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�� Introduction

The aim of these lectures is that of describing the construction and the main

phenomenological implications of the Glashow�Weinberg�Salam uni�ed theory of weak

and electromagnetic interactions �universally referred to as the standard model�	 Basic

knowledge in quantum �eld theory���� and elementary group theory���� is assumed� as

well as familiarity with the fundamental phenomenology of weak interactions����	

No attempt will be made to give a full list of references	 Such a list can be found

in any standard text book of particle physics
 see for example ref	 ���� and ref	 ����	

�� A gauge theory of weak interactions

Our starting point will be Fermi
s theory of � and muon decay	 This theory is

based on an e�ective four�fermion lagrangian� which is usually written as follows��

L � �G�p
�
p����� a���ne����� ����e � G�p

�
���

��� � ����e����� ����e� ��	��

with

G� � ������� � ���� GeV ��
 G� � G�
 a � ����� � ����� ��	��

As is well known� the lagrangian in eq	 ���� is not renormalizable �it contains only

operators with mass dimension �� while a renormalizable theory must contain oper�

ators whose mass dimension is at most �
 see appendix ���� and it gives rise to a

non�unitary S matrix	 However� it contains all the physical information needed to

build a renormalizable and unitary theory of weak interactions	

The idea is that of building a theory which possesses local invariance under the

action of some group� a gauge theory� in analogy with quantum electrodynamics �see

appendix ���	 We will then require that the new theory reduce to eq	 ���� in the

low�energy limit� in the sense that the local four�fermion interaction of the Fermi

lagrangian will be interpreted as the exchange of a massive vector boson with a mo�

mentummuch smaller than its mass	 In this way� both problems of renormalizability

and unitarity will be solved� since gauge theories are known to be renormalizable� and

�Throughout these lectures� particle �elds will be denoted by the letter usually adopted for the

corresponding particle� e for the electron� �e for the electron neutrino� and so on�
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the mass of the intermediate vector boson will act as a cut�o� that stops the growth

of cross sections with energy� in order to ensure unitarity of the scattering matrix	

In order to complete this program� we must choose the group of local invariance�

and then assign particle �elds to representations of this group	 Both these steps are

made with the help of the information contained in the Fermi lagrangian	 Let us

�rst consider the electron and the electron neutrino	 They participate in the weak

interaction via the current

J� � �e
�

�
����� ���e� ��	��

We want to to rewrite J� in the form of a Noether current�

�i��T
A
ij�j� ��	��

where �i are the components of some multiplet of the gauge group� and TA
ij are the

corresponding group generators	 In the case of J�� this can be done in the following

way	 We observe that the current J� can be written as

J� � L���
�L� ��	��

where

�� �
�

�
��� � i��� �

�
� � �

� �

�
� � ��	��

L �
�

�
�� � ���

�
� �e

e

�
A �

�
� �eL

eL

�
A � ��	��

and �i are the usual Pauli matrices	 The hermitian conjugate current Jy
� will also

participate in the interaction�

Jy
� � L���

�L� ��	��

where �� � ��� � i�����	 In the context of gauge theories� currents are in one�to�one

correspondence with the generators of the symmetry group	 The group generators�

in turn� form a closed set with respect to the commutation operation� that is� the

commutator of two generators is also a generator	 Therefore� the current

J�
� � L������ ���L � L����L ��	��

will also be present	 No other current must be introduced� since ���� ��� � ���	 We

have then interpreted the current J� as being one of the three conserved currents of a
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theory with SU��� gauge invariance� the Pauli matrices being the SU��� generators in

the fundamental representation� and we have assigned the left�handed neutrino and

electron �elds to an SU��� doublet	 The right�handed neutrino and electron compo�

nents� �eR and eR� do not take part in the weak�interaction phenomena described by

the Fermi lagrangian� so they must be assigned to the singlet �or scalar� representa�

tion	 Of course� this is not the only possible choice� but it is the simplest possibility

�and also the correct one� as we will see�� since it does not require the introduction

of fermion �elds other than the observed ones	

The current J�
� is a neutral current� it contains creation and destruction operators

of particles with the same charge �actually� of the same particle�	 Neutral currents

do not appear in the Fermi lagrangian� no neutral current phenomenon is observed

in low�energy weak interactions	 As we will see� the experimental observation of

phenomena induced by weak neutral currents is a crucial test of the validity of the

standard model	 Notice also that the neutral current J�
� cannot be identi�ed with

the only other neutral current we know of� the electromagnetic one	 This is for two

reasons� �rst� the electromagnetic current involves both left�handed and right�handed

fermion �elds with the same weight
 and second� the electromagnetic current does not

contain a neutrino term� the neutrino being chargeless	 We will come back later to the

problem of neutral currents� that will end up with the inclusion of the electromagnetic

current in the theory	 For the moment� we go on with the construction of our SU���

gauge theory	 We must introduce vector meson �elds W �
i � one for each of the three

SU��� generators� and build a covariant derivative

D� � 	� � igW �
i Ti� ��	���

where we have introduced� as is customary in gauge theories� a coupling constant g	

The matrices Ti are generators of SU��� in the representation of the multiplet the

covariant derivative is acting on	 For example� when D� acts on the doublet L� we

have Ti � �i��� and when it acts on the gauge singlet eR we have Ti � �	 We are now

ready to write the gauge�invariant lagrangian for the fermion �elds�

L � iL �DL� i�eR �D�eR � ieR �DeR� ��	���

where �D � ��D
�	 The lagrangian L contains the usual kinetic term Lkin for fermions�

Lkin � iL�	L� i�eR �	�eR � ieR �	eR� ��	���
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and a term LW that describes the interaction of fermions with the gauge bosons W �
i 	

The interaction term can be split into two parts� corresponding to neutral�current

and charged�current interaction respectively�

LW � LW
c � LW

n � ��	���

where

LW
c � gW �

� L��
��
�
L� gW �

� L��
��
�
L ��	���

and

LW
n � gW �

� L��
��
�
L �

g

�
W �

� ��eL���eL � eL��eL� � ��	���

The charged�current interaction LW
c is usually expressed in terms of the �elds

W�
� �

�p
�
�W �

� � iW �
�� ��	���

as follows�

LW
c �

gp
�
L����LW�

� �
gp
�
L����LW�

� � ��	���

We have already observed that the neutral current J�
� � L����L cannot be iden�

ti�ed with the electromagnetic current� and correspondingly that the gauge vector

boson W �
� cannot be interpreted as the photon	 The construction of the model can

therefore proceed in two di�erent directions� either we modify the multiplet structure

of the theory� in order to make J�
� equal to the electromagnetic current� or we extend

the gauge group in order to accomodate also the electromagnetic current in addition

to the weak neutral current J�
� 	 We proceed to describe the second possibilty� which

is the one that turned out to be correct� after the discovery of weak neutral currents	

Nevertheless� it must be reminded that this was not at all obvious to physicists before

the observation of weak�neutral�current e�ects	

The simplest way of extending the gauge group SU��� to include another neutral

generator is to include an abelian factor U����

SU���� SU���� U���� ��	���

We will require our lagrangian to be invariant also under the U��� gauge transforma�

tions

�� �� � exp

�
ig�


Y ���

�

�
�� ��	���
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where � is a generic �eld of the theory� g� is the coupling constant associated with

the U��� factor of the gauge group� and Y ��� is a quantum number� usually called

the weak hypercharge� to be speci�ed for each �eld �	 A new gauge vector �eld B�

must be introduced� and the covariant derivative becomes

D� � 	� � igW �
i Ti � ig�

Y

�
B�� ��	���

where Y is a diagonal matrix with the hypercharge values in its diagonal entries	 Y

being diagonal� only the term LW
n is modi�ed	 We have now

LW
n �

g

�
W �

� ��eL���eL � eL��eL�

�
g�

�
B� �Y �L� ��eL���eL � eL��eL� � Y ��eR��eR���eR � Y �eR�eR��eR�

��	���

We can now assign the quantum numbers Y in such a way that the electromagnetic

interaction term appear in eq	 ����	 To do this� we �rst perform a rotation of an

angle �W in the space of the two neutral gauge �elds W �
� � B

��

A� � B� cos �W �W �
� sin �W ��	���

Z� � �B� sin �W �W �
� cos �W � ��	���

To identify one of the two neutral vector �elds� say A�� with the photon �eld� we must

choose Y �L�� Y ��eR� and Y �eR� so that A� couples to the electromagnetic current�

�ee��eA�	 The remaining terms of the lagrangian will de�ne the weak neutral current

coupled to the other neutral vector boson Z�	 After some algebra �a useful exercise���

we �nd

g sin �W � e

g� cos �W � e� ��	���

where e is the positron charge� and

Y �L� � ��� Y ��eR� � �� Y �eR� � ��� ��	���
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In general� for a generic fermion �eld with charge Q �in units of e� and third compo�

nent of weak isospin T� ���� for �eL� ���� for eL� � for �eR and eR�� we have

Y � ��Q� T��� ��	���

Notice that the right�handed neutrino has zero charge and zero hypercharge� and it is

an SU��� singlet� it does not take part in electroweak interactions	 Notice also that

the above hypercharge assignments can be rescaled by a common factor� provided the

coupling constant g� is correspondingly rede�ned �only the product g�Y appears in

the lagrangian�	 The choice we made in eqs	 ���� and ���� is universally adopted	

If we form a column vector � with all the fermionic �elds present in the theory

�with left and right�handed components of the same particle counted separately��

we can write the neutral�current electroweak�interaction lagrangian in the following�

general form�

LW
n � e���Q�A� ����QZ�Z

�� ��	���

where e is the positron charge� Q is the diagonal matrix of electromagnetic charges�

and QZ is a diagonal matrix given by

QZ �
e

cos �W sin �W

	
T� �Q sin� �W



� ��	���

The extension of the theory to other lepton doublets is straightforward	

We must now include hadrons in the theory	 We will do this in terms of quark

�elds� taking as a starting point the hadronic current responsible for � decay and

strange particle decays�

J�
had � cos �cu�

� �

�
�� � ���d � sin �cu�

��

�
�� � ���s� ��	���

where �c is the Cabibbo angle ��c � ���� and u� d� s are the up� down and strange

quark �elds respectively	 We are tempted to proceed as in the case of leptons� de�ne

Q �
�

�
��� ���

�
����
u

d

s

�
���� �

�
����
uL

dL

sL

�
���� ��	���
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and

T� �

�
����
� cos �c sin �c

� � �

� � �

�
���� � ��	���

so that

J�
had � Q��T�Q� ��	���

This leads to a system of currents which is in contrast with experimental observations	

In fact� we �nd that

�T�� T�� �

�
����

� � �

� � cos� �c � cos �c sin �c

� � cos �c sin �c � sin� �c

�
���� � ��	���

and� because of the non�zero o��diagonal entries� the corresponding current contains

�avour�changing neutral terms� like for example dL��sL� with a weight of the same

order of magnitude of �avour�conserving ones	 This would induce processes such as

for example the decayK� � ��e�e�� which are not observed at the expected rate	 We

must then modify our theory in order to avoid the introduction of �avour�changing

neutral currents	 The solution to this puzzle was found by Glashow� Iliopoulos and

Maiani	 They suggested to introduce a fourth quark c �for charm� with charge ���

like the up quark� and to assume that its couplings to down and strange quarks are

given by

J�
had � cos �cu�

� �

�
��� ���d � sin �cu�

��

�
�� � ���s

� sin �cc�
��

�
��� ���d� cos �cc�

��

�
��� ���s� ��	���

The c quark being not observed at the time� they had to assume that its mass was

much larger than those of u� d and s quarks� and therefore outside the energy range

of available experimental devices	 The current J�
had can still be put in the form �����

where now

Q �

�
�������

uL

cL

dL

sL

�
�������

��	���
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and

T� �

�
�������

� � cos �c sin �c

� � � sin �c cos �c

� � � �

� � � �

�
�������
� ��	���

No �avour�changing neutral current is now present	 In fact�

�T�� T�� �

�
�������

� � � �

� � � �

� � �� �

� � � ��

�
�������
� ��	���

thanks to the fact that the upper right � � � block of T� has been cleverly chosen

to be an orthogonal matrix	 The existence of the quark c was later con�rmed by the

discovery of the J�� particle	 The current J�
had is usually written in the following

form� analogous to the corresponding leptonic current�

J�
had � �uLd

�

L��
���

�
� uL

d�L

�
A � �cLs

�
L��

���

�
� cL

s�L

�
A � ��	���

where �
� d�L

s�L

�
A � K

�
� dL

sL

�
A � K �

�
� cos �c sin �c

� sin �c cos �c

�
� � ��	���

The pairs �u� d�� �c� s� are called quark families	 Actually� there is a correspondence

between quark families and lepton families� a correspondence that will become clear

in section ��	 The structure outlined above can be extended to an arbitrary number

of quark families	 With n families� K becomes an n � n matrix� and it must be

unitary in order to ensure the absence of �avour�changing neutral currents	

The �nal form for the charged�current interaction term� including n families of

leptons and quarks� is then

LW
c �

gp
�

nX
f	�

h
Lf�

���Lf �Qf�
���Qf

i
W�

� � h�c�� ��	���

where

Lf �

�
� �eL

eL

�
A �

�
� ��L

�L

�
A � � � � ��	���
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Qf �

�
� uL

d�L

�
A �

�
� cL

s�L

�
A � � � � � ��	���

while the neutral�current lagrangian in eq	 ���� is directly generalizable to include

quark �elds	

To conclude the construction of the gauge�invariant part of the standard model

lagrangian� we must consider the pure Yang�Mills term

LY M � ��

�
B��B

�� � �

�
W i

��W
��
i � ��	���

where

B�� � 	�B� � 	�B�

W ��
i � 	�W �

i � 	�W �
i � g
ijkW

�
j W

�
k � ��	���

The corresponding expression in terms of the physical �elds W�
� � Z� and A�� can be

easily worked out with the help of eqs	 ����� ���� and ����	 Try to derive it as an

exercise�

�� Masses

In order to make contact with the Fermi theory� which is known to correctly

describe low�energy weak interactions� we must give a mass to the gauge vector bosons

of weak interactions	 In fact� we are even able to estimate the order of magnitude of

the W mass	 Consider� for example� the amplitude for down�quark � decay	 In the

Fermi theory� it is simply given by

G�p
�
u����� ���de���� � ����e� ��	��

In the context of the standard model� the same process is induced by the exchange

of a W boson� giving rise to the amplitude



gp
�
uL�

�dL

�
�

q� �m�
W



gp
�
eL���eL

�
� ��	��

where q is the momentum of the virtual W �we are neglecting Cabibbo mixing for

simplicity�	 We see that� for eq	 ���� to be equal to the Fermi amplitude in the q � �



����

limit� mW must be non zero� and

G�p
�
�



g

�
p
�

��
�

m�
W

� ��	��

Recalling that g � e� sin �W � eq	 ���� gives us the lower bound

mW 	 ���� GeV � ��	��

quite a large value� So� we know since the beginning that� if weak interactions are to

be mediated by vector bosons� these must be quite heavy	 On the other hand� we also

know that gauge theories are incompatible with mass terms for the vector bosons	

One possibility is to break gauge invariance explicitly and insert a mass term for the

W boson by hand� but this leads to a non�renormalizable theory	 Let us investigate

this point in more detail	 Consider for simplicity the lagrangian of a pure abelian

gauge theory� with a mass term for the gauge vector �eld�

L � ��

�
�	�A� � 	�A���	�A� � 	�A�� �

�

�
m�

AA
�A�� ��	��

and work out the propagator ��� for A� in momentum space	 We get

��� �
i

k� �m�
A



�g�� � k�k�

m�
A

�
� ��	��

The propagator ��� has not the correct behaviour for large values of the momentum

k� for k � 
 it becomes a constant� rather than vanishing as k��� thus violating

power�counting and making the theory unrenormalizable	

To see how one can introduce a mass term for gauge vector bosons without spoiling

renormalizability� we �rst consider a simple example where this happens� and then we

generalize our considerations to the standard model	 The simple theory we consider

is scalar electrodynamics� that is� a gauge theory based on U��� invariance� coupled

to one complex scalar �eld � with charge �e	 The lagrangian is given by

L � ��

�
F ��F�� � �D���yD��� V ���� ��	��

whereD� � 	��ieA�� and V ��� is the so�called scalar potential� which is constrained

by gauge invariance and renormalizability to be of the form

V ��� � m� j � j� �� j � j
 � ��	��
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We look for �eld con�gurations that minimize the energy of the system	 Because of

the requirement of translational invariance� they must be constant con�gurations� so

we can neglect the derivative terms and look for the minimum of the potential V 	

Now� if m� 	 �� then V has a minimum for � � �	 If� on the other hand� m� � ��

then m� can no longer be interpreted as a mass squared for the �eld �
 furthermore�

the potential has now an in�nite number of degenerate minima� given by all those

�eld con�gurations for which

j � j�� �m
�

��
� �

�
v�� ��	��

All these minimum con�gurations �in the language of quantum theory� all these

ground states� are connected by gauge transformations� that change the phase of

the complex �eld � without a�ecting its modulus	 When the system chooses one of

the minimum con�gurations� the gauge symmetry is broken	 This phenomenon is

usually called spontaneous breaking of the gauge symmetry� but the symmetry is not

actually broken	 In fact� the Lagrangian is still gauge invariant� and all the proper�

ties connected with this invariance �such as� for example� current conservation� are

still there	 It is important to stress this point� because at the quantum level this is

essentially what guarantees the renormalizability of the theory� which would instead

be lost in the case of an explicit breaking of the gauge symmetry	

Let us now expand the �eld � around the minimum con�guration	 We introduce

real scalar �elds H�x� and G�x� by

��x� �
�p
�
�v �H�x� � iG�x�� � ��	���

where v is de�ned in eq	 ����	 One of the two �elds H and G could in principle be

removed from the lagrangian by an appropriate gauge transformation	 For example�

one could eliminate G by choosing a gauge transformation that brings � to be real	

For the moment� we keep both H and G in the lagrangian
 we will come back to this

point later	 Up to an irrelevant constant� the scalar potential takes the form

V ��� � �m�v��v��H�
�

�
�m����v��H��

�

�
�m���v��G���vH�H��G���

�

�
�H��G����

��	���

Using eq	 ����� �v � �m�� we see that the terms proportional to H and G� vanish�

which means that the �eld G is massless	 The coe�cient of the H� term is now
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���m����� and has therefore the correct sign to be interpreted as a mass term	

What about the covariant derivative term� We have

�D���yD�� �
�

�
	�H	�H �

�

�
	�G	�G �

�

�
e��H� �G� � �vH�A�A�

� eA��H	�G �G	�H� � evA�	�G �
�

�
e�v�A�A�� ��	���

We see that the gauge �eld A� has acquired a mass mA � ev� precisely the result we

were looking for	 The term evA�	�G is unpleasant� because it mixes the gauge vector

�eld A� with the unphysical �eld G
 we will see in a moment how to get rid of it	

We must now check that the appearance of a mass term for A� via the spontaneous

symmetry breaking mechanism has not spoiled the renormalizability of our theory�

contrary to what happened when we tried to break the symmetry explicitly	 It is

well known that� in order to quantize a gauge theory� a gauge��xing term must be

added to the lagrangian �obviously� this was not necessary in the case of explicit gauge

symmetry breaking�	 A convenient choice for the gauge��xing term is

LGF � � �

��
�	�A� � b�G��� ��	���

where � is an arbitrary constant �the gauge parameter�	 Equation ���� gives the

gauge��xing condition 	�A�� b�G � �	 The constant b can now be adjusted in order

to cancel the unwanted A�	�G term we encountered above
 it is easy to see that this

happens for b � ev � mA	 Observe also that the gauge��xing lagrangian introduces

a term

��

�
�m�

AG
� ��	���

which gives a squared mass �m�
A to the unphysical �eld G	

The part of the lagrangian quadratic in A� is now

��

�
�	�A�	�A� � 	�A�	�A�� �

�

�
m�

AA
�A� � �

��
�	�A��

�� ��	���

from which we obtain the following expression for the propagator in momentum space�

���
� �

i

k� �m�
A

�
�g�� � �� � ��k�k�

k� � �m�
A

�
� ��	���
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The propagator has now the correct behaviour at large momenta	 The price we

have paid for this is that the photon propagator has now� in addition to the pole at

k� � m�
A� an unphysical singularity at k� � �m�

A	 This singularity is located at the

mass squared of the unphysical scalar �eld G	 One can check that the contribution

of this term of the photon propagator to physical quantities is exactly cancelled by

the contribution of G exchange� thus giving a unitary picture	 When we let � tend to

in�nity� the photon propagator takes the form of eq	 ����	 The theory is still renor�

malizable� but now renormalizability must arise as a consequence of cancellations

among di�erent contributions to the same Green function� since the propagator does

not obey the power�counting rule	 This is called the unitary gauge� in which renor�

malizability is not manifest	 The advantage of the unitary gauge is that the theory

contains only physical degrees of freedom	 In fact� when � � 
 the gauge��xing

condition reduces to G�x� � � �see eq	 �����
 it corresponds to the gauge choice that

eliminates G from the theory since the very beginning	 Two common choices are the

Feynman gauge� � � �� which gives

���
F � � ig��

k� �m�
A

��	���

and the Landau gauge� � � �� for which

���
L �

i

k� �m�
A

�
�g�� � k�k�

k�

�
� ��	���

One last observation about the �eld G�x�	 It looks like we lost a degree of freedom�

since we started with a complex scalar �eld and we end up with one real scalar	

Actually� the number of degrees of freedom stays the same� since the photon is now

massive� and has therefore three polarization states instead of two	 The �eld G�x�

is called a would�be Goldstone boson	 This terminology re�ects the fact that� in the

absence of gauge invariance and of the gauge��xing term� G would have simply been

a physical� zero�mass state� which is always present when spontaneous symmetry

breaking occurs	 This mechanism is known as the Higgs mechanism	 It is possible to

extend it to the standard model� with a few modi�cations that we now describe in

detail	

We have learned that� in order to break spontaneously a gauge symmetry� we must

introduce scalar �elds in the game	 How should we do this in the standard model�
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First� the scalar �eld must transform non�trivially under that part of the gauge group

that we want to undergo spontaneous breaking	 Secondly� we must be careful not to

break the U��� invariance corresponding to electrodynamics� or� in other words� we

want the photon to stay massless	 This means that spontaneous symmetry breaking

must take place in three of the four  directions! of the SU��� � U��� gauge group�

the fourth one being that corresponding to electric charge	 The simplest way to do

this is to assign the scalar �eld � to a doublet representation of SU���� and to impose

that one the two components have zero electric charge�

� �

�
� ��

��

�
A 
 Y ��� � �� ��	���

The Higgs mechanism takes place in analogy with scalar electrodynamics	 The most

general scalar potential consistent with gauge invariance and renormalizability is

V ��� � m� j � j� �� j � j
� ��	���

which has a minimum at

j � j�� �m
�

��
� �

�
v�� ��	���

We can reparameterize � in the following way�

� �
�p
�
ei�

i�i�x��v

�
� �

v �H�x�

�
A � ��	���

with �i�x� and H�x� real	 This parametrization is not suited for renormalizable

gauges� because it is non�linear and contains all powers of the �elds �i	 It is convenient�

however� if we work in the unitary gauge
 in fact� it is apparent that the �elds �i can

be rotated away by an SU��� gauge transformation	 In this section� we will use the

unitary gauge �i � �	 The standard model lagrangian in a generic renormalizable

gauge is given in appendix ��	

The scalar potential takes the form

V �
�

�
���v��H� � �vH� �

�

�
�H

 ��	���

the Higgs scalar H has a squared mass m�
H

� ��v�	 The term �D���yD�� can be
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worked out using eq	 ���� with �i � �	 We get

D�� �



	� � i

g

�
� iW i

� � i
g�

�
B�

�
�p
�

�
� �

v �H�x�

�
A

�
�p
�

�
�
�
� �

	�H

�
A� i

�
�v �H�

�
� g�W �

� � iW �
� �

�gW �
� � g�B�

�
A
�
�

�
�p
�

�
� �

	�H

�
A� i

�

�
� �

H

v

��� gvW ��

�
q
�g� � g�����vZ�

�
A

��	���

where� to obtain the last line� we have used eqs	 ����� ���� and ����	 We have

therefore

�D���yD�� �
�

�
	�H	�H �

�
�

�
g�v�W ��W�

� �
�

�
�g� � g�

��v�Z�Z�
�

� �
� �

H

v

��

�

��	���

We see that the W and Z bosons have acquired masses given by

m�
W
�

�

�
g�v� ��	���

m�
Z
�

�

�
�g� � g�

�
�v�� ��	���

Notice that the photon stays massless	 With the scalar �eld � transforming as a

doublet of SU���� there is always a linear combination of B� and W �
� that does

not receive a mass term� but only if Y ��� � � �or ��� does this linear combination

coincide with the one in eq	 ����	 The lagrangian in a generic renormalizable gauge is

much more complicated� since it also involves kinetic and interaction terms for non�

physical Higgs scalars� the would�be Goldstone bosons	 It is described in appendix ��	

The value of v� the vacuum expectation value of the neutral component of the Higgs

doublet� can be deduced combining eqs	 ���� and ����� and using the measured

valued of the Fermi constant	 We get

v �

vuut �

G�

p
�
� ������ GeV � ��	���

Fermion masses are also forbidden by the gauge symmetry of the standard model	
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In fact� the mass term for a fermion �eld � has the form

�m�� � �m��L�R � �R�L�� ��	���

and cannot be invariant under a chiral transformation� that is� a transformation that

acts di�erenly on left�handed and right�handed �elds	 The gauge transformations of

the standard model are precisely of this kind	 Again� this di�culty can be circum�

vented by means of the Higgs doublet �	

We �rst consider the hadronic sector	 We have seen in section �� that the inter�

action lagrangian is not diagonal in terms of quark mass eigenstates	 Therefore� to

be general� we introduce quark �elds u�f and d�f � which are generic linear combination

of the mass eigenstates uf � df �the index f runs over the n fermion generations�	 We

also de�ne

Q�
f �

�
� u�fL

d�fL

�
A U �

f � u�fR D�
f � d�fR� ��	���

A Yukawa interaction term can be added to the lagrangian�

Lhadr
Y � ��Q��h�DD

� �D��yh�yDQ
��� �Q��ch

�
UU

� � U ��ych
�y
UQ

��� ��	���

where h�U and h�D are generic n� n constant matrices in the generation space� and

�c �

�
� ���

���

�
A � ��	���

It easy to check that Lhadr
Y is Lorentz�invariant� gauge�invariant� and renormalizable�

and therefore it can �actually� it must�� be included in the lagrangian	 Now� we de�ne

new quark �elds u and d by

u�L � KU
L uL� u�R � KU

RuR ��	���

d�L � KD
L dL� d�R � KD

R dR� ��	���

where KU�D
L�R are unitary matrices� chosen so that

hU � KU
L

y
h�UK

U
R ��	���

�In fact� if � transforms as an SU ��� doublets� so does �c � ���� where � is the antisymmetric

tensor� check it as an exercise�
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and

hD � KD
L

y
h�DK

D
R ��	���

are diagonal with real� non�negative entries �it is always possible�	 In the unitary

gauge� eq	 ���� becomes

Lhadr
Y � � �p

�
�v �H�

nX
f	�

�hfDdfdf � hfUufuf�� ��	���

where hfU�D are the diagonal entries of hU�D	 As we already know �see eq	 ����� the

charged hadronic weak current takes the form

J�
hadr � Q�����Q� �

X
f�f �

ufL�
�Kff �df

�

L � ��	���

where

K � KU
L

y
KD

L � ��	���

We can now identi�cate the quark masses by

mf
U �

vhfUp
�
� mf

D �
vhfDp

�
� ��	���

The case of leptons is much simpler� since there are no right�handed neutrinos	

The most general Yukawa interaction term is therefore

Llept
Y � �

nX
f	�

hfL�Lf�e
f
R � efR�

yLf �� ��	���

The values of the Yukawa couplings hfL are determined by the values of the observed

lepton masses	 In fact� using eq	 ����� we �nd

Llept
Y � �

nX
f	�

hfLp
�
�v �H�efef � ��	���

thus allowing the identi�cations

mf
L �

vhfLp
�
� ��	���

As in the case of vector bosons� in renormalizable gauges there are also interaction

terms between quarks and non�physical scalars
 the details are given in appendix ��	
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�� The problem of anomalies

We have seen in the previous sections that the renormalizability of the standard

model in strictly connected with gauge invariance	 In particular� we have seen that the

massive vector boson propagators show unphysical singularities� that are cancelled by

the presence of would�be Goldstone bosons	 In turn� gauge invariance manifests itself

in the form of identities between Green functions� called Slavnov�Taylor identities�

that are consequences of current conservation� and that must hold at all perturbative

orders for the theory to be renormalizable	 In this section� we will show that this might

not be the case for theories with axial currents� as the standard model itself	 It might

happen that current conservation is spoiled at the quantum level� unless the spectrum

of the theory satis�es particular conditions	 In the language of quantum �eld theory�

terms that spoil the validity of Slavnov�Taylor identities are called anomalies	 We

will illustrate the problem of anomalies in the context of a simple example� and

we will then state under which conditions the standard model is anomaly�free and

renormalizable	

We consider quantum electrodynamics with one massive fermion� �	 We consider

the operators

V � � ���� ��	��

A� � ������ ��	��

P � ����� ��	��

It is easy to show� using the equations of motion� that

	�V
� � � ��	��

	�A
� � �imP� ��	��

where m is the fermion mass	 The interpretation of eqs	 ���� and ���� is well

known	 Equation ���� is simply the conservation of the electromagnetic current�

which re�ects the gauge�invariance of the theory	 The curren A�� on the other hand�

is the current associated with axial transformations�

� � ei�	��� ��	��
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The lagrangian of massive QED is not invariant under axial transformations because

of the presence of the mass term� and as a consequence the associated current A� is

not conserved	 Equation ���� precisely states this fact	

Now consider the Green functions

T ��
�k�� k�� � i
Z
d
x�d


x�e
ik�x��ik�x� � �jT �V ��x��V

��x��A

����j� � ��	��

and

T ���k�� k�� � i
Z
d
x�d


x�e
ik�x��ik�x� � �jT �V ��x��V

��x��P ����j� � � ��	��

They formally satisfy the Slavnov�Taylor identities

k��T��
 � k��T��
 � � ��	��

q
T��
 � �mT�� � ��	���

where q � k� � k�	 These identities can be worked out by exploiting eqs	 ���� and

����� and the canonical commutation relations	 We will now check explicitly whether

esq	 ������� are satis�ed in perturbation theory or not	 At the one�loop order� the

diagrams to be computed are those of �g	 ���	 We have

T ��
�k�� k�� � T ��

� �k�� k�� � T ��


� �k�� k�� ��	���

T ���k�� k�� � T ��
� �k�� k�� � T ��

� �k�� k��� ��	���

where

T ��

� � �i

Z
d
p

����

Tr

�
i

�p�m
�
��

i

�p � �q �m
��

i

�p � �k� �m
��
�

��	���

T ��
� � �i

Z
d
p

����

Tr

�
i

�p�m
��

i

�p� �q �m
��

i

�p� �k� �m
��
�

��	���

and

T ��

� �k�� k�� � T ��


� �k�� k�� ��	���

T ��
� �k�� k�� � T ��

� �k�� k��� ��	���

The overall minus sign is due to the presence of a fermion loop	
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The loop integrals in eq	 ���� and ���� are super�cially divergent	 We must

therefore choose a regularization scheme before proceeding	 Dimensional regular�

ization is not suited here� because of the presence of ��� which has an intrinsically

four�dimensional meaning and cannot be generalized to other space�time dimensions

in a simple way	 We will make a di�erent choice� keeping in mind� however� that it is

indeed possible� although quite complicated� to treat this problem within dimensional

regularization	 The regularization scheme we choose is the following	 We subtract

from each integrand in eqs	 ���� and ���� the same expression� but with m replaced

by an arbitrary regularization parameter M 	 In the limit M � 
 the original ex�

pression is recovered� while� for �nite M � the integrals are now convergent	 We will

indicate with a subscript M the regularized quantities	

Equations ����� that state the conservation of the vector current� are satis�ed by

T ��
 as given in eqs	 ���� and ����	 In fact� writing

�k� � ���p� �k� �m� � ��p �m� ��	���

in T ��

� � and

�k� � ���p� �k� � �k� �m� � ��p � �k� �m� ��	���

in T ��

� � �and similarly in the regularizing part of the integrands�� we �nd �k��T��
�M �

�k��T��
�M � �	 The limitM �
 can then be taken safely	

We turn now to eq	 ����	 We �rst consider T ���k�� k��	 Using the Feynman

parametrization

�

d��� � � � d�nn
�

"�
� � � � �� 
n�

"�
�� � � �"�
n�

�
Z �

�
dx� � � �

Z �

�
dxn

x����
� � � � x�n��

n ���� x� � � � �� xn�

�x�d� � � � �� xndn���������n
�

��	���

we �nd

�T ��
� �M

� �
Z �

�
dx
Z ��x

�
dy
Z

d
p

���
�

�
�im

���k



�k

�
�

�p� � �p�qx� k���� x� y�� � q�x�m���
� �m�M�

�
�

��	���
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where we have set k�� � �	 The simple expression in the numerator is obtained by

dropping all products of �� with two� three and �ve � matrices� and exploiting the

antisymmetry of 

���	 The integration over the loop momentum p can be easily

performed by shifting the integration variable

p� p� qx� k���� x� y�� ��	���

with the result

�T���M �
�

���

��
�k



�k

�
�

Z �

�
dx
Z ��x

�
dy

�
m

m� � q�xy
� M

M� � q�xy

�
� ��	���

We are now ready to check the identity ����	 Using the identity

�q�� � �m�� � ����p� �q �m� � ��p �m���� ��	���

we get

�q
T
��
�M � ��mT ���M � �R�� �M � ��	���

where

R�� �
Z

d
p

����

Tr

�
i

�p �m
���

� i

�p� �k� �m
�� � i

�p � �k� �m
���

� i

�p� �q �m
��

�
i

�p �m
���

� i

�p� �k� �m
�� � i

�p � �k� �m
���

� i

�p � �q �m
��
�
�

��	���

It is now easy to check that �R�� �M vanishes	 In fact� by shifting the loop momentum

p to p � k� in the second term� and to p � k� in the fourth� they cancel against the

�rst and the third respectively	 The important point here is that these shifts in the

integration variable can be performed only after regularizing the integrals	 Therefore�

using eq	 �����

�q
T
��
�M � ��mT ���M � �mT �� � �

��

��
�k



�k

�
�

Z �

�
dx
Z ��x

�
dy

M�

M� � q�xy
� ��	���

The limitM �
 can now be taken safely� giving

q
T��
 � �mT�� � �

���

��
�k



�k

�
� � ��	���
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The e�ect of the regularization is that the Slavnov�Taylor identity in eq	 ���� is

spoiled by an anomalous term� which is usually called the axial anomaly� or the Adler�

Bardeen�Jackiw anomaly	 This term arises because of the impossibility of regularizing

the theory in a way that preserves both the vector and axial vector classical current

divergence relations
 one of the two must be given up	

The anomalous term can be taken into account by modifying eq	 ���� at the

one�loop level in the following way�

	�A
� � �imP �

�

�����

��
�F��F
�� ��	���

where F�� is the �eld�strength tensor of QED	 In other words� the axial current is not

conserved� at the quantum level� even if m � �	 Notice in fact that the anomalous

term is independent of the fermion mass	 Furthermore� it can be proved that higher�

order corrections do not modify the one�loop expression of the anomaly	

The above considerations can be extended to the case of a theory with non�abelian

gauge invariance	 In this case� also fermion loops with four and �ve internal lines

contribute to the anomaly	 It can be shown that the anomalous term of the axial

vector current in a non�abelian theory is proportional to

Tr�fT a� T bgT c�� ��	���

where T a are the gauge group generators	 In the standard model� fermions are either

in the doublet or in the singlet representation of SU���
 this means that the four

quantities

Tr�f� a� � bg� c� ��	���

Tr�f� a� � bgY � ��	���

Tr�Y �� c� ��	���

Tr�Y �� ��	���

must all vanish� for the axial anomaly to be cancelled	 The �rst quantity is obviously

zero�

Tr�f� a� � bg� c� � ��abTr�� c� � �� ��	���



����

The second quantity requires more care	 Since � a � � for right�handed fermions� we

have

Tr�f� a� � bgY � � ��abTr�YL�� ��	���

where YL is the hypercharge matrix restricted to left�handed fermions	 Since Y � ���

for the doublets of left�handed quarks� and Y � �� for the doublets of left�handed

leptons� we �nd

Tr�YL� � nq � �� � � �

�
� nl � �� ���� � ��nq � nl�� ��	���

where nq �nl� is the number of quark �lepton� families	 The factor of � in front of

the quark term is due to the colour degree of freedom� and the overall factor of �

is due to the fact that left�handed fermions are SU��� doublets	 We see that the

cancellation of the axial anomaly requires that the numbers of quark and lepton

families are equal� This is an important prediction of the standard model� which has

been recently con�rmed by the discovery of the top quark	

The third condition� Tr�Y �� c� � �� is again trivially satis�ed� since Y has the

same value for both components of each doublet� and Tr�� c� � � �for singlets� we

have simply � c � ��	

The last condition� Tr�Y �� � �� is also satis�ed provided nq � nl	 In fact�

Tr�Y �� � Tr�Y �
L �� Tr�Y �

R�� ��	���

There is a minus sign in front of Y �
R because fermions in the same diagram have the

same chirality	 Using Y � ��Q� T�� we �nd

Tr�Y �
L � � �nq

�
�

�

��

� �nl����� ��	���

Tr�Y �
R� � �nq

��
�

�

��

�
�
��

�

��
�
� nl������ ��	���

and therefore

Tr�Y �� � ���nq � nl�� ��	���
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APPENDIX A� Renormalizability and power counting

In this appendix� we describe the power�counting criterion for renormalizability

of local �eld theories	 Consider a Feynman diagram containing

� L loops


� V vertices


� F I internal fermionic lines


� FE external fermionic lines


� BI internal bosonic lines


� BE external bosonic lines	

Let us assume that there are di�erent types of vertices� each type being labelled by

the index i� and that

V �
X
i

V �i�� �A	��

where V �i� is the number of vertices of type i	 Finally� let n�i�
f � n�i�

b � d�i� be the number

of fermionic lines� bosonic lines and �eld derivatives in type�i vertices� respectively	

The following relations hold�

�F I � FE �
X
i

n
�i�
f V �i� �A	��

�BI �BE �
X
i

n
�i�
b V �i�� �A	��

The number L of loops is equal to the number of independent internal momenta�

which in turn is equal to the total number of internal lines� minus the number of

independent momentum conservation equations	 Therefore� we have

L � F I �BI � �V � ��� �A	��

We now de�ne the degree of super�cial divergence D of the diagram as the power

of momenta in the numerator minus the power of momenta in denominator of the
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Feynman diagram	 Clearly�

D � �L � F I � �BI �
X
i

diV i� �A	��

since fermion propagators behave as k��� boson propagator behave as k��� each �eld

derivative corresponds to one power of momentum� and four powers of momentum

are carried by each loop integration	 Now� substituting eqs	 ���� and ���� in eq	 ����

and eliminating F I and BI via eqs	 ���� and ����� we �nd

D � �� �

�
FE �BE �

X
i

V �i�
�
d�i� �

�

�
n
�i�
f � n

�i�
b � �

�
� �A	��

If D 	 �� the Feynman amplitude will be ultraviolet divergent	 On the other hand�

D � � is not a su�cient condition for convergence� since there can still be subdiagrams

with D 	 �	 However� we notice that D decreases with increasing number of external

lines	 Therefore� if the last term in the r	h	s	 of eq	 ���� is zero or negative� then

only a �nite number of diagrams have D 	 �� and the whole theory can be made

�nite by renormalizing only these primitively divergent amplitudes� at any order in

perturbation theory	 The condition for renormalizability then becomes

d�i� �
�

�
n
�i�
f � n

�i�
b � �� �A	��

and it must hold for each i separately �a diagram can contain only vertices of one

type�	 Notice that the l	h	s	 of eq	 ���� is just the mass dimension of the operator

that corresponds to type i vertices� in fact� fermion �elds have dimension ���� boson

�elds have dimension � and derivatives have dimension �	 For this reason� the con�

dition in eq	 ���� can be rephrased in terms of coupling constant dimensionality� a

renormalizable theory can contain only constants with mass dimension 	 �	
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APPENDIX B� Gauge theories

The Dirac free lagrangian for a massive fermion�

L � ��i�	 �m��� �B	��

is invariant under the global �or �rst kind� U��� gauge transformation

�� �� � e�ie��

�� �
�
� eie��� �B	��

where 
 is a real constant �the charge �e of the �eld � has been inserted for later

convenience�	 We want to promote this global symmetry to a local one� that is� we

want to modify L in order to render it invariant under the �eld transformation �����

with 
 � 
�x�	 The derivative term is not invariant�

�	��� eie��	��e�ie��� � �	�� � ie��	�
��� �B	��

The ordinary derivative must be replaced by a covariant derivative�

D� � 	� � ieA�� �B	��

where A� is a real vector �eld	 The transformation property of A� must be �xed in

such a way that

D��� e�ie�D��� �B	��

We �nd

D�� � �	� � ieA��� � �	� � ieA�����

� �	� � ieA���e�ie��

� e�ie�	�� � ie�	�
�e�ie�� � ieA��e�ie��

� e�ie��	� � ieA�� � ie	�
��

� e�ie��	� � ieA���� �B	��

which implies

A� � A�� � A� � 	�
� �B	��
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The lagrangian

L � ��i �D �m�� �B	��

is invariant under the local �or second kind� gauge transformation

�� �� � e�ie��x��

�� �
�
� eie��x���

A� � A�� � A� � 	�
�x�� �B	��

Notice that the requirement of local gauge invariance has introduced the interaction

term e����A
�	

A kinetic term for the vector �eld A� must now be introduced	 It is uniquely �xed

by the following requirements�

� Lorentz invariance

� Gauge invariance

� Presence of derivatives of the gauge �elds

� Standard normalization of the propagator for A�

and it is given by

LYM � ��

�
F ��F��� �B	���

where

F �� � 	�A� � 	�A�� �B	���

Notice that

�D�D� �D�D��� � ieF ���� �B	���

and that F �� is invariant under a gauge transformation	 Notice also that gauge invari�

ance forbids the presence of a mass term for the gauge �eld A�	 Finally� we observe

that no self�interaction term for the vector �eld A� is present in the lagrangian	 This

is connected with the abelian nature of the invariance group	

Let us consider now the case when the invariance group of the theory is non�

abelian	 For de�niteness� we consider the group SU�N� of N � N unitary matrices



����

with unit determinant	 This group has N� � � hermitian generators TA� that obey

the commutation relations

�TA� TB� � ifABCTC� A�B�C � �� ���� N� � �� �B	���

where fABC is completely antisymmetric	 A generic element U of SU�N� can be

expressed in terms of the generators TA and of a set of real functions 
A�x� by

U � U�
� � exp�ig
ATA�� �B	���

where we have inserted a coupling constant g in analogy with the abelian case	 The

covariant derivative is now given by

D� � 	�I � igA�� �B	���

where I is the unity matrix in the representation space� and the vector �eld A� is

now a hermitian matrix

A� � A�
AT

A� �B	���

By the same reasoning of the abelian case� we obtain the transformation law for A��

A� � A�� � UA�U�� � i

g
�	�U�U��� �B	���

Consider now an in�nitesimal gauge transformation

U�
� � I � ig
ATA �O�
��� �B	���

At order 
� eq	 ���� becomes

A�� � A� � i�
ATA� A��� i

g
ig	�
ATA

� A�
CT

C � 
AA�
Bf

ABCTC � 	�
CTC� �B	���

or

A��
C � A�

C � 
AA�
Bf

ABC � 	�
C � �B	���

To build a kinetic term for the gauge �elds� we write the analogous of eq	 �����

�D�D� �D�D��� � igF ���� �B	���



����

where � is a multiplet of some SU�N� representation� and F �� � F ��
A TA	 We �nd

F �� � 	�A� � 	�A� � ig�A�� A���

F ��
A � 	�A�

A � 	�A�
A � gfABCA�

BA
�
C� �B	���

The kinetic term is then given by

��

�
F ��
A FA

��� �B	���

In the non�abelian case� self�interaction terms of the gauge �elds are present	 This is

related to the fact that� contrary to the abelian case� the �eld strength F �� transforms

non�trivially under a gauge transformation�

F �� � F ��� � UF ��U��� �B	���

For an in�nitesimal gauge transformation� we �nd

F ���
A � F ��

A � gfABC
BF ��
C � �B	���

which means that the components F ��
A form a multiplet in the adjoint representation

of the gauge group	
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APPENDIX C� The standard model lagrangian

Let us consider the following part of the standard model lagrangian�

LD � LGF � V ���� �C	��

where

LD � �D���yD�� �C	��

LGF � � �

��

h
	�W i

� � �f i���
i� � �

��
�	�B� � �f����� �C	��

V ��� � m� j�j� � � j�j
 � �C	��

We de�ne

� � �� � ��� �C	��

where

�� �

�
� �

v�
p
�

�
A �� �

�
� G�

�H � iG��
p
�

�
A �C	��

and

v� � �m
�

�
� �C	��

We have

LD �

�
	��y �

i

�
�y


g

�
W �

i �
i �

g�

�
B�

�� �
	��� i

�



g

�
W j

��
j �

g�

�
B�

�
�

�

� L

 � L

V V � L

V � �C	��

The �rst term is simply the kinetic term for ��

L

 � �	���y	�� � 	�G�	�G
� �

�

�
	�H	�H �

�

�
	�G	�G� �C	��

Next� we consider the ��V V term�

L

V V �
�

�
�g�W �

i W
i
� � g�

�
B�B���

y��
�

�
gg�B�W i

��
y� i�

�
�

�
g�W��

W�
� �

y��
�p
�
gg�B��y

�
� � W�

�

W�
� �

�
��



����

�
�

�
�B� W �

� �

�
� g���y� gg��y� ��

gg��y� �� g��y�

�
�
�
� B�

W��

�
A � �C	���

where

W�
� �

�p
�
�W �

� � iW �
��� �C	���

To obtain the physical vector states� we must isolate the mass term in eq	 ���� and

put it in diagonal form	 The mass term is given by replacing � with �� in eq	 ����	

We �nd

Lmass �
�

�
g�v�W��

W�
� �

�

�
�B� W �

� �

�
� g�� �gg�
�gg� g�

�
�
�
� B�

W��

�
A � �C	���

which is diagonalized by

�
� B�

W �
�

�
A �

�
� cos �W � sin �W

sin �W cos �W

�
�
�
� A�

Z�

�
A 
 tan �W �

g�

g
� �C	���

In terms of W�
� � A� and Z� eq	 ���� becomes

L

V V � W��
W�

�

�
mW �

�

�
gH

��

�
�

�
Z�Z�

�
mZ �

�

�

g

cos �W
H
��

�
�

�
g�W��

W�
� �G�G� �

�

�
G�� �

�

�

g�

cos� �W
Z�Z�G

�

�
�

�

g�

cos� �W
�A� sin ��W � Z� cos ��W �

�G�G�

�g sin �W�mWA
� �mZZ

� sin �W�
	
G�W�

� �G�W�
�




�
�

�
g� sin �W�A

� � Z� tan �W�
h
G�W�

� �H � iG� �G�W�
� �H � iG�

i
�C	���

where

mW �
�

�
g�v�
 m�

Z
�

�

�
�g� � g�

��v�� �C	���

The third term in LD must be considered in conjunction with the gauge��xing

term	 We have

L

V � � i

�
gW i

�

h
�	����

y� i�� � �y��
i	���

i
� i

�
g�B�

h
�	����

y�� � �y�	
���

i



����

� i

�
gW i

�

h
�	����

y� i�� � �y��
i	���

i
� i

�
g�B�

h
�	����

y�� � �y�	
���

i
�

�C	���

Exploiting the fact that 	��� � �� we can integrate by parts the �rst row	 Adding

LGF � we �nd

L

V � LGF � � i

�
gW i

�

h
�	����

y� i�� � �y��
i	���

i
� i

�
g�B�

h
�	����

y�� � �y�	
���

i

�	�W i
�

�
i

�
g��y��

i�� � �y��
i��� � f i���

�

�	�B�

�
i

�
g���y��� � �y���� � f���

�

� �

��
�	�W i

��
� � �

��
�	�B��

� � �

�
�f i���f i���� �

�
�f���f���� �C	���

With the choices

f i��� � � i

�
g��y��

i�� � �y��
i��� �C	���

f��� � � i

�
g���y��� � �y���� �C	���

the mixing between vector bosons and scalars disappears� and we remain with

L

V � LGF � � i

�
gW�

�

h
�H � iG�	�G� �G�	��H � iG�

i

�
i

�
gW�

�

h
�H � iG�	�G� �G�	��H � iG�

i

� i

�
��g sin �WA

� � �g cos �W � g� sin �W �Z
�� �G�	�G

� �G�	�G
��

��

�
�g cos �W � g� sin �W �Z

��G	�H �H	�G�

� �

��
�	�W i

��
� � �

��
�	�B��

� � �m�
W
G�G� � �

�
�m�

Z
G��

�C	���

We see that the would�be Goldstone bosons G� ang G have acquired squared masses

equal to �m�
W

and �m�
Z
� respectively� as is necessary in order to cancel the unphysical
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singularities in the vector boson propagators	 These masses vanish in the Landau

gauge� � � �	

The last term to be considered is the scalar potential V ���	 After some algebra�

we �nd

V ��� �
�

�
m�

H

�
H �

H� �G�G� �G�

�v�

��
� �C	���

where

m�
H
� ��v�� �C	���

We consider now the interaction between fermions and scalars	 From eqs	 �������

and the de�nition in eq	 ����� we get

Lhadr
Y � �G� �uLKhDdR � uRhUKdL��G�

	
dRhDK

yuL � dLK
yhUuR




� �p
�
�v �H�

	
dhDd� uhUu



� iGp

�

	
dhD��d � uhU��u



� �C	���

and

Llept
Y � � �p

�
�v �H�ehLe�G��hLeR �G�eRhL�� �C	���

where sums over generation indices are understood	
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APPENDIX D� The SU��� custodial symmetry

We have seen in section � that in the standard model at tree level the masses of

weak vector bosons� mW and mZ� satisfy the relationship

� � m�
W

m�
Z
cos� �W

� �� �D	��

Equation ���� could in principle be modi�ed at higher orders in perturbation theory	

Actually� the measured value for � is very close to ��

�exp � ������ � ������� �D	��

thus suggesting that some symmetry property prevents the quantity � from receiving

large radiative corrections	 We will show that this is indeed the case in the standard

model	

Preliminarly� we observe that� even after the inclusion of radiative corrections� the

most general vector boson mass term is given by

Lmass �
�

�
m�

W
�W ��W �

� �W ��W �
� � �

�

�
�B� W �

� �

�
� M� M ��

M �� M ���

�
�
�
� B�

W��

�
A � �D	��

Furthermore� the condition that the photon stays massless gives us M �� �MM ��� and

M��M ��� � m�
Z
	 Therefore� the mass matrix in the neutral sector is completely �xed

by the value of one parameter� M�� and it is diagonalized by a rotation of an angle

�W given by

tan �W �

q
m�

Z
�M�

M
� �D	��

This in turn implies that

� �
m�

W

m�
Z
cos� �W

�
m�

W

M�
� �D	��

that is� � � � only if M� � m�
W
	

Next we notice that the scalar potential

V ��� � m� j � j� �� j � j
 �D	��



����

is invariant under a group of transformations which is larger than the standard model

SU���L � U���Y 	 In fact� de�ning

� �

�
� �� � i��

�� � i�


�
A �D	��

we see that

j � j�� ��
� � ��

� � ��
� � ��


 �D	��

can be interpreted as the squared length of a real four vector	 Therefore� the scalar

potential has an O��� � SU��� � SU��� invariance	 This symmetry property can be

implemented in the following way	 We de�ne a � � � matrix

H �

�
� �� ���

�� ���

�
� � �D	��

Recalling that the �eld �c � ���������T transforms as an SU��� doublet� it follows

that� under the action of a generic SU���L transformation U � we have

H � UH� �D	���

On the other hand� it is easy to check that the scalar potential can be written in

terms of H as

V ��� �
�

�
m�Tr

	
HyH



�

�

�
�Tr

	
HyH


�
� �D	���

which is invariant under the SU���L � SU��� transformation

H � UHV y� �D	���

where V is another SU��� constant matrix� independent of U 	 This is possible because

the structure of H in eq	 ���� is preserved also by right multiplication with an SU���

matrix	 Equation ���� is a representation of the O��� symmetry we mentioned above	

Is it possible to write also the kinetic term for the �eld � in an O����invariant way�

The natural candidate is of course

�

�
Tr �D�H�yD�H� �D	���

which is invariant under the transformations ���� since D� � UD�Uy	 However�

one readily realizes that ���� is not equal to �D���yD�� �prove this statement as
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an exercise�
 this is because � and �c have opposite values of the hypercharge quan�

tum number	 We conclude that the O��� symmetry is violated by the hypercharge

interaction term contained in the covariant derivative	

Due to spontaneous breaking of SU���L� the gound state is not invariant under

O���
 however� there is a residual O��� � SU��� symmetry under transformations of

the kind

H � UH��U
y��� �D	���

that leave the vacuum expectation value � H �� v��
p
� unchanged �U is now x�

independent�	 We are almost at the end of the road� in fact� it is easy to check that

the only mass term for the W i
� �elds allowed by the symmetry in eq	 ���� is of the

form W i
�W

�
i � that is� a scalar product in O���	 In other words� M� � m�

W
in the

notation of eq	 ����	

We have proven that � � � is a consequence of the so�called custodial SU��� sym�

metry de�ned in eq	 ����� and therefore it is not spoiled by radiative corrections	 The

inclusion of the hypercharge interaction� that breaks O��� explicitly� does not change

this conclusion� since radiative corrections to � due to the hypercharge coupling are

very small	

Of course� fermion mass terms do not preserve the custodial symmetry
 we expect

corrections to eq	 ���� of the order of G�m
�
f 	 More precisely� one �nds

� � � �
�G�m

�
t

���
p
�
� �D	���

where we have included only the contribution from the top quark� for obvious reasons	


