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General overview

Lecture | — Standard Model (part 1)
Lecture Il — Standard Model (part 2)
Lecture Il — Quantum Corrections
Lecture IV — Unstable Particles (part 1)
Lecture V' — Unstable Particles (part 2)

11 The pole scheme for radiative corrections to resonance processes
12 Single-W production at hadron colliders

13 eTe” —WW —4f: double-pole approximation vs. complex-mass scheme
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11 The pole scheme for radiative corrections to resonance processes

11.1 General strategy for a single resonance
Stuart '91; H.Veltman '92; Aeppli, v.Oldenborgh, Wyler '94

The idea: expansion about resonance pole

R(p?) 2 R(m®) | R(p®) — R(m?) 2
R(m?) R(p*) — R(m?) 2
N
- p2—m2—|—imF+ p?2 — m? +N (P
resonant non-resonant

Benefits / drawbacks / subtleties:

procedure is gauge invariant, because residue R(m?) is gauge invariant

scheme is applicable to higher orders
2

R(p?) in general not analytic at p* = m
— “non-factorizable corrections” (i.e. not of the form const. x Breit—~Wigner)

R(m?) is “ambiguous”, because it depends on other phase-space variables
— R(m?) depends on choice of phase-space parametrization

* reliability questionable in presence of small scales,
e.g. v radiation with £, ~ I",  vicinity of thresholds: £ — FEinreshold ~ I’
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The pole expansion including higher orders:
W (p*)
p? —m? + X(p?)

e

Starting point: ~ complete matrix element M = +N(p?)

|solation of pole structure:

p° — M? 4+ S(p°) — S(M?)
(p° = M1+ (M?)] + O((p* — M?)?)

recall: p° —m” + 3(p?)

Lo - oy o W) W)l
p2 . M2 1 _|_ E/<M2) p2 . m2 _|_ E(pQ) p2 _ M2 1 _|_ E/(MQ)
_ w 2
— p2 - M2 —I_ n(p )
Comments:

e complex pole mass )M as well as w and (1)) are gauge invariant

e evaluation of W (M*?) for complex p® = M? not straightforward !

But: w and n(p”) can be perturbatively obtained

. : Aeppli et al. '94
from quantities with real momenta
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Perturbative evaluation of w and n(p?):

Alternative expansion of resonant diagrams about real mass m?:

1 W(pz) - —E(p2) n_ 7
M= m;(ﬁ) =N+ p? —m2+z (p? —m2

— perturbative expansion for coefficients:

W= W)+ S WAS6)] L+ 3 e,
N = B
W (p?)B(p?) — W(m?)S(m?) — (2 —m?) s (WD), |
) (r? — m?)? T
One can show to all orders: (see next slides)

= W, n(pQ) — N(p2>

— residue and non-resonant remainder can be obtained
from perturbative calculation with real p* = m?
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Proof that w = W —!;

S8 [ (o]
Expand [...] with s = M* + (m” — M?) about s = M~
AT o)) s
_s(M2)
:nz:; ﬁ (nZk) [ (f::kw(s)( - z(s))”(z:(z\ﬁ))k] o
:i % ;S: [W(s) KE(MQ) _ z(s))i L:MQ, r=n+k

=[5/ (M2)]" (s—M2)"+...

Only the terms oc [~ (M?)]" survive after setting (s — M?):

> W = S WO -S (M) = 11@{‘(4]\}2) ~ W
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Proof that n(p*) = N (p?):

Formal manipulations with Taylor series:

W(s) — W(m?2) W(s)X(s)

—W(m2)Z(m?) — (s —

m2) d

Lwis)ns)

N(s) = s —m? B

-y

=Y = m) (Wi (-2)” Ezjki[—

Zn:“ k! [ UOICO) n]

(s —m?2)?

CWE(-2e)"]  -mdk)

7

subtraction of first (n + 1) Taylor terms

(s —m2)F—n—1, k=n+/¢

n=0k 2
(o%e) dn_|_g )
:;1 " 12 ”+€)' ”HW(S)(_Z(S)) L:mz’ n=r—1{
o o le’e) W(S) . S )
_Egl {Z Z} [ds”’ _2(3)]2 ( 3( )) L:m2
W (M?) 1 W (s)
s = M2 14X/(M2)  s—m2+3(s) (see next page)
= n(s)
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Proof that n(p®) = N(p?):  (continued)

First term in curly brackets:

i<5 m2)t- 12 1 {ds’r ME/E::;]K <_§3(3)>r]

{=1

s:m2

7

~"

known from proof that w = W_4

2)2—1 W(M2) 1
[=2(M2)]¢ 1+ 5/(M?)

I
M]3
-

=1
_ 1 W (M?2) i (s—m»)* W) 1
—2(M?2) 14 %/(M?) = [-5(M?)}¥ s— M2 1+ (M?2)
Second term in curly brackets:
oo £—1
_ 6 2611 d”  W(s) _S"“ _ 4y
;7;0( ) {ds’“[ Y(s)]¢ ( =( )) ]S:m2’ E=0+
— _oo OOS_ 2£—|—'r 11 d” W(S)
2. 2, (s=m) 7 i [—E(s)]e'L:mz
_ — s — m2 v_1 Wi(s) _ W (s)
= T2 RO T e
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Perturbative ordering in pole scheme:

First step:  calculate M? from M? = m? — R(D -+t (3 r2)
— yields I" in M? up to n-loop order

Expansion of matrix element: (A(™) = n-loop contribution to A)
W(PQ) 2
M = N
p? —m? + X(p?) tANE)
W (M?) 1

2 2
_ 4 + N
p2 — M2 1+ X/ (M?2) n(p”) (P)

= }Ieading order
p2 — M?2 : o
in pole approximation

WD (m2) WO (M)W (m2) WOV (m2)s® (m2)
T p2 — M2 p2 — M? N p2 — M2 NLO:
W (0) (p2) — w (0) (m?) correction to residue

- - + NO(p?) and.
ps—m leading-order off-shellness

A 7

e and

=n(0)(p2) -
_ _ non-fact. corrections
+ non-factorizable corrections

_|_

+ higher orders
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Modified (improved!) version of the pole expansion:

Inclusion of lowest order without pole expansion:

M = M(O) LO:
complete leading order
W (m?2) WO m2)xsmM(m2) Y NLO:
p2 — M2 p2 — M? correction to residue
and

+ non-factorizable corrections non-fact. corrections

+ higher orders

Comments:
* inclusion of M) is usually easier than its expansion

e wave-function correction ©V"(m?) = 0 in on-shell renormalization scheme

* naive estimate of relative theoretical uncertainty (TU) in NLO:

X — x const. in resonance region |p? — m?| < mT

TU ~

A 3|Q

X const. off resonance |p? — m?| > mT
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Factorizable corrections:

M — W) - wO ) (m?)
fact. p2 — M2
_ Z Mélr)OdUCtiOH()\)M((i%)cay()\) + Ml()?‘z)duction()\)‘/\/lc(ile)cay()\)
o 2 _ A2
A p M
qu : P1 qu : ®1
v “ b » b

Spin correlations:  identical definitions of polarized states |¢(\)) needed in
M) (A) and MY (\)

production decay

Subtlety in kinematics:

gauge invariance of /\/lg;‘()) duction /decay EOUIrES p® =m’
— “on-shell projection” of momenta needed !
Example:
;\pj i/kqb i off-shell phase space: (p1 + p2 — k)? = p? # m?
Z N < define % (e.g. from angle of k) such that (p1 + p2 — k)2 = m?
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Non-factorizable corrections: Melnikov, Yakovlev '96; Beenakker, Berends, Chapovsky '97;
Denner, Dittmaier, Roth '97,98

Origin:
on-shell limit (p* — m?) and IR regularization (e.g. m- — 0) do not commute
in diagrams with exchange of ~/g between external and/or resonant lines:

v(q)

\ . 7 \ . 7
TV TV

“manifestly non-factorizable” “not manifestly non-factorizable” diagrams
* diagram has no explicit * diagram has explicit propagator factor (p? — m?)—1
propagator factor and contributes also to factorizable corrections
(v —m?) ! W (m?)
® resonant IR-divergent ® non-factorizable part:
. . . 1 _
contribution in loop wll (p2) = (WO (p?) - W (m?)] 5, s

integral from region 0 : L
J glonq — — receives only contributions from g — 0
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Evaluation of NLO non-factorizable corrections:
Only leading behaviour of loop integrands for soft-photon momentum ¢ — 0 relevant

— “Extended soft-photon (or gluon) approximation”:

neglect ¢ in numerator of diagrams — scalar loop integrals only

g only kept in propagators that become singular for ¢ — 0

* resonance propagators are dressed with complex mass: [(p + q)® — M?*]™*
take limits p?, M* — m? in final result whenever possible

Result factorizes from Born amplitude: virt, = gvirt MO

Features of 6%t . :
* gauge independent by definition

2 7‘ [2
- - - - -
¢ contains contributions like aln<p—>
m~ M

from non-commutativity of on-shell and soft-photon limits
* free of collinear singularities from external particles

* various cancellations after addition of corresponding real-photon contributions:

¢ no resonant contribution from photon exchange between initial and final states
> non-local cancellation of whole effect after integration over p?
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11.2 Real corrections to resonance processes

Calculation of real NLO corrections:

NLO: 1-particle bremsstrahlung in LO (tree-level diagrams)
— LO prescriptions for resonances applicable

But:  real [M,_ r1,,¢|” is related to 2 Re{M " M,El)f} in soft and collinear limits,

— matching between resonance descriptions in virtual and real corrections !

Pole expansions for real corrections:

Split diagrams with radiating resonances (2 resonant propagators) as follows:

1 1 { 1 1 ]
[(p+ k)2 — M?](p?> — M?)  2pk| p>—M? (p+k)2— M?

p—k —
E., > TI'w (hard photon):  photon can be assigned to production or decay,
resonances are well separated in phase space

— pole-scheme decomposition contains two leading on-shell contributions

E, = O(I'w) (“semi-soft photon”):  two resonances overlap in phase space
— definition of leading-pole approximation potentially problematic
(definition depends on specific observable; keep p? or (p — k)? fixed ?)
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Enhancement of real-photon emission due to collinear singularities

Collinear photon emission off light particles:

@ e
J — 7 %’Y
ky ~(1—x)k ky ~(1—x)k
— leads to mass-singular universal corrections
which can be described via “structure functions” in leading-log approximation:
fp(z, M?) = 5(1— ) + Qe 1n<%22) (1“"2) +o
+

27 mi l—=x

1

1
dxy Fee(:c1,M2)/ dwg Tee(w2, M?) 20" (@1p4, x2p—)

Comments:

* M = QED factorization scale = typical scale of process (set by full calculation)
e structure fucntions I'; ¢, etc., known up to O(a®) @ IR exponentiation
* unitarity / KLN theorem demands fol deTss(x, M?) =1
— mass singularities cancel for FSR if f 4+ n~y is treated inclusively for collinear s
* ISR /FSR can lead to large effects, e.g. distortion of resonances
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Distortion of resonance shapes by real radiation:

Initial state fixed: et L f

Typical situations: ete™ — Z — ff,
ptpnT —2Z,H?— ff e f

< scan over s-channel resonance in o(s) by changing CM energy /s

Initial-state radiation (ISR):
Z can become resonant for s = (p4 +p-)* > (p+ +p— — ky)* ~ M
— radiative tail for s > M7 due to “radiative return”

Final-state radiation (FSR):
s = kz ~ My for FSR opb Dittmaier, Kaiser '02
— only rescaling of resonance o000

I I I I I I I

T

corrected ]
-- -- -- corrected, My,q cut A

***** Born

An example:

_ 1000
cross section for u~ ™ — bb in lowest order F

and including photonic and QCD corrections, /
with and without invariant-mass cut 100 1 b o
V5 — M(bb) < 10 GeV Y e

] ] ] ] ] ] ] [—
80 8 90 95 100 105 110 115 120 125

V3lGev]
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Distortion of resonance shapes by real radiation:  (continued)

Resonance reconstructed from decay products: k1

Typical situations: eTe™ — WW/ZZ — 4f, . ,
pp—Z— ff+X ko

o . . do . .
< resonance in invariant-mass distribution i of reconstructed invariant mass M

Final-state radiation (FSR):
resonance for M? = (k1 + k2)* < (k1 + ko + k) ~ M7

— radiative tail for M < My
Beenakker, Berends, Chapovsky '98
i i |

d le-07 i
g born
m ————— O(a) corrected
An eXample: eeBe-OS /\ e r@sUMMed
ZineTe™ — ZZ — 4l i,
6e-08 T
reconstructed via Mee = (p1, + pi,)* o N
X / Z \\~.\:\"
lowest order, O(«a) FSR, A S
and higher-order FSR beyond O(«) s Sy
Oe+0089 90 91 92 93
M| GeV]
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12 Single-W production at hadron colliders

Drell-Yan-like W and Z production:
Physics goals:
® M,z — detector calibration by comparing with LEP1 result
® sin? Hi?t — comparison with results of LEP1 and SLC
* Myy — improvement to AMy ~ 15 MeV
® decay widths I'z and I'vy from M;; or M~ ;,, resonance tails
* search for Z/ and W' at high Mj; or M~ ;,,
® information on PDFs

Partonic cross section and W-boson resonance;

T T T T T T T
10000 | i
u 14
1000 | J
2 100k o
W I
g I
_ 10 _
d I+ i
1 —
0.1 J 1 1 1 1 1 1 1

20 40 60 80 100 120 140
s/ GeV
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Born amplitude:
e? 1

— Ua P (1 — "
Mo Py 3 (=)l T

25T [0, 75 (1 — v5)vi]

Electroweak corrections: Dittmaier, Kramer ’02; Baur, Wackeroth '04
Arbuzov et al. ’05; Carloni Calame et al. '06

® virtual corrections:

el el e M

W self-energy Wud and Wlv; vertex corrections box diagrams

inclusion in factorized form:  |Mo + M1|? = (1 +2Re{d""" })|Mo|* + ...
Wlth 5virt — 5se1f(§)‘|‘5Wdu(§)‘|‘5Wull(§)+5box(§7 2?)
— §¥"" gauge independent in limit T'w — 0,

non-analytic terms in §¥'** described via In(5—M3,) — In(5—Mg,+iMwIl'w)

* real photon corrections:
full amplitude calculation for ud — ;1" ~ with complex W mass
— gauge invariant with correct IR (soft and collinear) limits
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Electroweak corrections in Pole Approximation (PA): Eﬁﬁr:;a'fgr"eér\évrﬁgﬁ?ggth 99

— decomposition into factorizable and non-factorizable contributions:

5¥’Xt — 5%2?‘; + 5Ki)rr)ifact(§7£)
Sy = 5Wdu(M\2zv)|FW:0 + 5Wull(M\2]V)|FW:O
5Xgr£fact(§’£) - 5Virt|§—>M‘27v,FW—>O o 5%2?:
M2, M2
— _i{_2+QdLig(1+ AW) —QuLi2(1‘|‘ - W)
27'(- tres ures
M2, —iMwTIw — 8 M2 M2
(MBI 8) g5 - g, 1m(- 28 )))
mWMW tres Ures
PA versus full O(«) correction:
V'3 /GeV 40 80 120 200 500 1000 2000
60/pb 2.646 | 7991.4 | 8.906 | 1.388 | 0.165 | 0.0396 | 0.00979
d/% 0.7 2.42 —12.9 —3.3 12 19 23
opa /% 0.0 2.40 —12.3 —0.7 18 31 43
: . virt virt Q PW S 2 S
error estimate:  [6}"" — 6V ~ —max{—,ln( 5 >,ln ( 5 )} X const.
7r My’ \ M2, M2,
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Hadronic pp cross section and Jacobian peak:

Note: v, notdetectable — e.g. study “transverse W mass”:
M3 .1 = (Bt miss + E1.1)° — (P miss +P1.1)°

(do/dMr 1)/ (pb/GeV) Dittmaier, Kramer '02
140 — T T T T T T T 1 5 T T T T T T T 1
8/ %
120 — 0
100 —
-5
R0 — I
—10
60 —
—15
40 —
90 I ~ recomb. ----- _
2 —
0 PA --
0 | 95 I R R R B R
b0 HH 60 65 70 75 &0 &8 90 95 100 50 HH 60 65 T0 TH 80 & 90 95 100
MTM[/GGV MTM]/GQV

* pole approximation (PA) for W resonance
sufficient near Jacobian peak, but not for large M+ .,

* EW corrections sensitively depend on treatment of photon radiation
— issue of inclusiveness / KLN violation causes large effects
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13 e+e_—>WW—>4f: double-pole approximation vs. complex-mass scheme

13.1 Double-pole approximation (DPA)

Structure of Monte Carlo generators with EW corrections used at LEP2:
RacoonWW (Denner, Dittmaier,Roth,Wackeroth) and
KoralW & YFSWW (Jadach,Ptaczek,Skrzypek,Ward) include

e full lowest-order matrix elements for ete™ — 4f(+7)

signal diagrams background diagrams
fi w fi

€ w _ € _
fa fa 7
v, Z fa Ve fa "z etc
et w f4 et w = ¥,Z

®* non-universal electroweak corrections DPA

\WY% leading term in expansion about W resonances
— contributions:

— corrections to ee — WW BShm et al. '88; Fleischer, Jegerlehner, Zralek '89

\W

\W

H r/ Bardin, S. Riemann, T. Riemann '86
corrections to W — ff Jegerlehner '86; Denner, Sack 90

. . . Melnikov, Yakovlev '96
— non-factorizable photonic corrections Beenakker, Berends, Chapovsky '97

Denner, Dittmaier, Roth '97

* improvements by leading higher-order corrections
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Virtual corrections in DPA;

* Factorizable corrections:

fl
JLTQ
f3
f_4
on-shell production on-shell decays
METe T WWap R(M;, Mg,)
virt.fact,DPA (k2 — M3, +iMwTw) (k% — ME, +iMwIy)

with the gauge-independent residue

teom WHTW— y W S f1fo x [W™ — f3 f,
ROMGy, M3y) = 3 (oMo e wWIW gt pq s
W-pols

4+ Me+e_—>W+W_5MW+—>f1f2MW_—>f3f4

Born Born

+ Me+e_—>W+W_Mw+—>f1f2 5MW_—>f3f4)

Born Born

containing the corrections to on-shell production and decay
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* Non-factorizable corrections:

Me+e_—>WW—>4f 5Me+e_—>4f . e+e_—>WW—>4f
virt,nonfact,DPA doubly-resonant part virt,fact, DPA

+ —
eTeT -WW—4f
- MBorn,DPA 5virt,nonfact,DPA

Features of 0.i,¢ nonfact, DPA @nalogous to single-resonance case:

¢ gauge independent, no mass singularities

- " - eTe™ SWW—4f
¢ compensates IR singularities of W bosons in M, ¢ . & bpa
¢ no factorization of Breit—Wigner-type resonances

(complicated dependence on off-shellness kft of W bosons)
Manifestly non-factorizable diagrams:
W 4 4
v 1%%
w %% w
Diagrams contributing to factorizable and non-factorizable RCs:
Y
w
w
%
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Combination of contributions:  (as implemented in RacoonWW)

1
do = — dd
/U 28{/ 4

ME e A2

Born

+o— +o—
etTe ->WW-—4f\x« etTeT -WW-—A4f
+ 2 Re( (MBorn,DPA ) 5Mvirt,fact,DPA

_|_ —_
etTeT -WW-—4f 2
+ |MBorn,DPA | 5virt,nonfact,DPA)
+ —
ete —4fv2
+ /dq)‘lf’)’ |MBorn | }

Note: virtual corrections in DPA & real from full amplitudes

Parma School of Theoretical Physics, SNFT06, September 2006 Stefan Dittmaier (MPI Minchen), Introduction into Standard Model and Precision Physics — Lecture V — 25



Combination of contributions:  (as implemented in RacoonWW)

1
do = — dd
/U 23{/ 4

ME e A2

Born

—SWW —4f« ete™ S WW—4f
+ 2Re< (MBorn DPA )" OM it fact, DPA

+ |M T WW—4f > non-singular

2
Born ,DPA | 5Virt,nonfact,DPA )

te™ —
_|_|Mee WW 4f|25

Born,DPA sub,1 /

Born

explicit mass singularites —  + |/\/le - _)4f| ®5sub2 ]

Born Born sub
Ny

+/d<1>4f,y |Me+e_—>4ffy|2 B |Me+e_—>4f|254ffy ] }

-~

non-singular

Note: virtual corrections in DPA & real from full amplitudes
— redistribution of singular contributions to avoid mismatch in cancellations
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From LEP2 to the ILC:
Experimental vs. theoretical uncertainties for some observables:
Observable Acxp (LEP2) A (ILC) A (DPA/IBA)

OWW ~ 1% < 0.5% 2% for /s < 170 GeV (IBA range)
0.7% for 170 GeV < /s < 180 GeV
0.5% for 180 GeV < +/s < 500 GeV

My (threshold) ~ 200 MeV — ~ 7MeV ? but > 50 MeV
My (reconstr.)  ~ 30 MeV ~ 10MeV ~ 5—10MeV

TGC some % ~ 0.1% < 1% at LEP2
? at /s > 200 GeV

Exceptional case: threshold region and below (v/s < 170 GeV)

error estimate of DPA not reliable

— description at LEP2 via IBA = “Improved Born Approximation”
(off-shell Born calculation dressed with universal corrections such as ISR)

= DPA/IBA approach sufficiently accurate at LEP2
but precision beyond DPA needed at ILC
— recent treatment beyond DPA in complex-mass scheme
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13.1 The complex-mass scheme at one loop and application to ete” — 4f

The complex-mass scheme at one Ioop Denner, Dittmaier, Roth, Wieders '05

mass? = location of propagator pole in complex p? plane

< complex mass renormalization: My o = piy + Suiy, etc.
N—— ——
bare mass ren. constant

— Feynman rules with complex masses and counterterms

Virtues and drawbacks:

* perturbative calculations as usual

* no double counting of contributions (bare Lagrangian unchanged !)
e spurios terms are of O(a?), but spoil unitarity

* complex gauge-boson masses also in loop integrals

Convenient choice:

complex field renormalization WOjE = (1 + % 0 2w )Wi, etc.
—~— N——
bare field ren. constant

e complex 6Zw appliesto WHand W~ = (WH)T #£ W+

* §Zw drops out in S-matrix elements without external W bosons
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Complex renormalization for W bosons explicitly:

On-shell renormalization conditions for renormalized (transverse) self-energy
ST () = 0, S (uiy) = 0
— i is location of propagator pole, and residue = 1

Solution of renormalization conditions:
S = BT (), 02w = =277 (i)
Note: evaluation of X% (p*) at complex p* can be avoided
Y () = B¢ (M) + (uy — M{)E4Y (M) + O(e”)

N——
beyond one loop

and finite
= Renormalized W self-energy:

SY (p°) = S (0%) — MGy + (p° — My)6 2w
with M3, = S (ME), Zw = =S8 (M)
Differences to the usual on-shell scheme:
* no real parts taken from 2%

e ¥V evaluated with complex masses and couplings
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Full O(«) corrections to (charged-current) et e™ — 4f
Features of the calculation:

e # 1-loop diagrams ~ 1200, loops up to 6-point integrals

* W resonances treated in the complex-mass scheme

* all loop integrals with complex W /Z masses

* new tensor reduction methods for stability in exceptional phase-space points

* real-photonic corrections taken from RacooNnWW

11 lowest-order diagrams:  (*CC11 class”)

Parma School of Theoretical Physics, SNFT06, September 2006



Generic diagrams for loop insertions (4-, 5-, 6-point functions)
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(O(1200) one-loop diagrams per channel:
* 40 hexagons

w fi /2 fi /2 fi

e’ ) f2 et & f2 e 4 f2
Ve v/ Z e w e w

o= - f3 - i f3 t N f3

W fa ~/Z fa ~/Z fa

+ graphs with reversed fermion-number flow in final state

* 112 pentagons
e 227 boxes ('t Hooft—-Feynman gauge)

* many vertex corrections and self-energy diagrams

Parma School of Theoretical Physics, SNFT06, September 2006
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Complete O(«) corrections to the total cross section — LEP2 energies
Denner, Dittmaier, Roth, Wieders '05

o[ fb] T 1 I I I | | | |
200 - ¢ ¢ T H Vu o[ %) efe” — v T, etz
—10 —
150 -
-15 —
100 -
—20 —
50 -
—95 ‘ -
0 | | | | | | | | | |
150 160 170 180 190 200 210 150 160 170 180 190 200 210
Vs GeV] V/s[ GeV]

* leedf — DPA| ~ 05% for 170GeV S /s S 210GeV
* leedf —IBA| ~ 2% for /s S170GeV
— agreement with error estimates of DPA and IBA

Remaining theoretical uncertainty from higher-order EW effects ~ a few 0.1%

Parma School of Theoretical Physics, SNFT06, September 2006
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Complete O(«) corrections to the total cross section — ILC energies
Denner, Dittmaier, Roth, Wieders '05

o fb] T T T T T 11 20 T T T T TT1
tom TSI
200 b~ eTeT =TT, - 3[%] ete” - v 7D, g
15 -
150 10
)
100
0
50 =
-5
0 N T N N B B I 10
200 500 1000 2000 200 500 1000 2000

VA[GeV] V3[GeV]

* leedf — DPA| ~ 0.7% for 200GeV S +/s S 500GeV

— agreement with error estimate of DPA

* leedf —DPA| ~ 1-2% for 500GeV S /s S1-2TeV

Parma School of Theoretical Physics, SNFT06, September 2006
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A (not exhaustive) selection of literature

® Radiative corrections to resonance processes (see also references therein)

¢ expansion about resonance poles (“pole scheme”):
R. G. Stuart, Phys. Lett. B 262 (1991) 113;
A. Aeppli, G. J. van Oldenborgh and D. Wyler, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212];
H. G. J. Veltman, Z. Phys. C 62 (1994) 35.

¢ electroweak corrections to Drell-Yan-like W production:
U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417];
S. Dittmaier and M. Kramer, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062];
U. Baur and D. Wackeroth, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191].
¢ eTe”™ — WW — 4f in DPA:
W. Beenakker, F. A. Berends and A. P. Chapovsky, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481];
S. Jadach et al., Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436];
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307].

¢ eTe™ — 4f and complex-mass scheme at one loop:
A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Phys. Lett. B 612 (2005) 223 [hep-ph/0502063]
and Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042].
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