex correction:
HaX/, = e : ¢// : H/, = '772 ¢ '772 ¢ %% ¢
T A e = ST N S T e
¢ \ Ve Ve Ve z Ve w Ve ¢ \ Ve w Ve z Ve

H~~ vertex (loop induced):

1, - N

Y Y Y Y Y
o W e
W b P W b W 3

Y Y Y Y

~
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7.2 Renormalization

Bare input parameters: eo, Mw .0, Mz,0, Mu,0, m¢.0, Vij,o

Renormalization transformation:
* Parameter renormalization:
eo=(1+dZc)e,
My o= My + Mgy, Mzo=Mz+6Mz,  Mg,=Mg+ oMz,
meo=mys + 0my, Vijo=Vi; +0Vi;, (both V;; 0, Vi; unitary)
Mw
M,
(sw IS not a free parameter if My, Mz are used as input parameters)

* Field renormalization

Note: renormalization of cw, sw fixed by on-shell condition cw =

i (2)-( 2 ) (2). e

¢JI?,0 — \/ZJ]-EJJC/ w?’a w?,O — \/Z?f’ %1}/

Note: matrix renormalization necessary to account for loop-induced mixing
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Renormalization conditions:

* Mass renormalization:
on-shell definition:  mass? is location of pole in propagator
— M3 = Re{XZX (M)}, similar expressions for § Mz, S M7, m

Note: ¢ location of pole is complex for unstable particles

— subtlety in all-orders definition, but not relevant at one loop
(gauge-invariant definition: mass? as real part of pole location)

¢ other definitions of quark masses often more appropriate
(running masses, masses in effective field theories)

* Field renormalization:  (bosons and leptons)
¢ residues of propagators (diagonal, transverse parts) normalized to 1
— 0Zw = — Re{3¥ (M%)},
similar expressions for 6 Za4,0222,0 2w, 5ZJI:J{R
¢ suppression of mixing propagators on particle poles
< fixes non-diagonal constants 6§74z, 5ZZA,5ZJI:J{,R (f # f))

Note: problems for unstables particles beyond one loop
(field-renormalization constants become complex)
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Renormalization conditions:  (continued)

* Charge renormalization: define e in Thomson limit
e k

NG k—0

A, — ey, foron-shell electrons
e

= e = elementary charge of classical electrodynamics
2

fine-structure constant a(0) = Z— = 1/137.03599976
7
Gauge invariance relates d Z. to photon wave-function renormalization:
1
§Z. = —=6Zan — 5724
2 QCW

* Quark-field and CKM-matrix renormalization — fixes 5Z;Jq/,R, OVi;

rotation to mass eigenstates;
CKM part requires a careful (non-trivial) investigation
of mixing self-energies, mass eigenstates, LSZ reduction, etc.

General result:  all renormalization constants can be obtained from self-energies.

Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture Il — 19

Parma School of Theoretical Physics, SNFT06, September 2006



7.3 IR divergences and photon bremsstrahlung

Consider processes with charged external particles, e.g., eTe™ — putpu~

* Virtual corrections:  loop diagrams
IR divergences from soft virtual photons (¢ — 0)

diq...
/ @ —m2) o) 2qpe) )

* “Real” corrections:  photon bremsstrahlung
2

e . IR divergences from soft real photons (q — 0)
q 3
d°q... — —C'ln(m,)

ca
10 Vv aZ + m2(2qp1)(2qp2)

Bloch—Nordsieck theorem:

IR divergences of virtual and real corrections cancel in the sum

— virtual and soft-photonic corrections cannot be discussed separately
— related to limited experimental resolution of soft photons

= Cross-section predictions necessarily depend on treatment of photon emission
(energy and angular cuts)
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Separation of soft and hard photons:
Why?  cancellation of In(m~ ) terms delicate in practice, but terms are universal

* soft photons, m~ < F, < AE < () = typical scale of the process
< correction Is universal factor é..¢ t0 Born cross section

relatively simple analytical expression with explicit C'In(AE /m.~ ) terms
* hard photons, £, > AFE

— Monte Carlo integration of full radiative process, but with m., = 0
—C'In(AFE) terms emerge numerically

In(AFE) contributions cancel numerically in sum for small AFE upto O(AE/FE)

Calculation of soft-photon factor:

— AQp- q>(<’6 e (@) s )

p—q)?—
Q e —A = —Q € —MBorn
o ~Q@res (p)uy(p) e
“Eikonal factorization” holds for all charged particles (spin 0, %, 1)
o d?q (+Qi)(£Q;)(pip;)  ( = particle with charge Q;
= Osoft = 5 92 LN incoming(+) or outgoing (—))
277 Jin<ao<am 200 5= (qpi)(ap;) : Jome
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7.4 The universal radiative corrections A« and Ap
Running electromagnetic coupling a(s):

a becomes sensitive to unphysical quark masses m,

VZMQVZW for |s| in GeV range and below (non-perturbative regime)

. — charge-renormalization constant 6 Z. sensitive to m,

Solution:  fit hadronic part of Aa(s) = — Re{¥%%a(s)/s} and thus of §Z.

o(eTe” — hadrons)
olete” — utp™)

via dispersion relations to R(s) =
Jegerlehner et al.

(0)
1— AOéferm;étop (3)

= Running elmg. coupling: a(s) =

Leading correction to the p-parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

— large effects from bottom—top loops in W self-energy Veltman '77
b

W W A x27(0) 2y "V (0) 3G . m3
Prer M M 8v/2n?

t
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8 Radiative corrections to muon decay
Precision calculation of My via i decay
— My as function of a(0), G,,, Mz and the quantity Ar

i (1 45) - 0,

Ar comprises quantum corrections to p decay
(beyond electromagnetic corrections in Fermi model)

Lowest order: »
B e

W —

(’)(a) corrections: 5 Sirlin ’80, Marciano, Sirlin ’80
C
A”al—loop — A&<M§) — STWA/Otop + Arrem(]\fH)
W
~ 6% ~ 3% ~ 1%
aln(mf/Mz) Gumf Oéln(MH/Mz)
f b
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Virtual correction — 1-loop diagrams:

ol

W self-energy W v, vertex correction box diagrams

K~ Z e M 1,74 e H 174
€.g..
v
v, W v vy, VA Ve vy, Z

Real correction — 1-photon bremsstrahlung:

Consistent use of G,

Photonic QED corrections are treated In
the Fermi model and subtracted from Ar etc.
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State-of-the-art prediction of M from muon decay:
80.5 T T | T T T | T T T | T T T | T T T

Hollik et al. '03
N M,,~® = (80.426 +- 0.034) GeV
=y .
goaN Y _ _
_ _k\'\ | Theoretical uncertainty:
> \
& N\ 1 status '00: AMw ~ 6 MeV
— \
= i B ;
= i status '06: AMwy ~ 4 MeV
80.3 — _|
] ~~—__ | Experimental error:
. R status '06: AMy ~ 29 MeV
. |exp. lower bound on M, = ﬁM.GeV m
| | | | | | | | | | | | I\I\l\ I\ Sy | ILC(?): AMW ~ 7Mev
80.2 200 400 600 800 1000

M, [GeV]
Prediction includes:
* full electroweak corrections of O(«) (1-loop level)

e full electroweak corrections of O(a?) (2-loop level)
(v.Ritbergen,Stuart '98; Seidensticker,Steinhauser '99;
Freitas,Hollik,Walter,Weiglein '00-'02; Awramik,Czakon '02/°03; Onishchenko,Veretin '02)

* various improvements by universal corrections to p-parameter

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture Il — 25



Literature

® Textbooks:
¢ BOohm/Denner/Joos: “Gauge Theories of the Strong and Electroweak Interaction”
Collins:  “Renormalization”
ltzykson/Zuber:  “Quantum Field Theory”
Peskin/Schroeder:  “An Introduction to Quantum Field Theory”

Weinberg: “The Quantum Theory of Fields, Vol. 1. Foundations”;
“The Quantum Theory of Fields, Vol. 2: Modern Applications”

® (Incomplete) list of articles on techniques for radiative corrections:

¢ one-loop integrals:
G. 't Hooft and M. Veltman, Nucl. Phys. B 153 (1979) 365;
G. Passarino and M. Veltman, Nucl. Phys. B 160 (1979) 151;
W. Beenakker and A. Denner, Nucl. Phys. B 338 (1990) 349;
A. Denner, U. Nierste and R. Scharf, Nucl. Phys. B 367 (1991) 637,
A. Denner and S. Dittmaier, Nucl. Phys. B 734 (2006) 62 and references therein

¢ renormalization of the electroweak SM:
K. I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Prog. Theor. Phys. Suppl. 73 (1982) 1;
M. B6hm, W. Hollik and H. Spiesberger, Fortsch. Phys. 34 (1986) 687;
W. F. Hollik, Fortsch. Phys. 38 (1990) 165;
A. Denner, Fortsch. Phys. 41 (1993) 307;
A. Denner, S. Dittmaier and G. Weiglein, Nucl. Phys. B 440 (1995) 95

¢ IR structure of photon radiation:
D. R. Yennie, S. C. Frautschi and H. Suura, Annals Phys. 13 (1961) 379.

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Miinchen), Introduction into Standard Model and Precision Physics — Lecture Il — 26



	Quantum field theories and higher perturbative orders
	General procedure
	Green functions, transition amplitudes, and observables
	Loop integrals and regularization
	Renormalization

	Electroweak Standard Model --- radiative corrections
	Loop corrections
	Renormalization
	IR divergences and photon bremsstrahlung
	The universal radiative corrections  and 

	Radiative corrections to muon decay
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

