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1. Introduction

The aim of these lectures is that of describing the construction and the main
phenomenological implications of the Glashow-Weinberg-Salam unified theory of weak
and electromagnetic interactions (universally referred to as the standard model). Basic
knowledge in quantum field theory* and elementary group theoryl’? is assumed, as

well as familiarity with the fundamental phenomenology of weak interactions!™.

No attempt will be made to give a full list of references. Such a list can be found

in any standard text book of particle physics; see for example ref. [??] and ref. [?7].

2. A gauge theory of weak interactions

Our starting point will be Fermi’s theory of # and muon decay. This theory is
based on an effective four-fermion lagrangian, which is usually written as follows?:

£ = =St = e (L = a0 = SRt = (= e (21

with
G, >~ 1.16639 x 107° GeV ™ Gy~ G, a~1.23940.09. (2.2)

As is well known, the lagrangian in eq. (??) is not renormalizable (it contains only
operators with mass dimension 6, while a renormalizable theory must contain oper-
ators whose mass dimension is at most 4; see appendix ?7?), and it gives rise to a
non-unitary S matrix. However, it contains all the physical information needed to

build a renormalizable and unitary theory of weak interactions.

The idea is that of building a theory which possesses local invariance under the
action of some group, a gauge theory, in analogy with quantum electrodynamics (see
appendix ??7). We will then require that the new theory reduce to eq. (??) in the
low-energy limit, in the sense that the local four-fermion interaction of the Fermi
lagrangian will be interpreted as the exchange of a massive vector boson with a mo-
mentum much smaller than its mass. In this way, both problems of renormalizability

and unitarity will be solved, since gauge theories are known to be renormalizable, and

?Throughout these lectures, particle fields will be denoted by the letter usually adopted for the

corresponding particle: e for the electron, v, for the electron neutrino, and so on.



the mass of the intermediate vector boson will act as a cut-off that stops the growth

of cross sections with energy, in order to ensure unitarity of the scattering matrix.

In order to complete this program, we must choose the group of local invariance,
and then assign particle fields to representations of this group. Both these steps are
made with the help of the information contained in the Fermi lagrangian. Let us
first consider the electron and the electron neutrino. They participate in the weak

interaction via the current |
Ju = 7657#(1 — s)e- (2.3)

We want to to rewrite J, in the form of a Noether current,
%WTZ“@/}J& (2-4)

where ¢; are the components of some multiplet of the gauge group, and TZ»;‘ are the

corresponding group generators. In the case of J,, this can be done in the following

way. We observe that the current J, can be written as
J, = ’)/MT-I_L, (2.5)
where

| O L
T —§(T1+l7'2)—[0 0]7 (2.6)
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and 7; are the usual Pauli matrices. The hermitian conjugate current J:[ will also

participate in the interaction,

J:[ =Ly, 7L, (2.8)

where 77 = (71 — i72)/2. In the context of gauge theories, currents are in one-to-one
correspondence with the generators of the symmetry group. The group generators,
in turn, form a closed set with respect to the commutation operation, that is, the

commutator of two generators is also a generator. Therefore, the current
Ji = Ly*[rt, 770 = Ly, L (2.9)

will also be present. No other current must be introduced, since [r3, 7%] = 27%. We

have then interpreted the current J, as being one of the three conserved currents of a



theory with SU(2) gauge invariance, the Pauli matrices being the SU(2) generators in
the fundamental representation, and we have assigned the left-handed neutrino and
electron fields to an SU(2) doublet. The right-handed neutrino and electron compo-
nents, . and eg, do not take part in the weak-interaction phenomena described by
the Fermi lagrangian, so they must be assigned to the singlet (or scalar) representa-
tion. Of course, this is not the only possible choice, but it is the simplest possibility
(and also the correct one, as we will see!) since it does not require the introduction

of fermion fields other than the observed ones.

The current J%' is a neutral current, it contains creation and destruction operators
of particles with the same charge (actually, of the same particle). Neutral currents
do not appear in the Fermi lagrangian, no neutral current phenomenon is observed
in low-energy weak interactions. As we will see, the experimental observation of
phenomena induced by weak neutral currents is a crucial test of the validity of the
standard model. Notice also that the neutral current Ji cannot be identified with
the only other neutral current we know of, the electromagnetic one. This is for two
reasons: first, the electromagnetic current involves both left-handed and right-handed
fermion fields with the same weight; and second, the electromagnetic current does not
contain a neutrino term, the neutrino being chargeless. We will come back later to the
problem of neutral currents, that will end up with the inclusion of the electromagnetic
current in the theory. For the moment, we go on with the construction of our SU(2)
gauge theory. We must introduce vector meson fields W/ one for each of the three

(2

SU(2) generators, and build a covariant derivative
D* = 9" — igWET, (2.10)

where we have introduced, as is customary in gauge theories, a coupling constant g.
The matrices T; are generators of SU(2) in the representation of the multiplet the
covariant derivative is acting on. For example, when D* acts on the doublet L., we
have T; = 7;/2, and when it acts on the gauge singlet ep we have T; = 0. We are now

ready to write the gauge-invariant lagrangian for the fermion fields:
L =iLDL + 0. Dv. + iegDep, (2.11)
where D = v, D*. The lagrangian £ contains the usual kinetic term £*" for fermions,

L£¥ = iTOL + iv. pdv. p + i€pden, (2.12)



and a term £" that describes the interaction of fermions with the gauge bosons W
The interaction term can be split into two parts, corresponding to neutral-current

and charged-current interaction respectively:

LY=L 4L (2.13)
where
w p. 11 w72
£ = W T DL Wi T L (2.14)
and
- T
LY = gWiTn, 5 L = SWE (Pesver, = Eres) (2.15)

The charged-current interaction £ is usually expressed in terms of the fields

W= L

p ﬂ(Wj TiW?) (2.16)

as follows:

LV = LTyt twt + LTy LW (2.17)
V2 VR g

We have already observed that the neutral current J) = Ly*75L cannot be iden-
tified with the electromagnetic current, and correspondingly that the gauge vector
boson W3' cannot be interpreted as the photon. The construction of the model can
therefore proceed in two different directions: either we modify the multiplet structure
of the theory, in order to make .J5' equal to the electromagnetic current, or we extend
the gauge group in order to accomodate also the electromagnetic current in addition
to the weak neutral current J.'. We proceed to describe the second possibilty, which
is the one that turned out to be correct, after the discovery of weak neutral currents.
Nevertheless, it must be reminded that this was not at all obvious to physicists before

the observation of weak-neutral-current effects.

The simplest way of extending the gauge group SU(2) to include another neutral

generator is to include an abelian factor U(1):
SU2) — SU(2) @ U(1). (2.18)

We will require our lagrangian to be invariant also under the U(1) gauge transforma-

tions

Y — Y = exp lig'a@] (2.19)



where 1 is a generic field of the theory, ¢’ is the coupling constant associated with
the U(1) factor of the gauge group, and Y (¢) is a quantum number, usually called
the weak hypercharge, to be specified for each field ¢». A new gauge vector field B*

must be introduced, and the covariant derivative becomes

Y
D = o —igW!'T; —ig 3 B, (2.20)

where Y is a diagonal matrix with the hypercharge values in its diagonal entries. Y

being diagonal, only the term £ is modified. We have now

g — _
'CZV = §W§ (VeL’W/eL - eLweL)
!
+ %BM [Y(L) (Veryuver + €rvuer) + Y (Ver)VerYuVer + Y (€r)ERY ER]

(2.21)

We can now assign the quantum numbers Y in such a way that the electromagnetic
interaction term appear in eq. (??). To do this, we first perform a rotation of an

angle , in the space of the two neutral gauge fields W3, B*:

A" = B"cosfy + Wisinb,, (2.22)
7" = —B"sin by + W cos by (2.23)
To identify one of the two neutral vector fields, say A*, with the photon field, we must
choose Y(L), Y(ver) and Y(er) so that A" couples to the electromagnetic current,
—eey,eA”. The remaining terms of the lagrangian will define the weak neutral current

coupled to the other neutral vector boson 7Z,. After some algebra (a useful exercise!),

we find

gsinf, =e¢

g cos by = e, (2.24)
where e is the positron charge, and

Y(L)=—1, Y(rg) =0, Y(ep)=—2. (2.25)



In general, for a generic fermion field with charge @ (in units of €) and third compo-

nent of weak isospin 75 (1/2 for v.p, —1/2 for ey, 0 for 1. and eg), we have
Y =2(Q —T3). (2.26)

Notice that the right-handed neutrino has zero charge and zero hypercharge, and it is
an SU(2) singlet: it does not take part in electroweak interactions. Notice also that
the above hypercharge assignments can be rescaled by a common factor, provided the
coupling constant ¢’ is correspondingly redefined (only the product ¢'Y appears in

the lagrangian). The choice we made in eqs. (??) and (??) is universally adopted.

If we form a column vector ¥ with all the fermionic fields present in the theory
(with left and right-handed components of the same particle counted separately),
we can write the neutral-current electroweak-interaction lagrangian in the following,

general form:

LY = Uy, QUA* + Uy,Q70 7", (2.27)

where e is the positron charge, () is the diagonal matrix of electromagnetic charges,

and )z is a diagonal matrix given by

€

Q7 = (75— Qsin® 0y . (2.28)

cos Oy sin Oy
The extension of the theory to other lepton doublets is straightforward.

We must now include hadrons in the theory. We will do this in terms of quark
fields, taking as a starting point the hadronic current responsible for § decay and

strange particle decays:
_ 1 |
Jr., = cos 00u7“§(1 — 75)d + sin 00u7“§(1 — ¥5)8, (2.29)

where 6. is the Cabibbo angle (8. ~ 13°) and w, d, s are the up, down and strange

quark fields respectively. We are tempted to proceed as in the case of leptons: define

1 u ur,
Q:§(1—75) d | =] dg (2.30)

S ST,



and
0 cosf. siné,
T™H=10 0 0 , (2.31)
0 0 0
so that
Tfus = QY THQ. (2.32)

This leads to a system of currents which is in contrast with experimental observations.
In fact, we find that

1 0 0
[TH,77]=]|0 —cos?f. —cosb.sind. |, (2.33)
0 —cosf.sinf, —sin? 4.

and, because of the non-zero off-diagonal entries, the corresponding current contains
flavour-changing neutral terms, like for example djy*sy, with a weight of the same
order of magnitude of flavour-conserving ones. This would induce processes such as
for example the decay K° — m%T¢e™, which are not observed at the expected rate. We
must then modify our theory in order to avoid the introduction of flavour-changing
neutral currents. The solution to this puzzle was found by Glashow, Iliopoulos and
Maiani. They suggested to introduce a fourth quark ¢ (for charm) with charge 2/3
like the up quark, and to assume that its couplings to down and strange quarks are

given by
1 a1
Jr = Cosﬁcu7“§(1—75)d—|—51n(90u7“§(1—75)5
| 1
— sm@ccy“§(1—75)d+coseccy“§(1—’y5)s. (2.34)

The ¢ quark being not observed at the time, they had to assume that its mass was
much larger than those of u, d and s quarks, and therefore outside the energy range
of available experimental devices. The current J}' , can still be put in the form (?7?),

where now

Q= (2.35)



and
0 0 cosf, sinf,
T+ 0 0 —sinf. cosd. (2.36)
00 0 0
00 0 0
No flavour-changing neutral current is now present. In fact,
1 0
0 1
TH,T7] = , 2.37
=00 (257
00 0 —1

thanks to the fact that the upper right 2 x 2 block of T has been cleverly chosen
to be an orthogonal matrix. The existence of the quark ¢ was later confirmed by the
discovery of the J/v¢ particle. The current J; , is usually written in the following

form, analogous to the corresponding leptonic current:

Ji g = (@dy )yt ( o ) + (epsp )it ( CL ) , (2.38)

! 7
dy, ST,

d d 0. sind.
Elow ™), k=] 0% " (2.39)
s ST —sinf, cosf,

The pairs (u,d), (¢, s) are called quark families. Actually, there is a correspondence

where

between quark families and lepton families, a correspondence that will become clear
in section ??. The structure outlined above can be extended to an arbitrary number
of quark families. With n families, K" becomes an n x n matrix, and it must be

unitary in order to ensure the absence of flavour-changing neutral currents.

The final form for the charged-current interaction term, including n families of

leptons and quarks, is then

f=1

Lf:(yeL),<”“L),... (2.41)
er, “r

where



. ur, Cy,
Qf_(dlL),(SlL),..., (2.42)

while the neutral-current lagrangian in eq. (??) is directly generalizable to include

quark fields.

To conclude the construction of the gauge-invariant part of the standard model

lagrangian, we must consider the pure Yang-Mills term

1 v 1 7 v
'CYM = _ZBMUBM - ZW;WI/VZ'M ) (243)

where

BY = 0B — 0" B*

W = 0"Wy — 0"WE + geip WIWY. (2.44)
The corresponding expression in terms of the physical fields Wf, Z, and A,, can be

easily worked out with the help of eqs. (?7), (??) and (??). Try to derive it as an

exercise!

3. Masses

In order to make contact with the Fermi theory, which is known to correctly
describe low-energy weak interactions, we must give a mass to the gauge vector bosons
of weak interactions. In fact, we are even able to estimate the order of magnitude of
the W mass. Consider, for example, the amplitude for down-quark 3 decay. In the
Fermi theory, it is simply given by

G
7[21%7“(1 = ¥5)deVu(l = 75 )ve. (3.1)
In the context of the standard model, the same process is induced by the exchange

of a W boson, giving rise to the amplitude

Ky L (9, 9
(ﬂuL’Y L) P — (ﬂeLVMVeL)y (3.2)

where ¢ is the momentum of the virtual W (we are neglecting Cabibbo mixing for

simplicity). We see that, for eq. (??) to be equal to the Fermi amplitude in the ¢ — 0
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limit, myu must be non zero, and

G (o) L (33)
vV2oo\2v2) mi '
Recalling that g = e/sin 0y, eq. (??) gives us the lower bound

my > 37.3 GeV, (3.4)

quite a large value! So, we know since the beginning that, if weak interactions are to
be mediated by vector bosons, these must be quite heavy. On the other hand, we also
know that gauge theories are incompatible with mass terms for the vector bosons.
One possibility is to break gauge invariance explicitly and insert a mass term for the
W boson by hand, but this leads to a non-renormalizable theory. Let us investigate
this point in more detail. Consider for simplicity the lagrangian of a pure abelian

gauge theory, with a mass term for the gauge vector field:
1 1
L= —Z(a“A” —0"A")(0,A, — 0,A,) + §m2A“AM, (3.5)

and work out the propagator A*” for A* in momentum space. We get

i R
AR P (_gw T ) , (3.6)

2 2
k* —m% 4

The propagator A* has not the correct behaviour for large values of the momentum
k: for k — oo it becomes a constant, rather than vanishing as k72, thus violating

power-counting and making the theory unrenormalizable.

To see how one can introduce a mass term for gauge vector bosons without spoiling
renormalizability, we first consider a simple example where this happens, and then we
generalize our considerations to the standard model. The simple theory we consider
is scalar electrodynamics, that is, a gauge theory based on U(1) invariance, coupled

to one complex scalar field ¢ with charge —e. The lagrangian is given by

L=~ P+ (D°6)! D~ V(9), (3.7)

where D* = 0" +ie A" and V(o) is the so-called scalar potential, which is constrained

by gauge invariance and renormalizability to be of the form

V(g)=m* [ ¢]" +A [ o [". (3.8)
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We look for field configurations that minimize the energy of the system. Because of
the requirement of translational invariance, they must be constant configurations, so
we can neglect the derivative terms and look for the minimum of the potential V.
Now, if m? > 0, then V' has a minimum for ¢ = 0. If, on the other hand, m? < 0,

% can no longer be interpreted as a mass squared for the field ¢; furthermore,

then m
the potential has now an infinite number of degenerate minima, given by all those

field configurations for which

[}

m

6= -2 =

2
) V7. (3.9)

[N

All these minimum configurations (in the language of quantum theory, all these
ground states) are connected by gauge transformations, that change the phase of
the complex field ¢ without affecting its modulus. When the system chooses one of
the minimum configurations, the gauge symmetry is broken. This phenomenon is
usually called spontaneous breaking of the gauge symmetry, but the symmetry is not
actually broken. In fact, the Lagrangian is still gauge invariant, and all the proper-
ties connected with this invariance (such as, for example, current conservation) are
still there. It is important to stress this point, because at the quantum level this is
essentially what guarantees the renormalizability of the theory, which would instead

be lost in the case of an explicit breaking of the gauge symmetry.

Let us now expand the field ¢ around the minimum configuration. We introduce

real scalar fields H(x) and G(x) by

1

)= —=|v+ H(x)+:1G(x)], 3.10
() 7 [ () +iG()] (3.10)
where v is defined in eq. (??7). One of the two fields H and G could in principle be
removed from the lagrangian by an appropriate gauge transformation. For example,
one could eliminate (G by choosing a gauge transformation that brings ¢ to be real.
For the moment, we keep both H and G in the lagrangian; we will come back to this

point later. Up to an irrelevant constant, the scalar potential takes the form

1 1 A\

V(o) = (mzv‘l')‘vg)H‘l'§(m2+3)‘v2)H2‘|’§(m2+)\U2)G2—|—)\vH(H2—I—G2)—|—Z(H2-|-G2)2,
(3.11)

Using eq. (??), Av = —m?, we see that the terms proportional to H and G? vanish,

which means that the field (& is massless. The coefficient of the H? term is now
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(—2m?)/2, and has therefore the correct sign to be interpreted as a mass term.

What about the covariant derivative term? We have
1 1 1
(D*6)' D, = 5O HOH + 504G, G + 58(}12 + G* + 20H)A* A,
1
+ eA,(HO"G — GO*H) 4 evA*d,G + 5621)214“14#. (3.12)

We see that the gauge field A, has acquired a mass m 4 = ev, precisely the result we
were looking for. The term evA*9,( is unpleasant, because it mixes the gauge vector

field A* with the unphysical field G; we will see in a moment how to get rid of it.

We must now check that the appearance of a mass term for A* via the spontaneous
symmetry breaking mechanism has not spoiled the renormalizability of our theory,
contrary to what happened when we tried to break the symmetry explicitly. It is
well known that, in order to quantize a gauge theory, a gauge-fixing term must be
added to the lagrangian (obviously, this was not necessary in the case of explicit gauge

symmetry breaking). A convenient choice for the gauge-fixing term is

1

EGF — 25

(0" A, + bEGH?, (3.13)
where ¢ is an arbitrary constant (the gauge parameter). Equation (??) gives the
gauge-fixing condition 0* A, + b6G = 0. The constant b can now be adjusted in order
to cancel the unwanted A*0,G term we encountered above; it is easy to see that this
happens for b = ev = m 4. Observe also that the gauge-fixing lagrangian introduces

a term |
_§§miG2 (3.14)
which gives a squared mass ém? to the unphysical field G.
The part of the lagrangian quadratic in A, is now
1
2€

from which we obtain the following expression for the propagator in momentum space:

—%(6“14”8“/1” _ 9 AD,A,) + %mjA“AM = Lgrae (3.15)

1 —&EEY
g 120

AW — Al VA A
k2 —md k2 — em?

(3.16)



13-

The propagator has now the correct behaviour at large momenta. The price we
have paid for this is that the photon propagator has now, in addition to the pole at
k* = m?%, an unphysical singularity at k* = ¢ém?%. This singularity is located at the
mass squared of the unphysical scalar field G. One can check that the contribution
of this term of the photon propagator to physical quantities is exactly cancelled by
the contribution of G exchange, thus giving a unitary picture. When we let £ tend to
infinity, the photon propagator takes the form of eq. (??7). The theory is still renor-
malizable, but now renormalizability must arise as a consequence of cancellations
among different contributions to the same Green function, since the propagator does
not obey the power-counting rule. This is called the unitary gauge, in which renor-
malizability is not manifest. The advantage of the unitary gauge is that the theory
contains only physical degrees of freedom. In fact, when ¢ — oo the gauge-fixing
condition reduces to G(x) = 0 (see eq. (??)); it corresponds to the gauge choice that
eliminates (G from the theory since the very beginning. Two common choices are the

Feynman gauge, ¢ = 1, which gives

v g™
A = ———— A
and the Landau gauge, £ = 0, for which
5 ? L kMEY

One last observation about the field G/(z). It looks like we lost a degree of freedom,
since we started with a complex scalar field and we end up with one real scalar.
Actually, the number of degrees of freedom stays the same, since the photon is now
massive, and has therefore three polarization states instead of two. The field G(x)
is called a would-be Goldstone boson. This terminology reflects the fact that, in the
absence of gauge invariance and of the gauge-fixing term, G would have simply been
a physical, zero-mass state, which is always present when spontaneous symmetry
breaking occurs. This mechanism is known as the Higgs mechanism. It is possible to
extend it to the standard model, with a few modifications that we now describe in

detail.

We have learned that, in order to break spontaneously a gauge symmetry, we must

introduce scalar fields in the game. How should we do this in the standard model?
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First, the scalar field must transform non-trivially under that part of the gauge group
that we want to undergo spontaneous breaking. Secondly, we must be careful not to
break the U(1) invariance corresponding to electrodynamics, or, in other words, we
want the photon to stay massless. This means that spontaneous symmetry breaking
must take place in three of the four “directions” of the SU(2) x U(1) gauge group,
the fourth one being that corresponding to electric charge. The simplest way to do
this is to assign the scalar field ¢ to a doublet representation of SU(2), and to impose

that one the two components have zero electric charge:

_ [ ). _
¢_(¢0), Y(6) = 1. (3.19)

The Higgs mechanism takes place in analogy with scalar electrodynamics. The most

general scalar potential consistent with gauge invariance and renormalizability is

Vig)=m?| ¢ P +X] 0|, (3.20)
which has a minimum at
opm I =L (3:21)
~ oy 2" '

We can reparameterize ¢ in the following way:

_ LeiTiei(l’)/’U 0
Qb_\/ﬁ (U+H($>)7 (3:22)

with 0'(x) and H(z) real. This parametrization is not suited for renormalizable
gauges, because it is non-linear and contains all powers of the fields 8;. It is convenient,
however, if we work in the unitary gauge; in fact, it is apparent that the fields §; can
be rotated away by an SU(2) gauge transformation. In this section, we will use the
unitary gauge §; = 0. The standard model lagrangian in a generic renormalizable

gauge is given in appendix ?7.

The scalar potential takes the form
1 2\ 772 5, Ly
V= 5(2)\1) JH* + AwH” + ZAH ; (3.23)

the Higgs scalar [ has a squared mass m?% = 2\v?. The term (D*¢)'D,¢ can be
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worked out using eq. (??) with 6" = 0. We get

g .. 1 0
pro= (o0 —idriwi —ilp, | —
qb ( Z2T o 12 M) \/5 ( U—I—H(:p)
B . /JI_ . /JI T
— 1 0 — E(U—I— H) 9(W1M ”/f/z)
V2 I o*H 2 —gWi + ¢'B* |

0 i i g
)‘5(”?)(—@””)

Sl -
¥
=

(3.24)

where, to obtain the last line, we have used eqs. (?7), (??) and (??). We have

therefore

1 1 1 H\?
(D*¢) D, = 59“H9MH + ZgzvzW“WJ + =(¢° +g’2)UZZ“Z;] (1 + ?) .

8
(3.25)
We see that the W and Z bosons have acquired masses given by
2 Ly
My = 7970 (3.26)
2 _Loo 2y
e U (3.27)

Notice that the photon stays massless. With the scalar field ¢ transforming as a
doublet of SU(2), there is always a linear combination of B* and W} that does
not receive a mass term, but only if Y(¢) = 1 (or —1) does this linear combination
coincide with the one in eq. (?7). The lagrangian in a generic renormalizable gauge is
much more complicated, since it also involves kinetic and interaction terms for non-
physical Higgs scalars, the would-be Goldstone bosons. It is described in appendix ?7?.
The value of v, the vacuum expectation value of the neutral component of the Higgs
doublet, can be deduced combining eqs. (??) and (??), and using the measured

valued of the Fermi constant. We get

1
= | ——— ~9246.22 GeV. 3.28
v G2 ‘ (3.28)

Fermion masses are also forbidden by the gauge symmetry of the standard model.
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In fact, the mass term for a fermion field ¢ has the form

—mapp = —m(¢V R + YptL), (3.29)

and cannot be invariant under a chiral transformation, that is, a transformation that
acts differenly on left-handed and right-handed fields. The gauge transformations of
the standard model are precisely of this kind. Again, this difficulty can be circum-
vented by means of the Higgs doublet ¢.

We first consider the hadronic sector. We have seen in section ?? that the inter-
action lagrangian is not diagonal in terms of quark mass eigenstates. Therefore, to
be general, we introduce quark fields v/, and d’;, which are generic linear combination
of the mass eigenstates uy, ds (the index f runs over the n fermion generations). We

also define

!
Q= ( e ) Up= sy Dy=dy, (3.30)
fr

A Yukawa interaction term can be added to the lagrangian:
Ly = —(@ohp D' + D'e'hQ') — (Qohp U+ TolhiQ),  (3:31)

where hy; and h’, are generic n X n constant matrices in the generation space, and

_(
(), -

It easy to check that £2¢" is Lorentz-invariant, gauge-invariant® and renormalizable,
and therefore it can (actually, it must!) be included in the lagrangian. Now, we define

new quark fields u and d by

up = KYup, uly=Khug (3.33)

" =KPdy, dy=KRdg, (3.34)
~U,D : .
where K7 'p are unitary matrices, chosen so that

hy = KV KU (3.35)

3In fact, if ¢ transforms as an SU(2) doublets, so does ¢. = €¢*, where ¢ is the antisymmetric

tensor; check it as an exercise.
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and
hp = K20 KD (3.36)
are diagonal with real, non-negative entries (it is always possible). In the unitary

gauge, eq. (??7) becomes

1 o
Lhadr = _ﬁ v+ H) Z hhdsds + hiaruy), (3.37)

where h{LD are the diagonal entries of hyp. As we already know (see eq. (?7), the

charged hadronic weak current takes the form

T = Q" Q = Y WA K ] (3.38)
£f!
where
K =KV'RD. (3.39)

We can now identificate the quark masses by

f !

; _ vhy ; _ vhp

my = —, mp=—=. 3.40
U \/5 D \/5 ( )

The case of leptons is much simpler, since there are no right-handed neutrinos.

The most general Yukawa interaction term is therefore

Ly = = 3" hi(Tyoeh +eho'Ly). (3.41)
f=1

The values of the Yukawa couplings h}: are determined by the values of the observed

lepton masses. In fact, using eq. (??), we find

hf
,Clept: v+ H)erey, 3.42
le \/5( Jeres (3.42)
thus allowing the identifications
Lt
mi = L. (3.43)

V2
As in the case of vector bosons, in renormalizable gauges there are also interaction

terms between quarks and non-physical scalars; the details are given in appendix ?7?.
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4. The problem of anomalies

We have seen in the previous sections that the renormalizability of the standard
model in strictly connected with gauge invariance. In particular, we have seen that the
massive vector boson propagators show unphysical singularities, that are cancelled by
the presence of would-be Goldstone bosons. In turn, gauge invariance manifests itself
in the form of identities between Green functions, called Slavnov-Taylor identities,
that are consequences of current conservation, and that must hold at all perturbative
orders for the theory to be renormalizable. In this section, we will show that this might
not be the case for theories with axial currents, as the standard model itself. It might
happen that current conservation is spoiled at the quantum level, unless the spectrum
of the theory satisfies particular conditions. In the language of quantum field theory,
terms that spoil the validity of Slavnov-Taylor identities are called anomalies. We
will illustrate the problem of anomalies in the context of a simple example, and
we will then state under which conditions the standard model is anomaly-free and

renormalizable.

We consider quantum electrodynamics with one massive fermion, ». We consider

the operators

Vi =yt (4.1)
AP = pytystp (4.2)

P = {5 (4.3)

It is easy to show, using the equations of motion, that

9 VE =0 (4.4)
0,A" = 2imP, (4.5)
where m is the fermion mass. The interpretation of egs. (??) and (??) is well
known. Equation (??) is simply the conservation of the electromagnetic current,

which reflects the gauge-invariance of the theory. The curren A*, on the other hand,

is the current associated with axial transformations,

W) — €T, (4.6)
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The lagrangian of massive QED is not invariant under axial transformations because
of the presence of the mass term, and as a consequence the associated current A* is

not conserved. Equation (??) precisely states this fact.

Now consider the Green functions
T#% (ky, k) = @'/d‘*xld‘*@eikwﬁikm < O[TV (e )V (22)A2(0)]|0 > (4.7)
and
T (ky, k) = @'/d‘lxld‘*@e“ﬂmikm < O[TV (e)V ()P0 > . (4.8)
They formally satisfy the Slavnov-Taylor identities
KT, = kT, =0 (4.9)
4" Ty, =2mT,,, (4.10)

where ¢ = ki + k2. These identities can be worked out by exploiting eqs. (??) and
(??), and the canonical commutation relations. We will now check explicitly whether
esq. (72,77) are satisfied in perturbation theory or not. At the one-loop order, the

diagrams to be computed are those of fig. (1). We have

Tul/p(kth) = T{Wp(kl,kg) —|— T;yp(kl,kg) (411)
Tuy(klka) = T{W(klvlﬁ) + T;y(klvlﬁ)v (412)
where
THP = —@'/ p Tr[ — i v i “] (4.13)
1 N e e N |
. d*p [ 7 7 7 ]
T = —@/ Tr |- _ v z 4.14
' (2m)* p—m75p—q—m7p—k1—m7 (4.14)
and

157 (kyy ko) = 17" (K2, k1) (4.15)

T;y(kl,k‘z) — Tfu(kz,k‘l). (416)

The overall minus sign is due to the presence of a fermion loop.



90—

The loop integrals in eq. (??) and (??) are superficially divergent. We must
therefore choose a regularization scheme before proceeding. Dimensional regular-
ization is not suited here, because of the presence of ~5, which has an intrinsically
four-dimensional meaning and cannot be generalized to other space-time dimensions
in a simple way. We will make a different choice, keeping in mind, however, that it is
indeed possible, although quite complicated, to treat this problem within dimensional
regularization. The regularization scheme we choose is the following. We subtract
from each integrand in eqs. (?7) and (??) the same expression, but with m replaced
by an arbitrary regularization parameter M. In the limit M — oo the original ex-
pression is recovered, while, for finite M, the integrals are now convergent. We will

indicate with a subscript M the regularized quantities.
Equations (??), that state the conservation of the vector current, are satisfied by
THP as given in eqs. (??) and (??). In fact, writing

~

Fi= —(p— Fi—m) + (5 —m) (4.17)

in 71", and

fo=—(p—Fk—ky—m)+ (p—ky —m) (4.18)
in 75", (and similarly in the regularizing part of the integrands), we find [kT},,],, =
(k5 Typ)yy = 0. The limit M — oo can then be taken safely.

We turn now to eq. (??). We first consider T""(kq, k). Using the Feynman

parametrization

1 B [ar+...+ ay)
A .odem T T(eg) .. T(ay)
1 1 xal_l...xan_l(S(l—xl—...—:1;)
d / dr, 2L n ")
8 /0 o 0 ‘ (x1dy + ... + xpd, )2 tton
(4.19)
we find
[T 1
1 11—z d4 4q Vo k‘pkg
= 2 dl’/ dy/ Z[ T Cpvona ™ 3_(m_>M)7
o Jo (27%) L[p? = 2p(qz + k(1 — 2 — y)) + ¢*x — m?]

(4.20)
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where we have set k? = 0. The simple expression in the numerator is obtained by
dropping all products of ~v5 with two, three and five v matrices, and exploiting the
antisymmetry of ¢,,,,. The integration over the loop momentum p can be easily

performed by shifting the integration variable
p—ptqrtki(l—z—y), (4.21)

with the result

[Ty = ;?éwpgkfkg /01 dx /01_9” dy [mQ —mq2:1;y -7 ﬁ{]?xy . (4.22)
We are now ready to check the identity [??]. Using the identity
qvs = 2mys + 5(p — ¢ —m) + (p — m) s, (4.23)
we get
[0, T )5 = 2T [y + [R ]y (4.24)
where

, d*p i , i ,
R =/ TT[A Y T V= WY ST 7"

(4.25)

It is now easy to check that [R*"],, vanishes. In fact, by shifting the loop momentum
p to p + ko in the second term, and to p + k; in the fourth, they cancel against the
first and the third respectively. The important point here is that these shifts in the
integration variable can be performed only after regularizing the integrals. Therefore,
using eq. [?7?],

M2

v v v 1 a ! 1=z
[0, 7]y = 2m T ]y = 2T = ok kS /0 dz /0 Wi gty %)

The limit M — oo can now be taken safely, giving

1
qu%“’P = ZmTw — ﬁ@wwkfkg' (427)
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The effect of the regularization is that the Slavnov-Taylor identity in eq. (??7) is
spoiled by an anomalous term, which is usually called the axial anomaly, or the Adler-
Bardeen-Jackiw anomaly. This term arises because of the impossibility of regularizing
the theory in a way that preserves both the vector and axial vector classical current

divergence relations; one of the two must be given up.

The anomalous term can be taken into account by modifying eq. (??) at the

one-loop level in the following way:

9, A" = 2imP +

(47T)26“”’”FWFM, (4.28)
where F),, is the field-strength tensor of QED. In other words, the axial current is not
conserved, at the quantum level, even if m = (0. Notice in fact that the anomalous
term is independent of the fermion mass. Furthermore, it can be proved that higher-

order corrections do not modify the one-loop expression of the anomaly.

The above considerations can be extended to the case of a theory with non-abelian
gauge invariance. In this case, also fermion loops with four and five internal lines
contribute to the anomaly. It can be shown that the anomalous term of the axial

vector current in a non-abelian theory is proportional to
Tr({T*,T"}T°), (4.29)

where T'* are the gauge group generators. In the standard model, fermions are either
in the doublet or in the singlet representation of SU(2); this means that the four

quantities

,‘.J;
o
—

P
e
NG

must all vanish, for the axial anomaly to be cancelled. The first quantity is obviously

Zero:

Tr({r*, " 1) = 26°Tr(7¢) = 0. (4.34)
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The second quantity requires more care. Since 7% = 0 for right-handed fermions, we

have

Tr({r", Tb}Y) = 25“bTT(YL), (4.35)

where Y7, is the hypercharge matrix restricted to left-handed fermions. Since Y = 1/3
for the doublets of left-handed quarks, and Y = —1 for the doublets of left-handed

leptons, we find
1
Tr(Yr) =ng x3 x2x 3 +n x2x(=1)=2(n, —ny), (4.36)

where n, (n;) is the number of quark (lepton) families. The factor of 3 in front of
the quark term is due to the colour degree of freedom, and the overall factor of 2
is due to the fact that left-handed fermions are SU(2) doublets. We see that the
cancellation of the axial anomaly requires that the numbers of quark and lepton
families are equal! This is an important prediction of the standard model, which has

been recently confirmed by the discovery of the top quark.

The third condition, Tr(Y?*r°) = 0, is again trivially satisfied, since Y has the
same value for both components of each doublet, and Tr(7¢) = 0 (for singlets, we

have simply 7¢ = 0).

The last condition, Tr(Y?) = 0, is also satisfied provided n, = n;. In fact,
Tr(Y?) =Tr(YD) = Tr(Y3). (4.37)

There is a minus sign in front of Y3 because fermions in the same diagram have the

same chirality. Using ¥ = 2(Q — T5) we find

Tr(Y?) = 6n, (%)3 + 2ny(—1)° (4.38)

o = |(5) () Jmier

and therefore

Tr(Y?) = —6(n, —n). (4.40)
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APPENDIX A: Renormalizability and power counting

In this appendix, we describe the power-counting criterion for renormalizability

of local field theories. Consider a Feynman diagram containing

o [ loops;

V vertices;

o Il internal fermionic lines;
o ['F external fermionic lines;
e B! internal bosonic lines;

o BE external bosonic lines.

Let us assume that there are different types of vertices, each type being labelled by
the index 7, and that
V=> V0, (A.1)

where V@ is the number of vertices of type 7. Finally, let ngf), ng(f), d® be the number
of fermionic lines, bosonic lines and field derivatives in type-: vertices, respectively.

The following relations hold:

20+ FP =3 {0 (A.2)
2B" + BY =3 v, (A.3)

The number L of loops is equal to the number of independent internal momenta,
which in turn is equal to the total number of internal lines, minus the number of

independent momentum conservation equations. Therefore, we have
L=F+B"—(V-1). (A.4)

We now define the degree of superficial divergence D of the diagram as the power

of momenta in the numerator minus the power of momenta in denominator of the
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Feynman diagram. Clearly,

D=4L—F'—2B" 4+ d'V', (A.5)

since fermion propagators behave as k™!, boson propagator behave as k72, each field
derivative corresponds to one power of momentum, and four powers of momentum
are carried by each loop integration. Now, substituting eqs. (??) and (??) ineq. (?7?)

and eliminating F'7 and B! via eqs. (??) and (?7?), we find

D=4- gFE - B+ V0 [d“) + gny) +nl — 4], (A.6)
If D > 0, the Feynman amplitude will be ultraviolet divergent. On the other hand,
D < 01is not a sufficient condition for convergence, since there can still be subdiagrams
with D > 0. However, we notice that D decreases with increasing number of external
lines. Therefore, if the last term in the r.h.s. of eq. (??) is zero or negative, then
only a finite number of diagrams have D > 0, and the whole theory can be made
finite by renormalizing only these primitively divergent amplitudes, at any order in

perturbation theory. The condition for renormalizability then becomes
49 4 300 L < A7
+'§nf +n, <S4, (A7)

and it must hold for each i separately (a diagram can contain only vertices of one
type). Notice that the L.h.s. of eq. (??) is just the mass dimension of the operator
that corresponds to type 7 vertices: in fact, fermion fields have dimension 3/2, boson
fields have dimension 1 and derivatives have dimension 1. For this reason, the con-
dition in eq. (??) can be rephrased in terms of coupling constant dimensionality: a

renormalizable theory can contain only constants with mass dimension > 0.
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APPENDIX B: Gauge theories

The Dirac free lagrangian for a massive fermion,

£ =90 — m)e, (B.1)

is invariant under the global (or first kind) U(1) gauge transformation

b = ey
o T = e, (B.2)

where « is a real constant (the charge —e of the field ¢ has been inserted for later
convenience). We want to promote this global symmetry to a local one, that is, we
want to modify £ in order to render it invariant under the field transformation (?7?),

with a = a(x). The derivative term is not invariant:
TO > GO () = T — i ). (B.3)
The ordinary derivative must be replaced by a covariant derivative,
D' = 0" 4 1e A, (B.4)

where A* is a real vector field. The transformation property of A* must be fixed in
such a way that
D*ep — 7 D, (B.5)

We find
Dip = (0" +ieAr ) — (9" +ieA™ )
= (9" +ieA™)e
= TP —ie(Da)eT P + ie A e
= (0 FieA" —ied"a)
= eI +ieAM )Y, (B.6)

which implies

A* = A = A" 4 9P, (B.7)
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The lagrangian
L=90D—my (B.8)

is invariant under the local (or second kind) gauge transformation
¢ N ¢/ — e—ieoz(ac)¢
F o = et
AF — A" = A 4 0" a(x). (B.9)

Notice that the requirement of local gauge invariance has introduced the interaction
term ey, A4

A kinetic term for the vector field A* must now be introduced. It is uniquely fixed

by the following requirements:

e Lorentz invariance
e (Gauge invariance
o Presence of derivatives of the gauge fields

e Standard normalization of the propagator for A*

and it is given by
1

LM = —ZF“”FW, (B.10)
where
= gAY — 9¥ A+ (B.11)
Notice that
(D" D" — D" D" )p = ie "1, (B.12)

and that F'*” is invariant under a gauge transformation. Notice also that gauge invari-
ance forbids the presence of a mass term for the gauge field A*. Finally, we observe
that no self-interaction term for the vector field A* is present in the lagrangian. This

is connected with the abelian nature of the invariance group.

Let us consider now the case when the invariance group of the theory is non-

abelian. For definiteness, we consider the group SU(N) of N x N unitary matrices
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with unit determinant. This group has N? — 1 hermitian generators 74, that obey

the commutation relations

(T4, TP =i f*P9T%,  A,B,C=1,..,N*—1, (B.13)

fABC

where is completely antisymmetric. A generic element U of SU(N) can be

expressed in terms of the generators T4 and of a set of real functions a?(z) by
U=U(a) = exp(igaT?), (B.14)

where we have inserted a coupling constant ¢g in analogy with the abelian case. The

covariant derivative is now given by
D* = 01 —1gA*, (B.15)

where [ is the unity matrix in the representation space, and the vector field A* is

now a hermitian matrix

At = ARTA, (B.16)
By the same reasoning of the abelian case, we obtain the transformation law for A*:

Af o A = UARUY = LorU) U, (B.17)

i
g
Consider now an infinitesimal gauge transformation

Ula) = I +iga®T* 4+ O(a?). (B.18)

At order a, eq. (??7) becomes

AM = AP 4 i[afTA, AY) — LigdtaATA

g
= ALTC — o AL fABOTC 4 94T (B.19)
or
A’g = AL — ozAA%fABC + 0*a®. (B.20)

To build a kinetic term for the gauge fields, we write the analogous of eq. (?7):

(D*D" — D" D* )b = igF*"y, (B.21)
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where 1 is a multiplet of some SU(N) representation, and F** = F4“T4. We find

Fr = 9rAY — 9 A" — ig[A", AV],

FY = 0" AY — 0" Al 4 g fAPC AL AL (B.22)

The kinetic term is then given by

|
-7 W (B.23)

In the non-abelian case, self-interaction terms of the gauge fields are present. This is
related to the fact that, contrary to the abelian case, the field strength F'*" transforms

non-trivially under a gauge transformation:
P P =T (B.24)
For an infinitesimal gauge transformation, we find
P = P g B (8.25)

which means that the components F'y" form a multiplet in the adjoint representation

of the gauge group.
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APPENDIX C: The standard model lagrangian

Let us consider the following part of the standard model lagrangian:

Lp+ Lar — V(),

!
Ip

where
Lp = (D"$)'D, o
1 . . 2 1 9
Lor = =3¢ (W=7 = 3 [0°B. — /(&)
V(g)=m®|¢]" + Ag|".
We define
Qb — le + ¢27
where
0 G
e ( v/ﬂ) o ( <H+z’G>/ﬂ)
and )
U2 = —T
We have
_ Iz 3 9 pori g_/ Iz _ 3 9 I
Lp = [a '+ 50! (2m +5B )] [am 5 (QWM +

Loy + Losvv + Loy

The first term is simply the kinetic term for ¢,

2

Lsy = (0"0)10u0 = 0"GT9,G™ + %WH@MH + %WG@G.

Next, we consider the ¢V V' term:

E(b(bVV 4

L, +H = AT 1 !
— —ad B*ot
2gW Wﬂqbqb—l-\/—gg o

2

1 . 1 . .
("W W, + 6" B"B,)6"6 + 599 B W, 6'7'0

0 p
v |?

)

(C.1)

(C.8)

(C.9)
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1 7ote  ggetrie B
—I_Z(BM W;) / T 3 2 T WM b (C]‘O)
gg'o'tee g oo 3,
where |
Wi = E(Wj FiW2). (C.11)

To obtain the physical vector states, we must isolate the mass term in eq. (??) and

put it in diagonal form. The mass term is given by replacing ¢ with ¢; in eq. (?7).

We find
1 1 2 —gg B
Loass = _QQUQW—HLWM_ + < (B* Wy ! ' gzg g ) (C.12)
4 8 —99 g W,
which is diagonalized by
cos Oy —sin by

YA

sinfy  cos by

()

In terms of Wf, A, and 7, eq. (??7) becomes

A# !
( ) ; tanfy = g (C.13)
g

1 21 1 g 2
= = —gH A ( — H)
Eoovv W W“ (mW + 29 ) + 2 w\mzt 2 cos Oy

1 1 1 g
+§g2W+“W;(G+G‘ + §G2) y-—7

8 cos? b,

Ay mes

1 2
L9

4 cos? 0,

+gsin Oy (my A* — m, 7" sin 0y,) (G_W:’ + G"’W;)

(A" sin 20y + Z" cos 204, )*GTG~

1 ) . .
—|—§g2 sin O (A" — ZH tan 0y) [G_W:’(H +1iG) + G"’W;(H — ZG)}

(C.14)

where | |
My = Zgzvz; ml = Z(g2 + g’z)vz. (C.15)

The third term in £p must be considered in conjunction with the gauge-fixing
term. We have
i

Lo = —59W, [(0°62)! 761 — 6}r9"6s] - 3

9 B [(0"62)161 — 610" 0]



-33—

i

—%gW; [(0462) 6, — $Lr'0"dn| — 59/ B, [(0"60)! 62 — 610"

(C.16)
Exploiting the fact that 9*¢; = 0, we can integrate by parts the first row. Adding
Lar, we find

i

Loov + Lor = —5gW, [(0"62)7'62 = 6l7'0" 6] -

9B, [(0"62) 62 — 610" 62|
+0" W, [gngriqﬁl —diT'én) + fi<¢>]

0B, [S9/ (6161 — 6l62) + S(9)

Locwrineg . L oup e Lo iy L
e PWL = G0 B = SEFO)(0) = 5@ (@). (€7
With the choices
Fi(6) = —sa(6lrio, —olrion) (C.13)
f(6) = —d(6hén — olan) (€19

the mixing between vector bosons and scalars disappears, and we remain with

Losv + Lor = —%gwj (H +iG)0" G~ — G-o"(H +1iG))

4 _ . .
+59W, (H —iG)o*GF — GHor(H —iG)]
i

5 [2g sin Oy A* + (g cos Oy — ¢ sin by, ) Z*] (GT0,G™ — G~9,GT)

1
—5(9 cos Oy + ¢'sin by, ) 2" (GO, H — HO,G)

1
2%

1 1

(O*Wi)? 25(8“BM)2 — tmiGTGT — §§m§G2.

I

(C.20)

We see that the would-be Goldstone bosons G* ang (i have acquired squared masses

equal to Em?, and ém?, respectively, as is necessary in order to cancel the unphysical
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singularities in the vector boson propagators. These masses vanish in the Landau
gauge, £ = 0.
The last term to be considered is the scalar potential V(¢). After some algebra,
we find ,
1 H? + GYG~ + G?
V() = sm | H + i : (C.21)

202

where

m? = 2 v’ (C.22)

We consider now the interaction between fermions and scalars. From eqs. (?7-77)

and the definition in eq. (??), we get

E?/adr — _G‘|‘ (ﬂL[(hDdR — ﬂRhU[(dL) -G~ (ERhD](TUL — EL[(ThUUR)

1 _ e
— (v -+ H) (dhpd +ahyu) — Zﬁ (dhpysd — whosu),  (C.23)

and

1
Ly = —E(U + H)ehre — GtOhrer — G erhyv, (C.24)

where sums over generation indices are understood.
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APPENDIX D: The SU(2) custodial symmetry

We have seen in section 3 that in the standard model at tree level the masses of

weak vector bosons, my, and m,, satisfy the relationship

2

W, (D.1)

m? cos? 0y,

o m
p:

Equation (??) could in principle be modified at higher orders in perturbation theory.

Actually, the measured value for p is very close to 1:
Pesp = 1.0048 £ 0.0022, (D.2)

thus suggesting that some symmetry property prevents the quantity p from receiving
large radiative corrections. We will show that this is indeed the case in the standard

model.

Preliminarly, we observe that, even after the inclusion of radiative corrections, the

( Vl;; ) . (D.3)

Furthermore, the condition that the photon stays massless gives us M’ = MM", and

most general vector boson mass term is given by

M2 M/2

M/2 M//2

1 1
Loass = 5m‘ﬁv(W”W; +WPW2) + 5(3“ W) [

M?+ M"* = m?. Therefore, the mass matrix in the neutral sector is completely fixed

by the value of one parameter, M?, and it is diagonalized by a rotation of an angle

0y given by
\/mi — M?
This in turn implies that
m?2 m?2
p= — s (D.5)

that is, p = 1 only if M? = m?,.

Next we notice that the scalar potential

V(g)=m* o] +A ] o[ (D.6)
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is invariant under a group of transformations which is larger than the standard model

SU2), x U(1)y. In fact, defining

D1 + 19
= D.7
¢ ( D3 + 14 ) (B-7)

we see that
|6 I'= 1+ &5 + 65 + 44 (D.8)
can be interpreted as the squared length of a real four vector. Therefore, the scalar

potential has an O(4) ~ SU(2) x SU(2) invariance. This symmetry property can be

implemented in the following way. We define a 2 x 2 matrix
+ 0*
H= qbo ¢ |- (D.9)
¢ =9

Recalling that the field ¢, = (¢°", —#~)T transforms as an SU(2) doublet, it follows

that, under the action of a generic SU(2)y, transformation U, we have
H — UH. (D.10)

On the other hand, it is easy to check that the scalar potential can be written in
terms of H as

V(g) = %mQTT (HTH) + %)\Tr (#iH)", (D.11)

which is invariant under the SU(2); x SU(2) transformation
H— UHV?, (D.12)

where V' is another SU(2) constant matrix, independent of . This is possible because
the structure of H in eq. (?7) is preserved also by right multiplication with an SU(2)
matrix. Equation (??) is a representation of the O(4) symmetry we mentioned above.
Is it possible to write also the kinetic term for the field ¢ in an O(4)-invariant way?

The natural candidate is of course
1
ST (D, H)' D"H, (D.13)

which is invariant under the transformations (??) since D* — UD*UT. However,

one readily realizes that (??) is not equal to (D,¢) D"¢ (prove this statement as



—37—

an exercise); this is because ¢ and ¢. have opposite values of the hypercharge quan-
tum number. We conclude that the O(4) symmetry is violated by the hypercharge

interaction term contained in the covariant derivative.

Due to spontaneous breaking of SU(2)y, the gound state is not invariant under
O(4); however, there is a residual O(3) ~ SU(2) symmetry under transformations of
the kind

H — UHn U, (D.14)

that leave the vacuum expectation value < H >= vry/2 unchanged (U is now -
independent). We are almost at the end of the road: in fact, it is easy to check that
the only mass term for the Wi fields allowed by the symmetry in eq. (??) is of the
form Wiﬂ/i“, that is, a scalar product in O(3). In other words, M? = mZ, in the

notation of eq. (?7).

We have proven that p = 1 is a consequence of the so-called custodial SU(2) sym-
metry defined in eq. (?7), and therefore it is not spoiled by radiative corrections. The
inclusion of the hypercharge interaction, that breaks O(4) explicitly, does not change
this conclusion, since radiative corrections to p due to the hypercharge coupling are

very small.
Of course, fermion mass terms do not preserve the custodial symmetry; we expect

corrections to eq. (?7) of the order of Gﬂm? More precisely, one finds

3G, m?
~ 1 _I_ H t7
P 872/2

(D.15)

where we have included only the contribution from the top quark, for obvious reasons.



